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Introduction

Introduction

Philosophy of the Workshop
The two primary purposes of LANL’s Computational Physics Student Summer Workshop are
(1) To educate graduate and exceptional undergraduate students in the challenges and applica-
tions of computational physics of interest to LANL, and (2) Entice their interest toward those
challenges. Computational physics is emerging as a discipline in its own right, combining
expertise in mathematics, physics, and computer science. The mathematical aspects focus on
numerical methods for solving equations on the computer as well as developing test problems
with analytical solutions. The physics aspects are very broad, ranging from low-temperature
material modeling to extremely high temperature plasma physics, radiation transport and neu-
tron transport. The computer science issues are concerned with matching numerical algorithms
to emerging architectures and maintaining the quality of extremely large codes built to per-
form multi-physics calculations. Although graduate programs associated with computational
physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary
field is relatively small and is typically not focused on the aspects that are of primary interest
to LANL. Furthermore, more structured foundations for LANL interaction with universities
in computational physics is needed; historically interactions rely heavily on individuals’ per-
sonalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build
an educational network of LANL researchers, university professors, and emerging students to
advance the field and LANL’s involvement in it.

This was the fifth year for the Summer Workshop and the fourth in a series of reports [1]
[2] [3]. As before, the workshop’s goals were achieved by attracting a select group of students
recruited from across the U.S. and immersing them for ten weeks in lectures and interesting
research projects. The lectures provided an overview of the computational physics topics of
interest along with some detailed instruction while the projects gave the students a positive
experience accomplishing technical goals. Each team consisted of two students working un-
der one or more LANL mentors on specific research projects associated with predefined topics.
This year, the topics included turbulence modeling using the BHR model, multi-scale materials
modeling, multi-phase compressible flow, warm dense matter modeling, Monte Carlo thermal
radiation transport, studying production codes on Xeon Phi/Knights Corner, Lagrangian radi-
ation hydrodynamics, computational physics using a domain-specific language, and advanced
mesh-free methods for compressible mechanics. The students’ growth was furthered by their
participation on teams where their teammates were sometimes of a different academic year.
It also developed their skills by requiring them to produce written and oral reports that they
presented to peers, mentors, and management.
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Funding and Participation Profile

LANL Staff
The Advanced Scientific Computing (ASC) Program at Los Alamos National Laboratory spon-
sors this Summer Workshop by funding the workshop coordinator under the University Liaison
budget and paying the lease for the workshop facility. Funding for the students’ stipends come
from a variety of programmatic sources. A large majority of them fall under various projects
that are part of the ASC Program, but a few other programs also provide funding for some
students. This year, there were twenty mentors, up slightly from last year. The mentor partic-
ipation amongst different divisions included XCP, XTD, CCS, and T. This broad participation
is welcomed and it is hoped that it continues in future years.

Students
Sixty-six students applied for admission to the workshop, all eligible U.S. citizens with the
breakdown shown in the chart on the next page. The twenty-two who ultimately were selected
and participated were from the following schools: ASU, Virginia Tech, Univ. Arizona, UC
Santa Cruz, Univ. Vermont, UC Irvine, Stanford, Univ. New Mexico, Florida State Univ.,
Univ. Michigan, Kansas State, Univ. Michigan, Univ. Illinois Urbana-Champaign, Missouri
Univ. of Sci. & Tech., Columbia, Univ. Illinois Urbana-Champaign, Univ. Texas at Austin,
Univ. Maryland, and Univ. Washington
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Figure 1: This figure shows the number of students who applied to the Summer Workshop and
how many were accepted and participated, broken down by academic year. In this figure “G1”
means “first-year graduate student” at the time of the workshop,.i.e., starting their first year of
graduate school in the fall after the workshop. “G2” means “second-year graduate student” at
the time of the workshop, i.e., starting their second year of graduate school in the fall after the
workshop.

Lectures
In this fifth year of the Summer Workshop the effort begun last year, which was to more tightly
integrate the lectures, was continued. The increased integration is part of a effort to transform
the stand-alone lectures into a sequence exhibiting a more course-like feel. A foundational lec-
ture at the beginning of the Summer Workshop, introducing the fundamentals of transport the-
ory was introduced last year to provide a common basis upon which several other lectures could
build. That lecture was provided again this year. Also the development of a one-dimensional
hydrocode was performed in class; the resulting code provided a basis for other lecture mate-
rials and for exploratory studies that some of the students performed at the beginning stages of
their projects. The approximately 27 hours of lectures, for which the students’ attendance was
required, were augmented with other lectures and demonstrations for which the students’ at-
tendance was optional. These lectures were provided to help students who were lacking certain
skills develop them quickly to aide them during the summer. The lectures included a tutorial
on C++ object-oriented programming, Python programming, and Unix.

The lectures were scheduled to be most frequent in the beginning of the workshop, when the
students’ research was just getting started and they needed the most background information.
Their frequency dropped significantly until there were no lectures at all in the latter weeks of
the workshop so that the students could focus on their research. The lectures are summarized
in the table that follows.
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Required Lectures
Title Hrs. Lecturer
Essentials of Transport Equations 2 S. Runnels
Introduction to Lagrange Hydro 1 S. Runnels
Intro to High-Performance Computing at LANL 1 R. Cunningham
Introduction to Hydro Terminology and Artificial Viscosity 1 S. Runnels
Live Demo: Development of a 1-D Gas Hydrocode 1 S. Runnels
Plasticity Modeling 1 S. Runnels
Live Demo: Adding Plasticity to a 1-D Hydrocode 1 S. Runnels
Introduction to Monte Carlo and MCNP 3 F. Brown
Introduction to Thermal Radiation Transport 1 T. Urbatsch
Warm Dense Matter Simulation 1 O. Certik
Radiation Hydrodynamics 1 S. Ramsey
Rocks in Space 1 C. Plesko
Introduction to Molecular Dynamics 1 C. Starrett
Multi-Material Equilibration Techniques 1 A. Harrison
HPC Performance Analysis 1 L. Vernon
Domain Specific Languages - Scout 1 C. Sweeney
Turbulence Modeling 2 D. Israel
Interface Reconstruction Methods 1 M. Shashkov
V & V and Uncertainty Quantification 1 J. Kamm & G. Weirs (Sandia)
Mesh Free Methods 1 G. Dilts
Introduction to Slidelines 1 N. Morgan
Survey of ALE Methods 1 N. Morgan
Compressing Colloids 1 D. McDermott (Wabash)

Optional Lectures
Tutorial in C++ Programming 2 S. Runnels
Live Demo: Unix Tutorial 1 C. Sweeney
Introduction to Python 1 D. Israel
Python for Scientific Computing Applications 1 D. Israel
Introduction to Parallel Programming 1 R. Robey
Git 1 B. Runnels (UCCS)
Python for Scientific Computing Applications 1 D. Israel
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Introduction to the Technical Reports and
the Teaming Arrangements

The Summer Workshop is primarily an educational endeavor with a healthy emphasis on re-
search. Because of that, most of the chapters that follow represent actual research progress,
some of which are worthy of conference or peer-reviewed publication. However, other chap-
ters may simply represent the students’ educational progress in a particular area. Because of
that mixture, it is worth mentioning that the results and opinions expressed in these reports may
or may not be representative of the ASC program’s position the associated technical areas.

In this workshop, each student is paired with another student under one or more mentors,
and in that arrangement the students are not necessarily at the same academic level or back-
ground. Developing a team-based approach to the research project is one of the secondary
objectives of the workshop, but not the primary objective, which is the students’ education.
The technical reports that follow may or may not have a strong teaming arrangement behind
them. For some projects, close teaming is the best choice, while for others it is more appro-
priate to allow the students to explore the project area at their own pace. These aspects are
discussed in some of the projects’ Introduction section.

While the students’ reports are integrated in this report, each chapter is intended to essen-
tially be a stand-alone document. Nomenclature may not be consistent between the chapters.
Figures, equations, and concepts may be repeated.
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Abstract

The study of thermal radiative transport is an important area of research at Los Alamos
National Laboratory (LANL). The work presented in this report was completed as part
of the Computational Physics Workshop hosted by LANL. Goals for the project were to
apply Monte Carlo methods to solving the diffusion based radiative transport equations.
These methods are specifically applied to an unstructured triangular mesh.

For this project, a new discretization of the transport equations was developed and im-
plemented for the triangular mesh. The work was tested by implementing the discretiza-
tion into a Python program, and several test problems were developed. Furthermore, the
functionality was implemented into the existing C++ project Jayenne at LANL.

This work was the first part of a five year project that would fully implement the method
for unstructured triangular meshes. Future work for this part of the project is to validate the
results provided by the method against analytical results, and perform mesh comparisons
using Jayenne between triangular and Cartesian meshes.

Introduction
This work focused on the solution of the strongly coupled thermal radiative transport equa-
tions in the diffusive regime, where simplifications to the transport equations yield a diffusion
equation [1]. Solving the diffusion equations is significantly quicker than solving full transport
equation in the diffusive regime. The focus for this project was in three distinct areas including:
derivation and discretization of the diffusion equations, creating a python code for algorithm
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development, and implementing new capability into the existing Monte Carlo radiative trans-
port code at Los Alamos National Laboratory (LANL).

In what follows, a brief background of the governing equations is provided, followed by
an overview of the discretization. Following that, the Monte Carlo method is described, and
finally, the results from the Python simulation are presented and discussed.

The ultimate goal of this project was to provide a proof of concept for the discretization
technique outlined by Maire and Breil [2] as applied to a regular triangular mesh. This would
suggest that the discretization is valid for solving the diffusion equation on non-orthogonal
grids. Code written this summer will provide a foundation for developing a coupled radiation-
hydrodynamics code for performing Lagrangian simulations on unstructured triangular grids.

Theoretical Background
In this section, a brief introduction to the underlying equations is provided. Implicit Monte
Carlo (IMC) is a method used to solve the time dependent thermal radiative transport equations
using Monte Carlo techniques to implicitly solve for each time step. Discrete Diffusion Monte
Carlo (DDMC) is an approximation to the time dependent thermal radiative transport equations
formed by incorporating Fick’s law of diffusion, which is accurate for highly scattering regions.
Furthermore, DDMC solves the equations by Monte Carlo methods, while treating the time
variable continuously. All of the work and derivations presented here have been cast in the
gray form, which is to say that all photons are assumed to be at uniform energy (or frequency).
Each of the concepts and methods are extendable to the multigroup approximation, which is
formulated to treat the particle energy (frequency).

Implicit Monte Carlo (IMC)

The continuous transport equations begin as

time-rate
of change︷︸︸︷

1
c

∂ I
∂ t

+

streaming
losses︷ ︸︸ ︷

Ω ·∇I +

absorption︷︸︸︷
σ I =

radiative
emission︷︸︸︷

σB +

external
source︷︸︸︷
Qr

4π
, (1)

where I is the intensity of the radiation, c is the speed of light, σ is the opacity, B is a function
of temperature and represents the emission of photons from the material, Qr is an external
source. In this form, no material motion is assumed. This equation is coupled to the material
energy balance equation presented as

time-rate
of change︷ ︸︸ ︷
Cν

∂T
∂ t

=

absorption/emission
from material︷ ︸︸ ︷∫

∞

0

∫
4π

σ(I−B)dΩ
′dv′ +

external
source︷︸︸︷
Qm , (2)

where Cν is the heat capacity, and Qm is an external source. Note that the radiative emission
term in Eq. 1 appears as a source that also appears as an energy sink in Eq. 2. Similarly, the
absorption term appears as a sink in Eq. 1 and a source in Eq. 2. Furthermore, each of the
material properties (e.g., σ , Cν , etc.) can be functions of temperature, thus these two equations
are highly coupled.
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The solution to these equations is outside the scope of the present project, but one technique
with which to proceed is to discretized the problem in time, and treat particles that are absorbed
and re-emitted in a given time step as an effective scatter. This concept was described by Fleck
and Cummings [3], and is represented by the Fleck factor, f ∈ [0,1], where f may be thought
of as the ratio of effective absorption events to total events, and is approximated by

f =
1

1+ 4acT 3σ∆t
Cν

. (3)

The Fleck factor will be discussed in more detail later in this report. The eventual extension
to this work would link together IMC and DDMC solvers. The challenge in this case is to
ensure that particles would successfully transition to the correct type of particle as it travels
throughout the problem space. DDMC is only accurate in highly scattering regions, which is
the region where IMC is most expensive. Thus a coupled solver would use DDMC as a way to
speedup an IMC method.

Discrete Diffusion Monte Carlo (DDMC)

As previously mentioned, in domains where a large amount of scattering occurs, an IMC par-
ticle will have a mean free path which is much smaller than the dimension of the spatial cell in
the problem domain. As a result, the IMC particle undergoes a large amount of effective scat-
ters or absorptions before it leaves the spatial cell, this process is computationally expensive.
If the Fleck factor, f , is very small then the majority of events that the photon will undergo will
be isotropic effective scatters. In this regime it is valid to take the zeroth moment of the IMC
transport equations to obtain the diffusion equation for radiative transport [1]. Doing so yields
the following

1
c

∂E
∂ t

+
1
c

∇F = f σtacT 4− f σtE , (4)

where E is the energy in the radiation field (related to I from Eq. 1), F is the radiation energy
flux, a is the radiative constant, and T is the temperature.

The radiative flux F is related to the energy E through Fick’s Law as

F =−cD∇E , (5)

where the diffusion coefficient D may be temperature dependent and is inversely related to
the opacity by

D =
1

3σ
. (6)

Furthermore, the diffusion equation is strongly coupled to the material energy equation

ρCν

∂T
∂ t

= f σE− f σacT 4 (7)

where σ is the total opacity for the material. It is important to note that DDMC is only a valid
approximation in highly scattering regions, or where the Fleck factor is small. Outside of this
region, the IMC equations should be solved instead.
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Discretization

In order to solve the DDMC equations, the Finite Volume technique was applied to a spatially
discretized domain. specifically, a structured spatial grid of right triangles was chosen for the
discretization. A sample of the mesh is presented in Fig. 1.

1

Figure 1: Schematic of spatial grid used to discretize problem

Integration over each spatial cell is trivial for all terms in Eq. 4 except for the gradient oper-
ator. The divergence formula may be applied to express the cell centered energy values in terms
of unknown face energy values. A rigorous method for obtaining a discrete representation for
the gradient operator was a large focus of our research project. To do so, a discretization
formulated by Maire and Breil [2] was explored. These mathematicians obtained a discrete
representation of the gradient operator for any two-dimensional unstructured mesh. The struc-
tured mesh is a subset of the unstructured mesh, thus fully applicable to the chosen triangular
grid.

Maire and Breil’s discretization method involved overlaying the existing mesh with a dual
mesh. This dual mesh was created by connecting the center of each cell face to the cell centroid.
This effectively divided the cell into subcells, the number of which being equal to the number
of cell faces. The dual mesh overlay creates a system of subcells surrounding a node; for this
mesh type there are two types of nodal subsystems and a schematic of each is provided in
Fig. 2.
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1

Figure 2: The two nodal subsystems that arise in our triangular mesh. Solid black lines rep-
resent the spatial mesh. Dashed lines represent subcells arising from the dual mesh. The grey
area comprises the subcells that are part of the nodal subsystem. Blue arrows indicate fluxes
across subcell faces.

In this figure the gray subcells surrounding a node represent a single nodal subsystem. To
each subcell, we apply a variational principle. Next, a series of modifications to the resulting
integral are made by employing the divergence formula and integration by parts. Finally, the
system is closed by requiring that the energy fluxes be continuous across the sub-cell faces.
In the figure, fluxes are represented by blue arrows. For full details on this discretization, the
reader is referred to the original work [2].

This process allows one to obtain the face-centered energy values in terms of cell centered
energy values, yielding a scheme in which all primary unknowns exist at the cell center. The
manner in which face-centered values are obtained in terms of cell-centered values is through
the solution of a linear system at each node. Then, the values are propagated back up to the
global linear system and resolved purely in terms of cell-centered unknowns.

The discretization requires the assumptions that the flux F is constant over a subcell, the
diffusion coefficient D is constant throughout a cell, and that none of the angles in the mesh are
greater than π/2. With these assumptions, the DDMC equation in energy for cell i is converted
to

1
c

∂Ei

∂ t
+

(
f σi +

Ni

∑
j

σi, f j

)
Ei = f σiaicT 4

i +
Ni

∑
j

σi, f jEi, fi , (8)

where σi is the total opacity for cell i, Ni is the number of subfaces for cell i, Ei, f j is the energy
at the subface j of cell i, and σi, f j is the effective leakage opacities from cell i to subface j on
that cell. The effective leakage opacities are given by the following equation

σi, f j = l2
i, j

3Di

(∆Vi)2

(
1−2

li, j−1

li, j
µi, j

)
, (9)

where li, j and li, j−1 are the lengths of the subfaces on cell i that bound the vertex connected to
subface j, µi, j corresponds to the angle for cell i connected to subface j, and ∆Vi is the volume
of cell i. To close Eq. 8, a continuity condition for the fluxes across a subface is employed to
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provide a relationship for Ei, f j . After rearranging the continuity condition, a relationship for
the energy at a half face is developed, which is given as,

Ei, j =
1

Di
Vi

+ Di−1
Vi−1

[
Ei

Di

Vi

(
1− li, j+1

li, j
µi

)
+Ei−1

Di−1

Vi−1

(
1− li, j−1

li, j
µi−1

)
Ei−1, j−1

Di−1

Vi−1

li, j−1

li, j
µi−1 +Ei, j+1

Di

Vi

li, j+1

li, j
µi

]
,

(10)

where each of the subscripts on E correspond to a location as outlined by the right portion of
Fig. 4, i.e., Ei, j is the energy at the subface j and cell i, Ei, j+1 is the energy at subface j +1 in
cell i, Ei−1 is the energy at the cell center of cell i− 1, etc. This closure relationship is only
valid for triangles as the volume for each subcell has been converted to volume of the entire
cell.

Finally, note that this discretization results in a linear system (Ax = b) with desirable prop-
erties. The method ensures that the coefficient matrix A is both semi-positive definite as well
as L2 stable. The result of semi-positive definiteness ensures that the probabilities interpreted
from the matrix are bounded by zero and unity. In the next section we will delve more deeply
into how we obtain probabilities from a linear system. In addition L2 stability guarantees that
for a boundary value problem, in the absence of sources, we obtain a radiation energy field
which obeys the maximum principle. It is for these highly desirable properties, as well as
applicability to unstructured grids, that we chose to implement this discretization.

Solution of the Linear System

Using a completely deterministic algorithm we would obtain a global system of equation of
the form

Ax = b , (11)

where A is an n× n matrix of coefficients with n being the number of phase-space (space,
angle, frequency) cells. A is dependent on the grid geometry as well as material properties. x
is the unknown cell centered energies (or temperatures) and b are sources. However, a Monte
Carlo solution of the system using probabilities interpreted from the linear system is sought.
A Monte Carlo approach allows one to solve transport (IMC) and diffusion (DDMC) regimes
simultaneously, whereas deterministic methods would require a boundary condition between
the two regimes which must be iterated over for self-consistency. In addition, a Monte Carlo
solution technique allows use of a continuous time variable instead of discretizing in time;
thus, when DDMC particles are re-emitted into a transport regime from the diffusion regime,
the IMC particle will always know its time instead of requiring additional sampling [4].

The method for obtaining a probabilistic interpretation from the matrix of coefficients is
detailed by Cleveland [5] and only a brief overview is presented here. A DDMC particle in cell
i has the probability, Pi j of leaking to a cell j, where this probability is given by

Pi j = ai j/aii , (12)

where ai j is the element in the ith row and jth column of the coefficient matrix A. By obtaining
the probabilities in this way, it can be demonstrated that in the limit of simulating an infi-
nite number of DDMC particles, the Monte Carlo simulation exactly obtains the cell centered
energy values x from Eq 11.
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While the stochastic inversion method described above is perfectly valid, an additional step
is taken. As previously described in the discretization section, each node retains a linear sys-
tem which resolves the face values purely in terms of cell centered values. Thus, an identical
methodology is used to invert the nodal subsystem as was applied to the global system. The
result of this will be many linear systems, where the global system will be used to build cumu-
lative distribution functions (CDFs) at the cell centers. Sampling from these CDFs will then
evolve a DDMC particle to one of the cell half faces.

In addition to the global system, there exists a set of nodal linear systems represented as

# of nodes⋃
n=1

Anxn = bn . (13)

From each nodal subsystems, a CDF is constructed for each half face. These half face CDFs
are then used to evolve a DDMC particle to another cell face or back to a cell center.

Note that due to the discretization applied, DDMC particles may now travel to face neigh-
bors as well as nodal neighbors. To illustrate, consult Fig. 3 for possible final locations that a
DDMC particle can move to in a single scattering event from a given cell. However, as a result
of solving the continuity equations via Monte Carlo, one to one connectivity is maintained such
that in order to move to a grey cell a particle must pass through a blue cell.

1

Figure 3: A DDMC particle initially located in the cell center of the red triangle can move not
only to the face neighbors, highlighted in blue, but also to all nodal neighbors, highlighted in
grey

Furthermore, in the case of an orthogonal, Cartesian mesh this scheme reduces to the five
point stencil one would obtain via the familiar finite differencing scheme. In the orthogonal
grid case transport only occurs between face neighbors.

Technical Approach
In this section, a brief summary of the Monte Carlo method is discussed. Much of the technique
for solving the DDMC equations is comparable to any Monte Carlo approach used to simulate
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particles. The first step is to initialize several parameters (e.g. f ) from the material properties.
This includes determining how many source particles to simulate from a given cell. This is
computed by defining

Se = ca∆tσaT 4 , (14)

where Se is the source emission for a given cell, σa is the effective absorption opacity, and all
other parameters were previously defined. The absorption opacity is given by

σa = f σ . (15)

The next step is to determine the ideal weight of a particle. First compute the total emission
source by summing the cell dependent Se terms. Next, the ideal weight is computed by dividing
the total emission source by the number of particles to simulate. Finally, the number of particles
to simulate for a given cell is Se for that cell divided by the ideal weight. If Se for a cell is greater
than zero, then ensure at least one particle is emitted from that cell. Finally, the initial weight
for a particle born in cell i is determined by dividing Se for cell i by the number of particles
emitted within cell i. The remaining particle initialization parameter is time. All particles are
uniformly distributed along a time step, i.e.,

tp = ξ ∆t , (16)

where tp is the particle time, and ξ ∈ [0,1] is a random number.
Particles are always started at the cell centers (with exception of boundary conditions dis-

cussed later in this report). The first step in moving a particle is to compute the time to the next
collision. In analog absorption, this function is given as

tc =
−log(ξ )

cσa + c∑
N f
fi σ fi

, (17)

where tc is the time to the next collision, fi is subface i, σ fi is the effective opacity (probability)
of moving to subface i, and N f is the number of subfaces for the cell (6 for the triangular
mesh). This formula may be adjusted by implementing various variance reduction techniques
(i.e., implicit capture), but these methods will not be discussed here.

Now check if tc + tp ≥ ∆t. If so, the next collision occurs in a future time step, and the
particle is stored in census to be computed at the next time step. Otherwise, the next collision
will occur, and a random number is drawn to determine if the particle is absorbed in the current
cell. If so, the particle deposits its weight in the absorption tally for the current cell, and the
particle is considered dead. If the event is not an absorption, the particle moves to a half face
for the current cell by sampling from the face CDF as discussed previously.

Once on a face, a particle no longer moves in time until it returns back to a cell center. This
is due to the half face movement being a result of only the closure relationship. The second
CDF is used to determine how the particle moves from the half face as previously discussed.
This movement on half faces is unique to Monte Carlo methods and has been the focus of this
work. Once the particle returns to a cell center, a new value for tc is computed and the process
continues until the particle is absorbed.

For cells with a subface on a problem boundary, the CDFs are adjusted to account if it is
an albedo vacuum condition or a reflective condition. If it is reflective, the particle will move
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back to the current cell if it tries to move across a reflective face, while if vacuum, the particle
has a chance to leak out of the problem and its weight (energy) escapes.

A Dirichlet boundary condition was also implemented, where the temperature at the bound-
ary is set, and a number of particles is determined similarly to the previous process, however,
all of the particles are sourced onto the subface on the boundary as opposed to the cell cen-
ter. From that point, the particles are able to leak from the problem like the albedo vacuum
condition or move deeper into the problem by sampling the appropriate CDFs.

Once all the particles for a given time step have either escaped from the problem, gone to
census, or have been absorbed, the new temperature is computed for the problem as

Tnew = ρCν∆t∆E , (18)

where ρ is the density, and ∆E is computed as the difference between the Se and the absorption
tally for a given cell. From here, the temperature dependent parameters are updated, and the
next time step begins. The only remaining note is that particles that went to census are pulled
from census at tp = 0 with the same position and weight as when entering the census, and thus
jump directly to determining the time to next collision. Finally, the energy in the radiation field
E is given by the total weight of the particles in census at the end of the time step.

Computational Implementation

In addition to working through the details of the discretization and implementing a proof a
concept into python, the mesh capabilities were implemented into the existing Jayenne code.
Jayenne is LANL’s code for performing simulations of thermal radiative transport via Monte
Carlo methods where the radiation source is tightly coupled to the material. It is based on the
IMC method developed by Fleck and Cummings [3]. Jayenne is highly parallelized to take full
advantage of the high powered computing facilities at LANL.

Currently there does exist a DDMC solver in the Jayene code, however it is only applicable
to orthogonal, Cartesian (or RZ) meshes. However, the discretization and solution technique
used for solving the DDMC equations are general to an unstructured polygonal mesh, and is
novel to this field. Therefore, the majority of capabilities for solving DDMC on triangles did
not exist in the Jayenne code, and were implemented over the course of this work. The major
capabilities added into the existing Jayenne code were a triangular mesh builder, a DDMC
transporter for the triangular discretization, and a DDMC Builder for the discretization.

Furthermore, a triangular mesh class had to be implemented into the existing Jayenne code.
As a reminder of the type of triangular mesh used refer to Fig. 1. The mesh object for other
mesh types already contained capabilities for determining several geometric properties of the
mesh. However, additional functionally was required for triangles including:

• Nodal Connectivity: A list of cells connected to each node

• Half Face Lengths: Length of the half faces of each cell

• Interior Angle: Interior angle at each vertex in the cell

• Face Normal: Normal vector of each face of a cell
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These geometric quantities explicitly arise in the discretization utilized.
The next task was to implement a DDMC transporter object with increased capability.

The DDMC transporter is the object which transports a DDMC particle through the diffusion
regime. Previously, DDMC particles only existed at a cell center due to the orthogonal nature
of the meshes used. However, due to the choice to use a stochastic method to invert the nodal
subsystems, a DDMC particle may now exist at a cell face. Therefore the transporter must
now be capable of transporting a DDMC particle from the cell center to a cell face, from a cell
face to a cell center, and from a cell face to another cell face. A schematic illustration of these
transport events is detailed in Fig. 4.

1

Figure 4: Left: Transport events from cell center to cell half faces. Right: Transport events
from cell half face to either cell center or cell half face

Inherently linked with scattering events, which are implemented through the transporter,
is the sampling of such an event. These events are sampled from a cumulative distribution
function (CDF). The CDFs, as discussed previously, are constructed from the terms in the
coefficient matrix of the global linear system as well as the nodal subsystems. As such they
are inherently linked to the discretization used. With a new discretization, the DDMC Builder
must be modified to build the necessary CDFs. This results in modifying the existing cell
center CDFs to give the probability of a DDMC particle scattering to each cell half face. In
addition, an entirely new capability was implemented for building the CDFs at each cell half
face. These half face CDFs give the probability of a DDMC particle to move to a cell center or
another cell half face.

With all these capabilities implemented, Jayenne now has the ability to perform DDMC
simulations on a structured triangular meshes.

Test Problems
In order to test the implementation and provide a proof of concept in Python, several simple,
2-D, time dependent test problems were developed. Each of these test problems is summarized
in Tab. 1. The first problem (RRRR) is to use reflective boundary conditions on all boundaries
with no external source, thus representing an infinite homogeneous medium. It is expected that
the temperature remain constant for all time for this problem.
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The second problem (VVVV) is similar to the first, expect vacuum conditions are used on
all boundaries. Without an external source, it is expected that the temperature of the system
will decrease with increasing time as energy is leaking out of the system. The center should
maintain a higher temperature than the cells on the boundary.

The third problem (VVRR) is to use reflective conditions on the y = 0 and y = Ly bound-
aries and vacuum conditions on the x = 0 and x = Lx boundaries. This problem will effectively
replicate a 1-D simulation with vacuum conditions, and similar trends to problem 2 are ex-
pected. A variation of this problem (RRVV) is to flip the boundary conditions for the x and y
bounds.

The fourth test problem (TwoT) is to use all reflective boundary conditions, but to initialize
the problem at two different temperatures. The upper half of the problem is initialized at
a lower temperature than the lower half of the problem. It is expected that the temperature
will equilibrate to some mean temperature (dependent on material properties) as the problem
approaches steady state.

A variation on the previous problem is the final problem (TwoTS). Instead of initializing
the two temperatures on the upper/lower sections, the dividing line is initialized on the diag-
onal from (0, ly) to (lx,0). Above the diagonal is a high temperature, and below is the low
temperature. Similarly to problem four, the temperature should equilibrate as the simulation
time approaches infinity.

Each of these problems were designed to test the proof-of-concept for this derivation in
Python. At this time, we do not have an analytical solution with which to compare these test
problems, but analytical and benchmark solutions are being developed for this purpose. The
current implementation of the underlying Monte Carlo algorithm is implemented on a Cartesian
mesh, and thus will be readily compared to the triangular solution once the triangular mesh
class is fully implemented.

Each of the described test problems were solved with the following physical parameter
definitions. Heat capacity Cv set to 0.5. Reference opacity σ0 set to 10000. Total opacity σ

assumed as σ = σ0/T 3. Density ρ set to 1.0. Radiative constant a set to 1 ×10−6. Length
in x direction Lx set to 1.0. Length in y direction Ly set to 1.0. Furthermore, the number of
rectangular cells in both x and y directions were set to 30, where each rectangular cell was split
into two to create the triangular cells. Finally, the number of particles per time step was set to
5000.

Table 1: Summary of test problems

Abbreviation Problem description

RRRR All reflective BC, T (t = 0) = 10
VVRR Vacuum BC on x, Reflective BC on y, T (t = 0) = 10
RRVV Reflective BC on x, Vacuum BC on y, T (t = 0) = 10
VVVV All vacuum BC, T (t = 0) = 10
TwoT All reflective BC, upper T (t = 0) = 5, lower T (t = 0) = 15

TwoTS All reflective BC, upper left T (t = 0) = 15, lower right T (t = 0) = 5
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Simulation Results
This section presents the results from the proof of concept implementation in Python. Each of
the results presented in this section were computed using the previously defined parameters.
Furthermore, each simulation was run to a maximum time of 200 s using a time step of 1 s.

Four figures are presented for each of the test problems. The first two show a two dimen-
sional plot of the temperature for each cell at the initial time and the final time. The second
two figures show temperatures that have been spatially averaged and presented as a function of
space, e.g., averaging the cells in the y direction to reduce the simulation to a one dimensional
simulation in x. The second two figures also present the averaged data for several different
time steps.

Figure 5 shows the initial and final temperature distribution for the fully reflective test
problem (RRRR). It is expected that the temperature would remain constant because there are
no external sources, and no leakage. Within statistical variance, the temperature does remain
constant at 10, as expected. An additional means of observing time dependent temperature is
presented in Fig. 6, where the temperature remains roughly constant as a function of time both
in the x and y directions.
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Figure 5: (RRRR) All reflective boundary conditions, initialized at T = 10.

The test problem VVRR is expected to vary only with x position, and to maintain a higher
temperature on the centerline that on the x boundaries. This behavior is observed in Fig. 7.
Since leakage is possible in this problem, the maximum temperature is expected to decrease
as a function of time as is shown in Fig. 8. The left plot in the figure a parabolic temperature
profile that decreases with increasing time, as expected, while the right plot shows a statistically
flat profile that decreases with increasing time, as expected.

The same trends are expected for problem RRVV, but reversed as compared to problem
VVRR. Figure 9 confirms expectations. Similarly, Fig. 10 shows a statistically flat profile for
the x direction, and a parabolic profile in the y direction, as expected. Were the simulation run
to a much higher time, the temperature would decrease to a minimum of zero everywhere.

With all vacuum conditions as in problem VVVV, the expectation is a higher temperature in
the center, with low temperatures around the boundary. The maximum temperature should de-

Final Reports: 2015 Computational Physics Student Summer Workshop Page 26



Monte Carlo Thermal Radiation Transport:Discrete Diffusion Monte Carlo (DDMC) on Triangular Mesh

0.0 0.2 0.4 0.6 0.8 1.0
x direction

9.7

9.8

9.9

10.0

10.1

10.2

10.3

Te
m

pe
ra

tu
re

0.0 s
40.0 s
80.0 s
120.0 s
160.0 s
200.0 s

(a) Averaged vertically

0.0 0.2 0.4 0.6 0.8 1.0
y direction

9.7

9.8

9.9

10.0

10.1

10.2

10.3

Te
m

pe
ra

tu
re

0.0 s
40.0 s
80.0 s
120.0 s
160.0 s
200.0 s

(b) Averaged horizontally

Figure 6: (RRRR) All reflective boundary conditions, initialized at T = 10.
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Figure 7: (VVRR) Reflective y boundaries, albedo vacuum x boundaries, initialized at T = 10.

crease with increasing time, which is observed in Fig. 11. The simulation is roughly symmetric
in the x and y directions as observed in Fig. 12.

The first of the two temperature problems (TwoT) was expected to equilibrate at an aver-
age temperature of 10 as the material properties were constant throughout the test problem.
Figure 13 confirms expectations, while Fig. 14 shows the equilibration rate. At the given in-
puts, it took less than 40% through the simulation to equilibrate and come to a relatively flat
temperature profile.

The same trends were expected for the slanted two temperature problem (TwoTS) as TwoT.
Once again, expectations were confirmed by Fig. 15. As the dividing line was on the diagonal
for this problem, averaging in the x and y directions provides comparable results, and the
temperature equilibrates to the mean temperature by approximately 80 s, as shown in Fig. 16.

Note that on several of the test problems, some skewness to the results can be observed.
This is especially apparent in problem RRRR, as observed in Fig. 6. There the upper left
quadrant is slightly cooler than the lower right quadrant, which is suggestive of an underlying
bug in the Python script. This bug has been identified and new results are being generated. In
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Figure 8: (VVRR) Reflective y boundaries, albedo vacuum x boundaries, initialized at T = 10.
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Figure 9: (RRVV) Reflective x boundaries, albedo vacuum y boundaries, initialized at T = 10.

this report, only the results from RRRR, TwoT, and TwoTS are affected by this error.

Conclusion
We have demonstrated a proof of concept for solving DDMC on a structured triangular mesh
in Python as discussed in the previous section. The fundamental conclusion is that the Maire
and Breil discretization is applicable to solving the DDMC equations for a structured triangular
mesh, and should be applicable to unstructured triangular meshes. This proof of concept was
demonstrated through a python implementation.

Furthermore, a capability for performing the same DDMC calculation now exists in the
Jayenne Project. The remaining effort for this work is to test the functionality in Jayenne
against analytical solutions as well as compare the test problems described in this report to
corresponding problems designed with a 2D Cartesian mesh. Furthermore, timing studies are
appropriate for comparison between the triangular and Cartesian meshes, and will be com-
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Figure 10: (RRVV) Reflective x boundaries, albedo vacuum y boundaries, initialized at T = 10.
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Figure 11: (VVVV) All albedo vacuum boundary conditions, initialized at T = 10.

pleted in further study.
The work presented in this section is the first part of a five year project that will fully imple-

ment the discrete diffusion Monte Carlo on unstructured triangular meshes. It will eventually
be linked to the existing implicit Monte Carlo routines to solve fully time depended, energy
dependent, 3-D transport problems.

This work was completed as part of the Computational Physics Workshop 2015 using re-
sources provided by Los Alamos National Laboratory.
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Figure 12: (VVVV) All albedo vacuum boundary conditions, initialized at T = 10.
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Figure 14: (TwoT) All reflective boundary conditions, upper initialized at T = 5 and lower
initialized at T = 15.
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Figure 15: (TwoTS) All reflective boundary conditions, upper left initialized at T = 15 and
lower right initialized at T = 5.
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Figure 16: (TwoTS) All reflective boundary conditions, upper left initialized at T = 15 and
lower right initialized at T = 5.
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Abstract

With increases in processing power coming from increased numbers of cores instead
of improvements in per core speed, efficient parallel approaches must be taken to achieve
performance on todays supercomputing systems. This becomes increasingly important
as new parallel hardware and special vector units bring parallelism to levels not reached
before. Here we explore the usage of efficient parallel algorithms on two production codes
used in Institutional Computing (IC) at Los Alamos National Labs: CPIC and MPAS-O.
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Introduction

Moore’s Law, Dennard Scaling, and Multi-Core Processors

In 1965 Gordon Moore published a paper in which he described (predicted) that the number
of transitors that can be manufactured on a silcon wafer would double every year. In 1975 this
prediction was revised to every two years. This scaling became known as Moore’s Law. [4]

In similar fashion, in 1974 Robert Dennard co-authored a paper stating that as transistors
get smaller their power density remains constant. This manifests in a way such that the power
use of the processor is proportional to the area of the processor die. [1]

Figure 1: A graph of the transistor count per CPU as a function of time. The linear data in the
logscale shows the strong correlation to Moore’s law.

[6]

Dennard scaling combined with Moore’s law has led to a situation in which processing
power has increased steadily year afterr year. Unfortunately, in 2005 Dennard scaling began to
fail and power use has not scaled proportionally as transistor size becomes smaller. This has
led to a situation in which increases in per-core performance has began to stall.

In order to continue the increase in performance, processor manufacturers have moved
to integrating many processor cores onto one chip to create multi-core processors. While
multi-core processors have continued to increase the total performance of a processor, this
performance gain has not made its way to serial programs. In order for one program to take
advantage of multi-core processors (and clusters) parallelism must be exploited.
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Memory Bandwidth Bottleneck

In order to fully utilize a processor’s performance the processor must be able to access the data
on which it is doing work at the same rate that it can opperate on the data. For many years
memory bandwidth (the rate at which data can be transfered from RAM to the processor) was
greater than the processor speed; however, computational performance has grown much faster
than memory bandwidth.

Figure 2: A graph of the scaling of both CPU and RAM performance over time. Notice how
large the gap between CPU and RAM performance has grown.

[3]

In an effort to limit the impact of low relative memory bandwidth, manufacturers incor-
porated cache into the processors. Cache is low capacity, high bandwidth memory that exists
closer to the processor. If a program is structured such that a small amount of data is accessed
frequently, that data will be stored in cache and access to that data will not be the limiting
factor.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 35



Production Codes on Xeon Phi Knights Corner

Figure 3: A graphic representing the memory hierarchy inside of a modern computer.
[8]

Parallel Computing

As mentioned above, in order to utilize multi-core processors and computing clusters, parallel
programs must be written. While there are countless parallel frameworks and languages, here
we will be discussing two of the most popular parallel forms, MPI and OpenMP.

MPI

The majority of High Performance Computing (HPC) codes use the Message Passing Inter-
face (MPI) to achieve parallelism. MPI is a distributed memory parallel construct. Distributed
memory means that each process (each individual parallel thread of execution) has a private
portion of RAM seperate from all other processes even if they share physical RAM modules
(e.g. are on the same node). Since each process has its own private memory space, MPI lends
itself to parallelism both on a single node (all cores share the same memory address space) or
on a cluster (many different nodes connected through a network).

MPI is a Shared Program Multiple Data (SPMD) parallel construct. This means that each
process exicutes the exact same code; however, each process has a unique ID (integer) that
can be used as a parameter to differentiate the runtime. Since each process has its own private
memory, if one process is to get data from another process, the information must be explicitly
communicated. MPI employs sychronous communication, the simplest example of which is;
process 1 calls MPI SEND() to process 2 and process 2 calls MPI RECEIVE() from 1. If (for
example) process 1 calls MPI SEND() before process 2 calls MPI RECEIVE(), then process
1 waits until process 2 calls MPI RECEIVE(), then the communication is completed and both
processes continue execution.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 36



Production Codes on Xeon Phi Knights Corner

OpenMP

Open Multi-Processing (OpenMP) is a very popular parallel construct that is less utilized in
scientific computing but has been adopted in comercial applications. OpenMP is not typically
the primary form of parallelism in scientific computing because scientific computing gener-
ally relies heavily on distributed computing clusters, while OpenMP only enables intra-node
parallelism. Unlike MPI which creates processes, OpenMP creates threads, while each pro-
cess has a private memory address space, OpenMP threads share address spaces. Data does
not have to be communicated since all threads share and can access the same set of memory.
Threads, unlike MPI processes, are not connected to only one processing core, and threads are
not necessarily persistent for the entire execution, unlike MPI processes. Threads can be cre-
ated dynamically thoughout a program. In contrast to MPI which is strictly SPMD, OpenMP
can operate as SPMD but can also operate as Multiple Instruction Multiple Data (MIMD) in
the form of intrinsics that ”automatically” parallelize loops.

Figure 4: A graphic showing how a program utilizing openMP could dynamically spawn
threads at runtime.

[8]

Issues with MPI
While MPI is a very powerful parallel construct, problems can arise in the implementation

of MPI in production codes. One of the largest issues occurs during node to node communica-
tion. Node to node communication relies on a network connection (ethernet or infiniband), and
can take considerably longer than any other (basic) operation in computing. The time added
in MPI communication (and all other MPI calls) is often called MPI overhead. If a program
requires a relatively large amount of communication then MPI overhead will comprise a con-
siderable amount of the runtime. MPI overhead almost always increases as the number of MPI
processes increases, which means that there is diminishing returns as additional processes are
used. In practice, most large scale scientific codes are ultimately limited due to MPI overhead.

Another issue with MPI arises from its sychronous communication patterns. A problem
arises when one process (or a few processes) takes considerably longer than other processes
to reach the MPI SEND() or MPI RECEIVE(). As mentioned above, all other processes must
block before they do any more work; when a significant portion of execution time is spent
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waiting for synchronous MPI communication, this is called load-imbalance. Depending on the
program, load-imbalance can heavily impact the time of execution.

Figure 5: A graphic representing load-imbalance. Green is the time that a core is computing,
red is the time the core is idle.

Issues with OpenMP

OpenMP also suffers from overhead; however, since there is no communication time (since
all threads share the same memory) most of this overhead comes from spawning (including
memory allocation) the threads. Also, parallel implementations of algorithms may induce
overhead. One common issue that can occur with OpenMP that does not happen with MPI is
the race condition. A race condition occurs when two threads attempt to perform an operation
on the same data at the same time. For example (during a reduction operation), if two threads
both read the value of x(stored in memory), one thread does x=x+1 and the other does x=x+2,
then they both try to save the value, whichever value is written into data last is the persistent
one. That is, the new value of x will only be x+1 or x+2 not x+3. The programmer has to
be very aware of race conditions and must be vigilant in preventing them. A less intuitive but
prevalent concern with OpenMP is False Sharing. False sharing occurs when two or more
threads are acting on independent data elements that live within the same cache-line. If one
thread updates an element in the cache-line, the cache is poisoned for the other threads and
must be synchronized in order to retain coherency.

Parallel Computing Hardware
With the break down of Dennard scaling at smaller transistor sizes, hardware companies have
had to get creative in order to develop new processors that are able to do more operations per
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second than traditional CPU processors, due to power and thermal constraints. Intel’s solution
for overcoming the limitations of traditional CPU processors is the Xeon Phi. The idea behind
the Xeon Phi is to use cores with lower clock speeds (and therefore lower current leakage) in
order to dramatically increase the core density achievable on a single processor. If all of these
cores are able to run at the same time, then peak floating point performance can be much higher
than a traditional CPU processor. Some other features added to the Xeon Phi for added parallel
computation are four hardware threads and two extended vector units per core. Table 1 shows
the specifications of the current generation of Xeon Phi the Knight’s Corner (KNC), the next
generation of Xeon Phi the Knight’s Landing (KNL), and a node with two current Haswell
CPU processors. Specifications for the KNL are based on pre-released information from Intel.

Table 1: Hardware Specifications
Haswell Node KNC KNL

Cores 32 60-61 74
Clock Speed(GHz) 2.30 1.053 1.X GHz

GFLOPs .588 1.011 > 3
RAM 128 GB DDR4 8-16 GB DDR5 16 GB MCDRAM + 92 GB DDR4

Vectorization Unit 256 bit 512 bit 512 bit
Processor Type Host Processor Co-Processor Host/Co Processor

With the KNL, Intel is attempting to improve on some of the problems of the KNC through
incorporating faster, better performing cores. The KNL will have much more memory than the
KNC which will allow the execution of larger problems. The memory constraints of the KNC
is a major problem with some codes as will be shown later in this report. Another problem
with the KNC is that it is a co-processor, and does not support the standard x86-ISA, meaning
it does not support the host operating system, compilers, etc. Building existing MPI/OpenMP
code will be much easier on the KNL, with no cross-compilation required.

Vectorization

One advantage Xeon Phis have over traditional CPUs is enhanced vector units. These extended
vector units, up to eight times speed up with double precision and sixteen times speed up with
single precision is possible in the perfect case. As such it is important to identify as much
vectorization as possible to approach peak performance.

Vector units essentially give an extra level of parallelism to a code. Vectorization introduces
parallelism that is seperate from the parallelism gained from using multiple ranks with MPI or
multiple threads with OpenMP. With each core of having at least one vector unit, each MPI
rank or OpenMP thread used is able to incorporate vectorization as long as the number of
ranks and threads is not overprescribed.

Vectorization for the most part is done through auto-vectorization behind the scenes at
compile time. The compiler is usually smart enough to add vectorization that could help the
performance of the program and not add vectorization when it could affect the correctness
of the code. A programmer does need to be aware of the things not to do that could break
automatic vectorization. There are occasions when auto-vectorization by the compiler does not
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happen because the compiler does not know that it would be safe to vectorize. This happens
because the languages themselves do not expose constructs to convey this information to the
compiler. In these cases, vectorization can be obtained through explicit compiler directives in
the code.

Profiling
To determine if a program is performant one must do a detailed analysis of that program. We
accomplished this by profiling the frequency and execution time of function calls and certain
CPU instructions.

The first use of profiling should be to determine in which functions the program is spend-
ing the most time. This is important because these functions are where one should to identify
primary issues in performance. Basic profiling can be used for this task; we used GPROF (a
compiler provided instrumentation based profiler) to generate call-trees which visually demon-
strate the time spent in specific functions. Instrumentation based profilers insert instructions
that wrap calls within your program to collect execution data.

Figure 6: A sample call tree. This tree shows how functions call each other and how much of
the execution time is spent in each of these functions.

To gain further information such as amount of time spent in MPI overhead, OpenMP over-
head, memory usage, and vector operation more advanced profiling tools must be used. For this
we used a sample based profiling tool called Allinea Map. Sample based profilers probe the
program in regular intervals using operating system interrrupts to gather their timing data. Map
is a powerful tool capable of displaying all of the above data in an an easy to digest graphical
form. It can also give a line by line analysis of the execution time and mode.
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We used these profilers to identify where it is most efficient to focus our time on achieving
an increase in performance. If a lack of vectorization utilization is determined then information
about why vectorization is not occuring must be gathered elsewhere.

Optimization Reports
Optimization reports allow us to obtain information about vectorization at compile time. Op-
timization reports are essential to understing and maximizing the amount of vectorization in
a code. These optimization reports give information on all of the loops inside of a program
and most importantly include reasons why the compiler could not vectorize a loop, along with
the potential speedup vectorization could provide. These optimization reports are essential for
identifying and diagnosing vectorization issues.

CPIC
Curvilinear Particle in Cell (CPIC) is a plasma simulation code that is used to determine charge
buildup on satellites. Particle in Cell plasma codes differ from Molecular Dynamic codes in
that instead of explicitly calculating the forces between all (relevant) particles and updating
positions based on them, the particle positions are used to update the field on a mesh. The par-
ticles have an ’exact’ position on the mesh and the field at that point is used to integrate forward
in time. CPIC is written in FORTRAN with MPI Everywhere for parallelism. To parallelize
the program, the mesh is spatially decomposed across the MPI processes. If a particle moves
from the mesh region controled by one MPI process to another it must be communicated to the
new process(core).

CPIC is intended to scale to large problems, therefore optimization should be done to ensure
efficient computing resource usage. While profiling CPIC considerable load-imbalance was
detected. The cause of this load-imbalance comes from the nature of of the physics of charge
buildup on satellites. If you imagine electrons and ions being sourced from the sun coming
incident to the satellite, the particles would (almost) all be incoming from one direction. In
simulation this is done by having a source of particles on the faces of the mesh corresponding to
the direction from which the particles would be sourced. As we are interested in capturing high
flux solar events, the system is no where near a steady state at the beginning of the simulation.
This fact combined with the small integrtation timesteps required for accurate propogation
results in a disproportionate particle distribution at one end of the system. To make the problem
somewhat worse, the electrons and ions have the same energy, and since the ions are heavier,
they propogate though the system much slower than the electrons. This means even once the
electrons are propogated thoughout the system, there remains an imbalance of ions in the mesh
for a much larger portion of time.

In an attempt to reduce the load imbalance in CPIC we use OpenMP to implement a work
stealing algorithm. Work stealing occurs when one MPI process offloads work onto its ’neigh-
boring cores’. OpenMP thread pools can not span multiple nodes and for performance reasons,
neighboring cores describes cores on the same socket (same multi-core processor).
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Figure 7: A graphic representing work stealing. Green is the time that a processor is computing,
red is the time the process is idle. The hollow blue box is the work from the slow process that
gets split onto the other processes (represented by the solid blue boxes).

The implementation of work stealing was done in the portion of the code that updates the
positions of particles and was performed dynamically and intelligently (problem dependent).
Ranks that had more parciles on their mesh region (these are the processes that would run
slower) get more OpenMP threads. The number of threads that each process gets is determined
dynaimically at runtime based on the number of particles that process has. To decide the
number of particles that determine how many threads the process gets, we must use physical
insights into the physics of the problem. For the implentation we have used this defined by the
amount of injected particles, time step size, and ratio of mass between the electrons and ions.

The implementation of of work stealing has shown promise. It is important to recognize
that work stealing is only able to achieve performance gains if the expensive processes do
not exist on the same socket. For this reason the work stealing implementation only achieves
performance gains in instances with proper spatial decomposion across sockets. With this in
mind we show the results of a case in which proper decomposition has been achieved.
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Figure 8: A graph showing the impact of the number of threads spawned (for expensive pro-
cesses) on the time spent in load-imbalanced regions.

We can see that the load-imbalance has been improved largely by the work stealing imple-
mentation. The predominate issue with this implemenation of work stealing in CPIC is that it
requires a knowledge of the physics of the problem at hand. This means the user must have
more input into the problem. Another problem is that the user (or programmer) must be aware
of the architecture of the machies they are using to ensure proper decomposition. Unfortu-
nately, the way the decomposition happens is also subject to change in the version of MPI that
is used, and therefore intelligent process mapping is required.

There is also room for improvement in load-balancing within CPIC that was beyond the
scope of this project. These improvements would require a larger rework of the logic of the
program. It is also possible to widen the range of situations in which the the program yields
improvements from work stealing, but again this requires further changes to the logic of CPIC.

MPAS-O
MPAS-O, the Model for Prediction Across Scales - Ocean, is an ocean modelling code devel-
oped here at LANL that is intended for use in large scale simulations of the ocean for long
scale climate and weather models. We are interested in looking at MPAS-O to get an idea of
how it will perform on the KNL and to discover some performance gains using profiling and
optimization reports. It was chosen to be studied because it is a highly used IC used on the
supercomputers at LANL.

MPAS-O uses a Voronoi mesh to discretize the computational domain which in most cases
is the entire ocean of the world. Finite volume methods are then used on this mesh to solve the
differential equations of interest (refer to [5] for more details on the implementation). MPAS-O
is implemented in Fortran and uses MPI to exploit parallel computing. In order to utilize MPI,
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the Voronoi mesh created is partitioned between the number of MPI ranks specified by the user.
Computation can then be done simultaneously on each partition of the mesh. There are some
known drawbacks to using MPI with MPAS-O due to load-balancing issues that come from
the Voronoi mesh being unstructured [7]. These load balancing issues will be evident in the
performance analysis section.

Figure 9: A visualization of a Voronoi Mesh over the Ocean
[2]

Building for the Xeon Phi

A feature of the Xeon Phi that is very convenient is that code written for use with CPUs can be
used to run on a Xeon Phi. This gives the Xeon Phi a distinct advantage over other accelerated
computing hardware such as GPUs that would require a significant time commitment to write
a code the could efficiently use them. One would not expect original CPU code to work espe-
cially well with the Xeon Phi immediately, however if the code is fine-tuned for the Xeon Phi
it has the potential to perform well.

While the Xeon Phi provides the convenience of using existing code written for the CPU,
it is not necessarily always easy to build existing software libraries for the KNC. The prob-
lem we ran into building MPAS-O for the KNC was the large number of dependencies that
are required. These problems stem from the KNC being a co-processor which makes cross-
compiling for them much more challenging. Fortunately the KNL will support native compi-
lation. [Instructions for building MPAS-O on KNC have been developed and are available at
http://ic-wiki.lanl.gov/ic-help:ic-knights:mpas-o:build mic.]

Performance Analysis

When considering the performance of MPAS-O, we were interested in seeing how an imple-
mentation on the KNC compares to that same implementation on a node containing current
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CPU processors (refer to Table 1 for specifications of the hardware being used). Depending on
how the results of this comparison, we can then recommend the type of hardware for running
simulations with MPAS-O.

Figure 10 shows scaling results for both a CPU and KNC implmentation running the largest
test problem possible (due to KNC memory constraints),an entire ocean problem with 240 km
spacing between data points. The scaling plots for the CPU implementation show that it does
scale up to 32 MPI ranks meaning that it performs best when using all 32 cores of the node
which is what we would hope to see. The scaling plots for the KNC implementation show
that the fastest implementation is between 30 and 60 MPI ranks, so performance degres as we
approach the maximum amount of MPI ranks able to be used effectively with a KNC which
is 240. For this problem, the fastest CPU implementation took around 200 seconds while the
fastest KNC implementation took around 2800 seconds. In its current state, we recommend
that MPAS-O be ran with CPUs rather than a Xeon Phi.
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Figure 10: Scaling plots for the world ocean test problem with 240 km spacing. CPU timings
are on the left and KNC timings are on the right.

Performance Issues

The performance issues with MPAS-O on the KNC stem from a combination of two different
sources: overdecomposition and load-imbalance. Overdecomposition means that the amount
of computatiion in the problem was not large enough to be split across all of the cores, and
therefore we cannot effectively use all of the computing offered by the KNC. Overdecompo-
sition becomes a particularly big factor in our tests since there is a limited amount of memory
available on the KNC. This ultimately limits the performance capability on the KNC. Load-
imbalance is another issue when using MPAS-O. Load-imbalance has a significant impact on
MPAS-O because the unstrutuctured mesh is very difficult to partition, resulting in an uneven
distribution of work across MPI ranks [7]. Figure 11 illustrates the problem that arises from
load-imbalance. This plot shows for the CPU implementation how much time is spent in MPI
communication and wait time. As the number of MPI ranks increases, the percentage of time
being spent in MPI communication becomes dominant. This is particularly detrimental on
the KNC which needs more MPI ranks than the CPU in order to utilize all of its available
computing power.
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Figure 11: Total percentage of time spent in MPI for the world ocean test problem with 240
km spacing on a CPU node.

Performance Improvements

In addition to comparing the performance of MPAS-O on the KNC versus on a node with
traditional CPUs, we explored the potential for performance improvement within the code.
Through profiling the CPU implementation, we are able to identify regions where vectoriza-
tion was not utilized. Through close examination of the optimization reports, we were able to
identify computationally expensive loops that were not being vectorized and yet had potential
for safe vectorization within minimal refactoring. Through the addition of explicit compiler
directives to the code, we could instruct the compiler to ignore (false) potential interdependen-
cies. This resulted in improved vectorization and we saw the performance improvements for
the CPU implementation in Figure 12.
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Figure 12: Performance gained from improving vectorization.

Conclusions

CPIC

The implementation of OpenMP work stealing was successful at eliminating much of the load-
imbalance within CPIC. The issue with this implemention is that it requires both knowledge
of the physics of the system you are studying (which is not always easy to provide) and a
knowledge of the architecture of the computing system being used; the problem itself must be
carefully decomposed in order to utilize the work stealing implementation.

Future work could focus on reducing these issues. By appropriately determining the di-
vision of particles across MPI ranks, and the careful distribution of those ranks across the
physical hardware, appropriate cut-offs for work stealing could be dynamically determined. It
is theoretically possible to dynamically setup the decomposition such that more cases would
lend themselves to benefit from the work stealing implementation. It is also possible to apply
the work stealing implementation to other regions within the code, beyond the particle mover.

Work stealing is method that is applicable to almost all MPI programs that suffer from
significant load-imbalance. The dynamic and intellegent implementation used here was more
efficient than a standard ’all in’ attempt in which every process gets threads. In order to im-
plement this work stealing approach into another problem, all that needs to be developed is the
appropriate way to determine which processes are most expensive and the appropriate imple-
mentation of the work stealing algorithm.

MPAS-O

Although scaling on the KNC with MPAS-O was not successful, all hope is not lost for using
Xeon Phis with MPAS-O. With the KNL, the larger memory footprint means larger problems
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can run providing more opportunity to scale up to the full capacity of hardware and could make
it more competitive with CPU implementations.

Improvements were found for MPAS-O in our test problem by improving vectorization
within the code. However, these speedups were relatively small and would most likely not
be seen in large problems due to MPAS-O being communication bound. In order to obtain
significant performance improvements within MPAS-O, it would be necessary to improve the
partitioning of the work in order to provide better load-balancing. This could possibly be done
through a hybrid MPI/OpenMP code.
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Abstract

In this research we propose a novel test problem for the verification of material inter-
face evolution in a vortex coupled to hydrodynamics and a new method for setting up a
Sedov verification test. In the first section we discuss the new vortex test problem. Vortical
flow coupled to hydrodynamics is important in a range of applications including inertial
confinement fusion where the mix volume is a function of interfacial area. It is difficult
to quantify the accuracy of the method using the current test problems due to the lack of
semi-analytic solutions on this class of a problem. For this reason, we consider particles
moving in a 2D steady state velocity field to which a semi-analytic solution of the parti-
cle trajectories exists. We perform convergence studies using a constant of motion in the
Taylor-Green velocity field. The domain in which we consider the problem is the square
domain. Using the FLAG hydrocode with cell-centered hydrodynamics (CCH) and corner
gradient reconstruction (CGR) methods we numerically simulate a system on the same do-
main populated with gamma law gasses on a uniform quadrilateral mesh. Here we consider
the case of two and three materials, where the initial interfaces are unmixed. The materials
are arranged similar to a conventional triple point problem for the three material case. Con-
vergence of the velocity, pressure and density fields is studied numerically. We discuss the
two, and three material cases using a arbitrary Lagrange-Eulerian (ALE) method. Second
order convergence was observed in the Lagrangian limit and first-order convergence with
ALE. Finally we discuss a new technique, mesh intersection based ALE (xALE), where
we observe third-order convergence in the underlying fields for one material.

In the second section we discuss the modified Sedov bast problem. The Sedov blast
wave is of great utility as a verification problem for codes using Lagrangian hydrody-
namics. Nevertheless, the typical implementation represents the energy point source as a
energized zone of finite volume This approximation can be avoided by directly finding the
effects of the energy source as a boundary condition. This proposed method transforms the
Sedov problem into a radial piston problem with a time-varying velocity. A portion of the
mesh adjacent to the energy source is removed and the boundaries of this hole are forced
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with the exact velocities from the Sedov solution. This verification test is implemented
on two types of meshes and convergence is shown. The results from the typical initial
condition method and the new boundary condition method are compared.
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Verification of Material Interface Evolution in a Vortex with
Hydrodynamics

Introduction

The simulation of material evolution in a vortex fully coupled to hydrodynamics is important
in many applications such as inertial confinement fusion (ICF) where the mix volume is a func-
tion of the interfacial area. There has been some disagreement between experimentalists and
theorists in regards to the plastic-fuel interface evolution. The verification of vortical motion
in hydrocodes could shed light on this issue. We propose a novel new test problem that builds
on a 2D steady state velocity field. Our goal is to quantify the accuracy of material-material
interface evolution in a vortex coupled to hydrodynamics against a semi-analytic solution.

We discuss the method of manufactured solutions and use the technique to force the system
into a steady state with the appropriate velocity field. There is some freedom in choosing the
source terms and initial conditions. In this work, we make some simplifying restrictions to
the state. We show that while the Taylor-Green field can be supported with an energy source,
the Rider-Kothe field requires a momentum source, which is not compatible with the FLAG
hydrocode at this time.

The semi-analytic solution uses a 4th-order Runge-Kutta integrator to solve the particle
trajectories. We find a constant of motion for the Taylor-Green velocity field which we use
to verify the semi-analytic solution. The period of the particle located at the triple point is
calculated numerically as 2.56 microseconds. We primarily use arbitrary Lagrange-Eulerian
(ALE) methods but also explore the field convergence using the Lagrange approach. The ALE
method uses an Eulerian remap with swept face advection. We also perform single material
calculations using a new mesh intersection based method (xALE). The new method couples
naturally across cell corners and conserves total energy[7]. The hydrocode calculations are
compared to the interface evolution extracted from the particle trajectories given by the semi-
analytic solution. The ALE hydrocode calculations are graphically compared to the semi-
analytic solutions for various mesh resolutions with two and three materials. We go on to
perform convergence studies on the material-material interface.

Governing Equations

The 2D unsteady Euler equations govern the system and are written below in the flux-conservative
form

∂ρ

∂ t
+

∂

∂xi
(ρvi) = 0 (1)

∂

∂ t
(ρvi)+

∂

∂x j
(ρviv j + pδi j) = 0 (2)

∂

∂ t
(ρE)+

∂

∂xi
[(vi(ρE + p))] = SE (3)

Where ρ is the density, v is the velocity, E = vivi/2 + e is the specific total energy, e is the
specific internal energy and p the pressure. In this research we assume a constant density and
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a divergence-free velocity field. The system is closed by the gamma law gas equation of state

p = ρe(γ−1) (4)

Where γ is the ratio of specific heats.
The method of manufactured solutions may be used to force the flow in the system to match

a velocity field of interest; the Taylor-Green and the Rider-Kothe velocity fields

~vT G = sin(πx)cos(πy)î− cos(πx)sin(πy) ĵ (5)

~vRK =−sin2 (πx)sin(2πy)î+ sin2 (πy)sin(2πx) ĵ (6)

The unknowns in the steady state system are the pressure p, the total energy E, the internal en-
ergy e, and the energy source term SE . The mass Eqn.(1) is satisfied identically for a divergence
free velocity field with constant density. The remaining equations together with the gamma law
equation of state and the definition of total energy close the system, allowing unique pressure,
internal energy, and source energy terms to be calculated.

Test Code

The numerical results for the vortex problem including the convergence studies were generated
with the FLAG hydrocode [4][2] using the cell-centered hydrodynamics method (CCH)[3] and
corner gradient reconstruction (CGR)[8] with Young’s interface reconstruction on a uniform
quadrilateral mesh. Most of our calculations are done using the arbitrary Lagrange-Eulerian
(ALE) formulation in the Eulerian limit with swept face ALE advection[19]. In addition, a
mesh intersection based ALE method is studied.
The global L1 error in each field variable, F , was calculated as

||ε||= ∑ |Fcalc−Ftheory|
N

(7)

The L1 error in the interface length was calculated as

||ε||= dx∑ |Fcalc−Ftheory|
Fcalc

(8)

The convergence rate was calculated as the slope in the loglog plot of ||ε|| versus the zone
size dx.

Forcing Steady State Vorticular Flow

We use the method of manufactured solutions to calculate the energy source term and initial
fields which support the velocity field.

We follow similar steps as in [20]. Here, we demand a constant density, ρ = 1, and allow
only for an energy source. In this research we consider only materials with a gamma law
equation of state. The internal energy is then uniquely determined from the equation of state
and the pressure. The total energy is determined by the internal energy and the velocity field.
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The mass Eqn.(1) vanishes for a divergence free velocity field and the momentum Eqn.(2)
reduces to

∂

∂x j
(ρviv j + pδi j) = 0

ρ(
∂

∂x j
vi)v j +ρvi(

∂

∂x j
v j)+

∂

∂xi
p = 0.

Thus we can write the spatial derivative of the pressure as a function of the velocity.

∂

∂xi
p =−ρv j

∂

∂x j
vi (9)

Therefore, if the system is valid under our assumption (no momentum sources), the pressure
must satisfy the following relation in 2D

p =−ρ
1
2

v2
1 +ρ

∫
v2

∂

∂x2
v1dx1 +g(x2) (10)

=−ρ
1
2

v2
2 +ρ

∫
v1

∂

∂x1
v2dx2 + f (x1) (11)

where f and g are arbitrary functions of x1 and x2 respectively. It is easily shown that the
relation is satisfied for the Taylor-Green velocity field, Eqn.(5).

pT G =−ρ
1
2

sin2(πx1)+g(x2) (12)

=−ρ
1
2

sin2(πx2)+ f (x1) (13)

Taking the arbitrary functions to be zero, f = g = 0, pT G reduces Eqn.(11) to

pT G =−ρ
1
2
(sin2(πx1)+ sin2(πx2)) (14)

However, the Rider-Kothe velocity field, Eqn.(6), is not compatible with Eqn.(11)

p1 =−ρ sin4(πx1)sin2(πx2)(2cos2(πx2)
− cos(2πx2))+g(x2)

p2 =−ρ sin4(πx2)sin2(πx1)(2cos2(πx1)
− cos(2πx1))+ f (x1)

We see that p1 cannot equal p2 for any choice of f (x1) or g(x2). Thus, a momentum source
term is necessary to support a steady state system with this velocity.

The internal energy for the system with the Taylor-Green velocity field is determined by
the gamma law equation of state, Eqn.(4), and the pressure pT G, Eqn.(14).

eT G =
1

4(γ−1)
(cos(2πx)+ cos(2πy)) (15)
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For γ = 5
3

eT G =
3
8
(cos(2πx)+ cos(2πy)). (16)

Under the conditions of a steady state divergence-free velocity field with a gamma law gas, the
energy equation can be written as

∂

∂ t
(ρE)+

∂

∂xi
[vi(ρE + p)] = SE

∂

∂xi
[vi(ρE + p)] = SE

viρ
∂

∂xi
E + vi

∂

∂xi
p = SE

The spatial derivative of the pressure, Eqn.(9), is substituted in

vi(ρ(
∂

∂xi
E)−ρv j

∂

∂x j
vi) = SE (17)

and, using the definition of total specific energy

∂

∂xi
E = v j

∂

∂xi
v j +

1
ρ(γ−1)

∂

∂xi
p

= v j
∂

∂xi
v j− v j

1
(γ−1)

∂

∂x j
vi.

E = ∑
i

1
2

v2
i + e = ∑

i

1
2

v2
i +

p
ρ(γ−1)

(18)

Employing Eqn.(9) again

SE = vi(ρv j
∂

∂xi
v j− v j

ρ

(γ−1)
∂

∂x j
vi−ρv j

∂

∂x j
vi)

SE =−viv j
ρ

(γ−1)
∂

∂x j
vi

Therefore, the required source term is

SE =
1
4

ρπ

(γ−1)
[cos(3πx)cos(πy)− cos(πx)cos(3πy)] (19)

The above solution was evolved in the hydrocode using γ = 5/3, and ρ = 1 with four increasing
mesh resolutions (40x40, 80x80, 160x160, 320x320) for approximately seven periods of the
vortex.

The pure Lagrangian calculations show second order convergence in the velocity, pressure,
and density fields with two and three materials. However, the simulation could not evolve the
interface past one microsecond in the highest mesh resolution (320x320) due to mesh tangling.
Therefore, all of the interface length studies were done using ALE in the Eulerian limit where
we observe first order convergence in the fields for one, two and three materials. Usually one
would expect second order convergence when using CCH-CGR. The lower order convergence
could be caused by the swept face advection necessary in the Eulerian remap step.
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Figure 1: Second-order convergence consistent with CCH-CGR is observed in the fields for the
pure Lagrangian method. All data points were measured at only one time (t=0.3 microseconds).
For the two material calculations (a) the velocity converges with power 2.15 (r2 = 0.997), the
pressure converges with 2.12 (r2 = 0.999), and the density with 2.09 (r2 = 0.999). Likewise,
in the three material calculations (b) the velocity converges with power 2.09 (r2 = 0.999), the
pressure converges with 1.92 (r2 = 0.999), and the density with 1.92 (r2 = 0.999).

Semi-Analytic Solution

Particle trajectories in the Taylor Green velocity field cannot be solved analytically, therefore, a
semi-analytic solution is necessary for the verification of the numerical results of the interface.
We use a 4th-order Runge-Kutta method to solve for a particle’s motion in the steady state
velocity field. Convergence studies were performed on the solution using the constant of the
motion sin(πx1)sin(πx2).

d
dt

sin(πx1)sin(πx2) =

πcos(πx1)sin(πx2)v1 +πsin(πx1)cos(πx2)v2 =
πcos(πx1)sin(πx2)sin(πx1)cos(πx2)−
πsin(πx1)cos(πx2)cos(πx1)sin(πx2) = 0

Thus, sin(πx1)sin(πx2) is a constant of motion and one can immediately see that particle tra-
jectories must be closed orbits. We study the convergence of the semi-analytic solution by the
absolute error in the constant, C, shown in Eqn. (20).

sin(πx1)sin(πx2) = C (20)

Using Eqn.(7) we show that the semi-analytic solution converges to the actual closed orbits
described by Eqn.(20). The trajectory of a single particle initially placed at the triple point in
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Figure 2: Selected images from the two material ALE simulation show significant distortion
after seven periods in the 40x40 mesh (first column) compared to the 320x320 mesh (second
column). The velocity (first row) has visibly grown in magnitude. The center of the pressure
field (second row) has been expanded into a diamond like shape, indicating mesh imprinting.
The density (third row) has dropped in the center of the domain however, visual variations are
expected due to the precision of the color pallet.

the three material calculation is studied using the semi-analytic solution for varying time step,
dt.

The orbit of the particle converges at fourth order in dt, shown in Fig 5. The period of
the particle located at the triple point for the three material case (1/2,4/5) was measured
numerically to be approximately 2.56 microseconds. Many of our results are based on this unit
of time and we will refer to this as the period of the vortex from now on.

In order to verify the interface length of the two and three material calculations we use
the semi-analytic solution to measure the trajectories of particles placed at the interface of
materials. The semi-analytic solution is solved on the unit square centered at (1/2,1/2). In the
two material case particles are distributed along the interface y = 4/5 and also along the line
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Figure 3: Similar observations may be made as in Fig 2. The velocity (first row) of the 40x40
mesh (first column) has been increased in magnitude compared to the 320x320 mesh (second
column). The pressure field (second row) has been diffused and artificially squared. Only small
variations are present in the density field (third row).

which bisects the upper division of the domain for the three material case. All convergence
studies use the semi-analytic solution with dt chosen to be 0.00003.

The particles are spatially evolved through time according to the Taylor-Green velocity
field using a 4th order Runge-Kutta method. The interface length as a function of time is then
recovered from the solution by taking the sum of the distances between successive particles.
The distance is calculated by the L2 norm of the vector from particle i to particle i+1

Interface Length(t) =
N

∑
i=1
|| ~x(t)i+1− ~x(t)i||2 (21)

where ~x(t)i is the location of the ith particle.
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Figure 4: The fields converge slower with the swept face ALE approach than with a pure
Lagrangian method. The one material calculations (a) reveal first-order convergence in the
fields. The velocity converges with power 0.99 (r2 = 0.998), the pressure with power 1.01
(r2 = 0.998) and the density with 1.14 (r2 = 0.999). The two and three material calculations, (a)
and (b), agree with first-order convergence in the fields. For the two material calculations (a),
the velocity converges with power 1.05 (r2 = 0.999), the pressure with power 1.02 (r2 = 0.999)
and the density with 0.44 (r2 = 0.732). For the Three material calculations (b), the velocity
converges with power 1.05 (r2 = 0.999), the pressure with power 1.02 (r2 = 0.999) and the
density with power 0.48 (r2 = 0.779).
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Figure 5: The constant of motion sin(πx1)sin(πx2) =C in the semi-analytic solution converges
semi-to the analytic constant of C = sin(4π/5) with a dt of order 10−13.

Interfacial Length

The material-material interface is measured as it evolves through time and compared to the
semi-analytic solution. The mesh dimensions used in the two and three material hydrocode
calculations are 40x40, 80x80, 160x160 and 320x320. Figures 7 and 8 show the material
evolution for periods 1,3,5, and 7 of the vortex for two and three materials respectively. The
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(a) (b)

Figure 6: The initial material interface is located at y = 4/5 in the two material calculations
(a) and also at x = 1/2 for 4/5≤ y≤ 1 in the three material calculations (b). All materials are
ideal gasses and in the three material calculations we refer to the top left material as material
one and the top right material as material two.

calculations with the lower mesh resolutions visibly deteriorate after just a few periods unlike
the 160x160 and 320x320 meshes.

Large deviations from the semi-analytic solutions are seen in the higher mesh resolutions
(Fig.9) even though the domain compares favorably to the semi-analytic solution as shown
in Figs.7 and 8. This is due to the break down of the materials near the boundaries, though
difficult to see. As the system is evolved through time the materials continue to wind about
each other under the influence of the vortex, causing the filaments to grow ever thinner espe-
cially near the boundaries. This is responsible for the eventual break up of the material as the
thickness of the filament becomes comparable to the zone size, and can no longer be modeled
accurately in the flow. The effect is most pronounced near the boundaries of the domain where
the filament becomes thinnest. The hydrocode is unable to model the interface as the material
is dragged close to the boundaries resulting in a significant error in the interface length. This
effect explains the large error seen in Fig.9 for the 320x320 mesh resolution. In order to ac-
curately model the filaments one would need a mesh with ever increasing resolution near the
boundaries as the problem evolves through time. This deterioration is not a fault of the test
problem but rather, it illuminates a break down in the hydrocode as the problem becomes more
demanding.

We observe between first and second-order convergence in the interface length for the two
material calculations (Fig.10). It is not clear why the interface length converges at a higher
order than the velocity, pressure, and density fields. For the triple point (three material) cal-
culation, material one (top left) converges at second order in interface length and material two
converges at first-order (Fig.10). The interface length of material two converges significantly
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Figure 7: The two material calculations are evolved through time on different mesh sizes
40x40, 80x80, 160x160, and 320x320 matching the columns from left to right. The rows
are the odd periods 1,2,3,5,7 of the vortical motion starting from the top at the first period. The
semi-analytic solution is overlaid on each time step as black dots.

slower than the interface length of material one. This is caused by a detail of the hydrocode
which gives preference to the first material, transferring errors in interface position to the sec-
ond and third material.
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Figure 8: Likewise, the three material calculations are evolved through time in the mesh sizes
40x40, 80x80, 160x160, and 320x320 matching the columns from left to right. The rows are
again the odd periods 1,2,3,5,7 of the vortical motion starting from the top at the first period.
The semi-analytic solution is overlaid on each time step as black dots for the interface of
material one and white dots for material two.
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Figure 11: xALE field convergence plots: the density field

Final Reports: 2015 Computational Physics Student Summer Workshop Page 61



Material interface evolution and semi-analytic radial piston test problems

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  2  4  6  8  10  12  14  16  18

in
te

rf
a
c
e
 l
e
n

g
th

 [
c
m

]

time [microseconds]

2Mat Interface Length

analytic

40

80

160

320

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  2  4  6  8  10  12  14  16  18

in
te

rf
a
c
e
 l
e
n

g
th

 [
c
m

]

time [microseconds]

3Mat Interface Length TopLeft

analytic

40

80

160

320

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  2  4  6  8  10  12  14  16  18

in
te

rf
a
c
e
 l
e
n

g
th

 [
c
m

]

time [microseconds]

3Mat Interface Length TopRight

analytic

40

80

160

320

(c)

Figure 9: The material interface is plot versus seven periods of the vortex in the four mesh
sizes and compared to the semi-analytic solution. The two material interface (a) converges to
the semi-analytic solution as mesh resolution increases and the interface lengths of different
resolutions do not cross each other. The interface length of material one in the three material
calculations (b) also converges to the semi-analytic solution and the interface lengths of dif-
ferent mesh sizes do not cross. However, the associated interface lengths of material two in
the three material calculations (c) does cross over the analytic solution. The highest resolution
calculation even seems to diverge from the semi-analytic solution near 12 microseconds.
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Figure 10: The interface length converges at near second order using the ALE remap method.
The two material case (a) converges with respect to zone size (dx) with power 1.63 (r2 =
0.998). The interface length associated with material one (top left material) in the three material
calculations (b) converges with power 1.97 (r2 = 0.991) and material two (top right material)
with power 1.16 (r2 = 0.890)
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Figure 12: xALE field convergence plots: the pressure field
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Figure 13: xALE field convergence plots: the velocity field)

While swept face ALE methods do not suffer from mesh tangling to the same extent as La-
grange methods thanks to the remap step, they do not couple well across cell corners and, in
this case, does not conserve total energy. A modified ALE method which uses mesh-mesh inter-
section, has recently been introduced. The method uses an intersection based remap, xALE[7],
which naturally couples across cell corners and conserves total energy. The single material cal-
culations were rerun using this method. We observed third-order convergence in the velocity,
pressure, and density fields as shown in Figs.11 - 13. This is a very promising result, and hints
that higher-order convergence in the interface length might be obtained using xALE.

The Sedov Blast Wave as a Radial Piston Verification Test

Introduction

Analytical and computational explorations of explosion modelling have been an important area
of research for many decades. Von Neumann [18], Taylor [17], and Sedov[16] all indepen-
dently found a set of self-similar equations describing an idealized form of an explosion. Their
simplified models use an infinitely small point source of energy as a seed. As long as the energy
is large enough, this creates a strong shock that propagates outwards. Their solutions describe
the self-similar equations for the evolution of state variables as the shock progresses. Because
Sedov’s solution was the most rigorous of his time, these self-similar equations are referred to
as “Sedov solutions” in this paper. Sedov solutions can be used to understand many real-world
phenomenon involving blast waves, including the evolution of supernovas [9], detonation of
high explosives, and expanding laser plasmas[13].

With the constant increase in computing capabilities, an increasing number of companies
and researchers are depending on hydrodynamics codes. Verification tests allows the devel-
opers of these programs to determine if the simulations converge to the analytical solutions.
Convergence tests can be performed to ensure that the code will continue to increase in accu-
racy as resolution increases. The Sedov blast wave is of great value as a verification problem
because of its semi-analytical solution for all relevant state variables. A researcher can test his
or her hydrocode by modelling a Sedov blast wave and then computing the precise error in the
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code for various mesh resolutions and various hydrodynamics models. Sedov verification tests
are useful for for testing the ability of the approach to deal with features such as shock waves,
radial propagation of energy, and large variations in the energy.

The traditional set-up of a hydrocode simulation for the Sedov blast wave corresponds to
an initial condition problem. In this setup, thee energy from the point source is uniformly
distributed in the zone nearest the origin. This introduces a secondary source of error into
the test; this error is due to the imperfect modeling of the point source. It has generally been
assumed that convergence rates are still maintained since both the error from the improper
representation of point source and the discretization error go to zero in the continuum limit.
Nevertheless, it has been hypothesized the errors in some hydrocode tests can be attributed to
the error associated with [12].

This paper introduces a new method for modeling the point source that eliminates this
secondary error. In order to avoid using an energized cell of finite size, the computational
domain was modified to remove the zone(s) adjacent to the origin. The effects of the energized
point source can then be applied to the exposed vertices as boundary conditions. As the energy
propagates outwards, the vertices on this boundary are driven by a velocity boundary condition
corresponding to the semi-analytic solution. While the initial condition method would only
approximate these velocities near the origin, this method applies them exactly. This makes the
Sedov problem equivalent to a radial piston problem in which a shock wave emanates from the
origin due to an applied velocity boundary condition.

This method represents a significant departure from the typical methodology in at least two
regards. First, the typical setup as an initial condition problem is transformed into a boundary
condition problem. This proposed test verifies the ability of a hydrocode to convert applied ve-
locities into internal energy, similar to the Noh problem [15]. Second, this approach eliminates
the errors resulting from approximating the energy point source as an energy source of finite
volume. This allows one to determine whether errors seen in a typical Sedov test, where the
Sedov problem is run as an initial condition, are due to this secondary source of error. One can
then analyze how well any particular hydrocode performs independently of the setup errors.

Test Problem Methodology

Once the element containing the origin of the blast wave has been removed, the appropriate
boundary conditions must be applied to the exposed nodes. These values can be found using the
semi-analytic Sedov solution; this methodology is summarized here and explained in greater
detail in the following subsections. Sedov’s original solution results in a semi-analytic solution
which gives a nondimensional radius, λ and a nondimensional velocity, f . Using this similarity
solution, one can then find the velocity of a particle at any position and at any time. The
kinematic ODE relating position and velocity must be solved to find the vertex velocities as
a function of time. The end result of this is a set of velocity boundary conditions that can be
used in a Lagrangian hydrodynamics code. This approach was tested in the FLAG hydrocode
to model the Sedov blast wave without the use of a finite-size energy source.
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Mesh Modifications

Two separate types of computational domains are described in this paper. The first type cor-
responds to a “classical” or initial condition Sedov problem, where the blast wave is initiated
by an energy source of finite dimensions. The second corresponds to the “radial piston” or
boundary condition Sedov problem, where a continuous set of cells adjacent to the origin are
removed.

For the velocity BC Sedov problem, the exact same computational domain is used with
only one modification. Two examples of this modified computational domain can be seen in
Fig. 14. A portion of the mesh next to the origin is removed; this region can be of various
sizes and shapes. The aforementioned velocity boundary conditions are applied to the vertices
exposed by removing the cells adjacent to the origin. The initial density and computational
discretization are otherwise identical to the classical Sedov solution.

(a) Box Mesh (b) Radial Mesh

Figure 14: RZ meshes used in this work

Solution to Sedov’s Equations

Kamm explained a robust method for solving Sedov’s equations[11], which is summarized
here. The Sedov solution assumes that the fluid of interest is compressible, inviscid, and gov-
erned by the gamma-law equation of state. The most difficult portion of the calculation is
relating the integral of energy over the domain to the state variables inside the shock region.
Once this integral relation is solved, the similarity solution can be found using set of algebraic
equations. These algebraic equations can be used to find nondimensional values, among which
are f and λ , which are defined as:

f = v/vs (22)
λ = r/rs (23)

where r is the radial distance from the origin of the blast to any defined point, rs is the radius
of the shock wave, v is the radial material velocity of the same defined point, and vs represent
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the radial material velocity immediately following the shock. Other similarity variables also
exist for density and pressure. These similarity variables are coupled, meaning each value of f
corresponds to exactly one value of λ . Because the similarity solution involves nondimensional
measures of radius and time, a function relating f and λ is valid for all positions and all times.
Selecting a specific position corresponds to selecting a specific value of f or λ . Since λ

is the radial position, it is easiest to use this as the independent variable and f as a dependent
variable. Once f and λ are known for a given point, all the relevant properties (density, velocity,
pressure, or internal energy) can be computed by multiplying the similarity variables by the
post-shock conditions. The calculation of these similarity variables was performed using the
code presented in Reference [11].

Generation of Velocity Boundary Constraints

Once the relation between radius and velocity is determined, a table of boundary conditions
must be generated for the hydrocode. The velocity of a node can be represented as a function
of the radial distance and time, or v = g(r, t), where g is a function. Due to the Lagrangian
nature of the solution, this node represents a particle that must be followed throughout the time
domain. This can be done by substituting the nondimensional velocity into the elementary
ODE relating position, velocity, and time:

dr/dt = v(r, t) = f (r, t)vs(t) (24)

where f is the nondimensional ratio of velocities for a given point and time and vs is the radial
material velocity immediately following the shock. From this kinematic ODE the velocities
and positions of individual node points can be solved. In order to include these velocities in
the hydrodynamics setup, a table of velocity BC values was created. The same time steps were
used for both the ODE solver and the table of velocity BCs in order to maintain simplicity
and uniformity. As one can see from Fig. 15, the ODE resembles stiff problem due to the
sudden change in velocities as the shock wave passes. Several different numerical ODE solvers
were considered, varying from the basic Euler forward method to the 4th order Runge-Kutta
method. More complicated ODE solvers designed for stiff problems were not considered to be
necessary.
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Figure 15: A comparison of material velocities for particles at three different initial positions,
as a function of time. The velocity jump for a position of r = 0.02 cm is about two orders of
magnitude higher than the jump for r = 0.2 cm.

The greatest success was found using a method similar to that proposed by Bogacki and
Shampine (hereafter referred to as BS23)[1]. This method compares a second and third-order
Runge-Kutta method to estimate the error with each new time step. If the error is above a
specified threshold, the step size is reduced until error falls below the specified threshold. This
method allows adaptive temporal refinement to be employed and places explicit limitations on
truncation errors.

Summary of Necessary Steps

The following is a summary of the steps taken to run a verification test using the proposed BC
method. An example of typical results is shown in Fig. 16, where the density fields and meshes
of the IC and BC method are shown side by side.

1. Determine the state variables to be used (blast energy, inital density distribution, initial
pressure, and gamma).

2. Remove a section of the mesh adjacent to the origin of the blast wave.

3. Determine the radial distance from the origin to each vertex on the exposed boundary.

4. Solve the the semi-analytic equations described by Kamm to find the similarity solution
relating f and λ .

5. For each vertex, determine the starting time when the shock will hit.

6. For each vertex, use the initial position, starting time, post-shock conditions, and solution
for f and λ to solve the ODE for r, v, and t.
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7. Write these values of radial velocity as boundary conditions in the hydrocode input.

8. Run the verification test.

9. Compare the hydrocode solution to semi-analytic solution.

(a) Initial Condition Method (b) Boundary Condition Method

Figure 16: The density and mesh are shown for the IC and BC approaches

Test Implementation

The following subsections show an example implementation of the verification test proposed
in this paper. The setup parameters are described and the error in each of the implementation
steps is quantified. Convergence results and plots of the error are included in the next section.

Description of FLAG Hydrocode

A proof of concept of this method was implemented on a research Lagrangian hydrodynamics
code FLAG[5,6]. The conservation equations were solved using staggered grid hydrodynamics
(SGH), which decomposes the problem variables into two interconnected meshes. The conser-
vation of momentum is solved on a control volume around a node, imparting a specific velocity
to this node. The density, pressure, internal energy, and other state variables are defined at the
cell centers. Similarly, the conservation of energy equation is solved on the cell boundary. The
two meshes correspond to the set of nodes, which correspond to velocities, and the set of cell
centers, which correspond to the other state variables.

In order to better capture the changes in state variables across the shock, the Godunov-like
approach suggested in[14] was used. This method employs the use of an approximate Riemann
solver. This approach is second order accurate on smooth flows and 1st order accurate at
shocks. One advantage of this method is that it is very robust against mesh instabilities such as
hourglass modes and chevron modes.
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For the test problem calculations, a CFL limiting value of 0.025 was introduced to limit
the time steps. In addition, a maximum time step of 0.0001 µs was employed to ensure that
properties would remained uniform. An initial time step of 1E-7 µs was specified to ensure that
the time steps would not be too large initially. Finally, a maximum ratio of 1.01 between time
steps was imposed to ensure that the solution maintained small time steps initially.

Computational Domain and State Variables

Though a Sedov blast wave can be planar, cylindrical, or spherical, the problems in this paper
are strictly spherical blast waves. The computational domain is reduced through a boundary
condition and by assuming RZ axisymmetric coordinates. Under these two reductions, the
computational domain can be represented by a 2D set of coordinates, though each cell is actu-
ally an axisymmetric RZ cell. In order to fully examine the Sedov verification test, two types
of meshes were examined for both the initial condition (IC) and the boundary condition (BC)
method. Fig. 14 shows the two types of axisymmetric meshes, which are termed “box” and
“radial.” These terms refer specifically to the mesh topology. Though the removed portion can
be any arbitrary shape, in this paper square hole is used for the box mesh and a circular hole is
used for the radial mesh. Three different hole radii were considered: 0.02 cm, 0.1 cm, and 0.2
cm. The total computational domain was set to be 1.2 cm x 1.2 cm.

The ratio of specific heats (gamma) was set to 5/3, but other values of gamma could be used.
The initial density was set to 1.0 g/cc everywhere, and the extensive source internal energy was
set to 0.493390 Mbar g/cc. This energy was chosen so that the shock would be located at a
radius of 1.0 cm at a time of 1.0 µs. The specific source internal energy used for the IC method
is calculated by dividing by the mass in the source zone. The source energy must be scaled to
account for the symmetry conditions in the z-direction.

Quantification of Errors in the Sedov Solution

Though the generation of boundary constraints using the method described in this paper is de-
rived from Sedov’s exact semi-analytic solution, the implementation requires several numerical
steps. As the technique presented in this paper is largely a verification technique, its utility is
limited if the errors created by any of these numerical steps are greater than the errors created
by grid size or the hydrodynamics code. For this reason, the errors of each step in this process
are quantified in the following subsections. It will be seen that each of these steps involves
errors which are smaller than the errors seen in the convergence study.

In order to obtain the velocity of points at specific positions and times, the Sedov nondi-
mensional solutions need to be included in the program. This inclusion was implemented by
performing a piecewise linear spline interpolation on a range of 10000 Sedov values. Several
other possibilities also exist for finding arbitrary values of the Sedov nondimensional solution,
but only one method is considered here. Errors were calculated by comparing the interpolation
with known values of the Sedov solution. 10000 exact values of the nondimensional variables
(not matching those used for the interpolation) were used to find the relative and the absolute
error. Representative statistics for the error are shown in Tab. 1. The piecewise linear interpola-
tion using 10000 data points was considered to be valid because absolute errors remained below
6.329E-7 and were usually on the order of 7.273E-6. Due to the high number of data points in
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Table 1: Relative and absolute errors from the piecewise linear interpolation for exact
solutions to Sedov’s equations

Type Relative Error Absolute Error
Mean 1.545 E−6 7.273 E−8

Median 8.862 E−8 4.035 E−8
Maximum 2.110 E−2 6.329 E−7

the interpolation process, no significant advantage was seen in using a cubic interpolation over
a linear interpolation.

Verification of Convergence of ODE Solver

In order to solve the ordinary differential equation 24, Euler and Runge-Kutta methods were
compared on several time stepping-schemes. These methods were compared using a hole size
of 0.02 cm, since this size has the sharpest discontinuity of all the hole sizes considered (see
Fig 15). The relative error of these schemes is shown in Fig. 18. The relative error incurred
by the ODE solver was found to be highly dependent on the type of time steps used. This
can easily be seen by comparing the differences between logarithmic temporal spacing and the
quadratic temporal spacing for the classical fourth-order Runge-Kutta method. From Fig. 18
it can be seen that the BS23 method has the lowest error. Though this method only employs a
3rd-order Runge-Kutta solution, the adaptive method employed gives it a lower relative error
than any of the 4th order Runge-Kutta schemes. Based on the results shown, a table with 2000
values or more is recommended for the velocity BC table. The numerical generation of this
table adds a maximum possible relative error on the order of 1E-8 to the solution. This error
falls well below the relative error of the hydrocode itself for reasonable mesh resolutions.

A second test was also employed to ensure the accuracy of the time-stepping of the bound-
ary conditions. The script used to generate the velocity boundary conditions was applied to a
uniformly spaced set of points between 0.01 cm and 1.2 cm. These points can then be advanced
to their position at time t = 1 µs. These points can represent the spacing of a simple 1D La-
grangian mesh. The volume associated with these mesh zones can be calculated as the volume
of a spherical shell whose thickness is the distance between one point and the next. Since the
mesh is Lagrangian and each cell retains the same mass for all time, the final density at t =
1 µs can be calculated by dividing the initial cell mass by the final cell volume. This method
does not use the momentum equations and relies solely on the solution of the kinematic ODE
24, so it is a good test of whether these velocity BCs can accurately predict the final density
distribution. These calculated densities and velocities are plotted versus the analytic solution
in Fig. 17. From the figure, it can be seen that the BS23 method can lead to the exact density
profile. The only “bad” point is the zone closest to r = 1.0 cm, which is a zone that bridges
the shock wave. Since the properties are very different on both sides, the average properties in
this zone do not match the exact properties at the zone’s center. This sort of behavior is to be
expected.
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Figure 17: Comparison of density and velocity profiles generated by the BS23 solver with the
analytic solution
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Figure 18: Convergence rates of the four ODE solvers described: The Euler forward with a
logarithmic spacing, fourth-order Runge-Kutta with logarithmic spacing, fourth-order Runge-
Kutta with quadratic spacing, and the BS23 adaptive time-stepping method

Convergence of New Method

The BC method proposed in this paper was observed to converge to the exact solution for
density, pressure, velocity, and internal energy. This can be seen in Fig. 19. In order to verify
that the code convergences to the exact solution as the computational resolution goes to zero,
an error regression test was performed. This was done on both the radial and box mesh layouts.
Convergence was calculated using an L1 error norm weighted by the volume of each zone. The
L1 error norm for a quantity of interest, U , is calculated using the formula:

L1
U =

∑
p∈R

(Vp|Up−Uexact |)

∑(Vp)
(25)

where Vp is the volume of the zone considered and R is the problem domain. This is the
same error normalization used to thoroughly investigate the error involved in CCH and SGH
methods in [10]. All of the convergence plots use this error normalization.
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Figure 19: Plots of density, pressure, velocity, and energy for various mesh resolutions using a
radial mesh.

As seen in Fig. 20, the errors shrink monotonically as the zone size decreases. Convergence
rates and the correlation coefficients can be seen in Tab. 2 and 3. The correlation coefficients for
the two larger holes are all above 0.97, signifying a predictable convergence with no extraneous
grid-dependent errors. The errors in the final solution grow significantly larger when the size
of the removed section (the “hole size”) is very small. This difference is attributed to the large
magnitudes of velocity and energy near the origin at very small times. The relative scales in the
velocity for various initial radii can be seen in Fig. 15. As the blast wave spreads out from the
origin, the speed of the air behind the shock slows from approximately 100 cm/µs at r = 0.02
cm to approximately 4 cm/µs at r = 0.2 cm. Even small relative errors near the origin can lead
to errors 1-2 orders of magnitude larger than errors far from the origin.

It can also be seen that for radial mesh with a hole size of r = 0.02 cm the error did not
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decrease significantly from the coarsest mesh resolution to the second coarsest resolution. This
was believed to be a pathological error; the mesh seems to have a minimum threshold resolution
required for the solution to be properly resolved. Once it passes this threshold (appearing just
beyond 1/2 of the hole size) the error begins to decrease at about the same convergence rate as
the other hole sizes, with correlation coefficients of 0.995 and 0.996 for the density and pressure
errors, respectively. Including these lower resolutions makes their correlation coefficients go to
0.935 and 0.950 for the density and pressure errors. This lower correlation coefficient signifies
that a power-law does not completely describe the convergence rate for the smallest holes at
lower mesh resolutions.
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Figure 20: Convergence plots are shown for the a) density and b) pressure fields for the BC
method using a box mesh. For the density, the order of convergence was 0.77, 0.80, and 0.85
for radii of 0.02 cm, 0.1 cm, and 0.2 cm, respectively. For pressure, the orders of convergence
were 0.79, 0.82, and 0.83, respectively.
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Figure 21: Convergence plots are shown for the a) density and b) pressure fields for the BC
method using a radial mesh. For the density, the order of convergence was 0.93, 1.1, and 1.08
for radii of 0.02 cm, 0.1 cm, and 0.2 cm, respectively. For pressure, the orders of convergence
were 1.0, 1.18, and 1.06, respectively.

Comparison of Radial and Box Meshes

As seen by either comparing the plots in Fig. 20 and Fig. 21 or looking at Fig. 23, the BC
method generates larger numerical errors for radial meshes rather than box meshes. This is
believed to be due to a dependence upon the orientation of the zones with respect to the applied
velocities. Figure 22 shows the absolute errors in the box mesh as a function of both the
radial position and the angle, where θ is the angle in degrees between the cell centers (for
density, pressure, or energy) or the vertices (for velocity) and the horizontal symmetry plane.
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Table 2: Comparison of the L1 density error regression between various hole sizes

Box Mesh Radial Mesh
Hole Size Order R2 Order R2

0.02 cm 0.754 0.989 0.930 0.993
0.10 cm 0.801 0.993 1.10 0.978
0.20 cm 0.854 0.999 1.08 0.994

Table 3: Comparison of the L1 pressure error regression between various hole sizes

Box Mesh Radial Mesh
Hole Size Order R2 Order R2

0.02 cm 0.789 0.989 1.00 0.996
0.10 cm 0.824 0.995 1.17 0.988
0.20 cm 0.834 0.999 1.06 0.999

According to this definition, θ = 0° corresponds to the horizontal axis and θ = 90° corresponds
to the vertical axis. From this plot, it can be seen that there is a definite dependence upon θ .
When the sides of the zones are aligned with the radial velocities, the error is highest. When
the sides of the zones are positioned at 45° angles to the radial velocities, the errors are lowest.
The higher error in the radial mesh is attributed to this angular dependency.
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Figure 22: Absolute value of the absolute errors in the Box Mesh Setup for dr = 0.02 as a
function of radius and angle

Comparison with the BC Method

A plot of the deformed mesh and the density distribution is shown for both the IC and the BC
methods in Fig. 16 Figure 23 is a comparison of the error convergence plots for both the IC
and the BC condition methods discussed in this paper. The BC data for this figure corresponds
to the minimum error seen at a hole size of 0.2 cm. For the IC method, convergence is very
similar for a box and a radial mesh, which both converge at a rate close to 1, the expected
convergence rate of the FLAG hydrocode[10,14]. The BC method converges at approximately
the same rate, with the radial mesh converging at a rates close to 1.0. However, the numerical
errors are higher for this method, with the box mesh having a slightly higher error in all state
variables and the radial mesh having a significantly higher error in all state variables.
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Table 4: Comparison of the L1 density error regression between IC and BC method

Setup Order R2

IC, Box Mesh 0.911 0.994
IC, Radial Mesh 0.735 0.995
BC, Box Mesh 0.917 0.997
BC, Radial Mesh 1.08 0.994

Table 5: Comparison of the L1 pressure error regression between IC and BC method

Setup Order R2

IC, Box Mesh 0.853 0.995
IC, Radial Mesh 0.920 0.997
BC, Box Mesh 1.02 0.998
BC, Radial Mesh 1.06 0.996
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Figure 23: Comparison of the initial condition and boundary condition methods on a box and
radial mesh. For the order of convergence and correlation coefficients, please see Tab. 4 and 5.

This error can be better understood by observing where the error is higher for the BC
method. Figure 24 shows plots of the error in density, pressure, velocity, and internal energy
at their respective radii from the origin of the blast. This figure represents the error only for
radial meshes. The cusps on this plot correspond to places where the numerical solution crossed
the exact solution. From this figure it can be observed that the errors in both density and energy
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are equal for both the IC and the BC approaches at the boundary to which the conditions are
applied. This is further proof that the boundary conditions applied are precise. However, the
hydrocode then differs in how this energy and density propagate throughout the mesh. This is a
known challenge with Lagrangian SGH methods[14]. In verification tests, velocity-driven test
problems (such as the Noh test) result in significantly higher errors than internal-energy-driven
test problems. (such as the IC Sedov)[14]. It is believed that this difficulty is due to errors in
converting kinetic energy to internal energies. Large errors also occur at the shock front for all
cases; this is due to difficulties in capturing discontinuities in the solution[14].

Also shown is a similar comparison of the error for the IC method and the BC method at
various radii for the box mesh. These data are shown in Fig. 25. It should be observed that the
general trends are the same, but the error has a much wider variance due to radial asymmetry.
The connection between Fig. 22 and Fig. 25 should be noted. The wider distribution of errors
for the box mesh is due to the dependency on the angle θ . For any given radius, the maximum
error on the box mesh is close to the average error on the pie mesh. The wider distribution of
errors on the box mesh includes many errors which are lower than the equivalent error for the
radial mesh. This comparison of error distributions on the box and radial mesh further explains
the lower error seen on the box mesh.
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Figure 24: Absolute values of the absolute errors are compared for the IC method and the BC
method using the radial mesh, as a function of the radial distance from the origin. For the BC
method, two separate hole sizes, r = 0.02 cm and r = 0.2 cm, are considered.
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Figure 25: Absolute values of the absolute errors are compared for the IC method and the BC
method using the box mesh, as a function of the radial distance from the origin. For the BC
method, two separate hole sizes, r = 0.02 cm and r = 0.2 cm, are considered.

Conclusions
We proposed a new vortical test problem coupled to hydrodynamics where the particle trajec-
tories and material-material interface evolution are known semi-analytically. Using the method
of manufactured solutions we derived the energy source and initial conditions which support
the 2D steady state Taylor-Green velocity field in the hydrocode. We showed that a momen-
tum source is necessary to manufacture a system with the Rider-Kothe velocity field. The hy-
drocode calculations were performed on various mesh resolutions and compared to the analytic
solutions of the fields and the semi-analytic material interface position and length. Second-
order convergence was observed with a pure Lagrange method while calculations with swept
face ALE achieved first-order convergence even in the single material case but near second-
order convergence in the interface length. Significant variations were observed in the interface
length associated with the second material in the triple point (three material calculation) due
perhaps to a detail of the hydrocode which causes it to prefer the interface location of one ma-
terial over another. Finally, third-order convergence was observed using the new xALE method
in the underlying fields, however, the technique was only run in the one material calculation.
The addition of materials did not have a significant effect in the convergence of the other higher
order methods. Future research could determine if the convergence in xALE holds for two and
three material calculations and investigate the convergence of the material-material interface
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length.
In this research was saw that the hydrocode converged to the semi-analytic solution using

the ALE method at approximately first-order for the two and three material calculations. Fairly
uniform convergence was observed in the two material calculations and first material interface
in the three material calculations. Significant variations were observed in the interface length
associated with the second material. This is believed to be due to the preference given to
conserving quantities associated with the first material in the hydrocode. Simulations could
easily be run in the future to verify this claim by observing a reversal of the interface length
results corresponding to a change in the conservation preferences of the hydrocode.

The new ALE technique xALE was briefly discussed. Third order convergence was ob-
served in the underlying fields with respect to the zone size, whoever, the technique could only
be run in the one material calculation due to computational restrictions. We plan to simulate
the two and three material cases in the future as time allows and we expect to see third order
convergence up to three materials and a higher convergence in the interface length than was
observed using the ALE method.

A new approach for conducting a Sedov verification test was presented. This method mod-
els the Sedov blast wave as a radial piston problem of varying velocity. This corresponds to
a shift from an initial condition problem, where energy is deposited in a cell, to a boundary
condition problem, where the boundaries are moved. Since these applied boundary conditions
can exactly match the velocity of the Sedov analytical solution, this new approach allows an
exact model of the energy as a point source. This method was successfully implemented and
analyzed on an SGH hydrocode with a second-order approximate Riemann solver. Conver-
gence rates were observed to be approximately the same between the classical initial condition
method and the proposed boundary condition method. Error was slightly higher for a box
mesh discretization and significantly higher for a radial mesh discretization. Since the bound-
ary conditions applied correspond to the exact analytical velocity of these points, these errors
were considered to be artifacts of the SGH solver. This implementation demonstrates the ability
of this new test to illuminate errors due to velocity boundary conditions, similar to the Noh test
problem. This implementation proves that this test is valid, and the same techniques presented
in this paper can be applied to a wide range of other verification tests to introduce additional
boundary condition tests.
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Abstract

Impact cratering is the dominant geological process on the moon. Because the surface
of the moon is covered by a layer of regolith - inorganic particles of varying compositions
and sizes - shock waves will propagate through the material differently than they would
through a solid material. Thus, porosity of the regolith is a factor in how these craters
form. Ralph Menikoff and Edward Kober proposed a model for crushing out the pores in
a porous material. This model takes into account the porosity of a material and attempts
to model how shock waves propagate through the porous material, forming a crater [5].
In this paper, we test the effectiveness of this model by running hydrocode simulations
and comparing the results to experimental data. After implementing the Menikoff-Kober
model in FLAG and using the hydrocode simulation to find the shock particle velocity, we
were able to conclude that the Menikoff-Kober model gives a reasonable estimate for the
shock particle velocity of a porous lunar regolith simulant material.
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Introduction
Impact gardening is the dominant geological process on the moon. The resulting shock waves
caused the lunar regolith to have varying densities and porosities in relation to the depth of the
regolith [3]. The porous nature of the regolith poses a problem in modeling how these craters
are formed. Shock waves behave differently in solid materials than in porous materials. Thus,
an accurate porosity model is necessary in order to simulate formation of lunar craters.

Another key ingredient in modeling lunar crater formation is regolith simulant. Because the
moon lacks water, the regolith has not experienced the kind of erosion and smoothing of par-
ticles that we see on Earth. Thus, the regolith consists of particles with spiked edges and
increased internal friction [2]. Most of these regolith particles began with diameters greater
than 1 cm and are now less than 1 mm in diameter due to disruption by impact gardening.
However, large particles also exist in the regolith. Some of these particles have undergone
multiple instances of breaking up and reforming as a result of the bombardment. These parti-
cles are from a variety of materials and origins [4].

Performing experiments designed to imitate the surface of the moon requires the use of a
regolith simulant. Based upon samples from the Apollo missions, various lunar regolith sim-
ulants exist for use in experiments. The Johnson Space Center has developed several of these
simulants. JSC simulants were created using samples from the Apollo 14 mare site. They are
developed to have minearology, chemistry, and texture similar to that of mature lunar mare
regolith. JSC-1A, one of these simulants developed at the Johnson Space Center, also incorpo-
rates solar wind particles [11].

In this paper, we consider the Menikoff-Kober crush-out model. We run multiple hydrocode
simulations using this model, and we compare the results to experimental data obtained from
impact experiments using JSC-1A. By doing this, we are able to verify that the Menikoff-
Kober model provides reasonable values for particle velocity after a shock wave has propogated
through a porous regolith simulant.

The 1-D Shock Tube
Before examining the four-material experiment, we first need a basic understanding of shock
waves. To accomplish this, we consider the familiar shock tube problem, operating in only one
dimension. We seek to verify the results produced by the staggered-grid hydrocode provided
to us by our mentors [9].

Analytical Results

We first identify the initial conditions specified in the code.
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Table 1: Initial Conditions and Parameters Values of the 1-D Shock Tube

Parameter Definition Value
ρ0 Initial density 0.125
γ Specific heat ratio 1.4

We then utilize the equations provided in Physics of Shock Waves and High-Temperature
Hydrodynamic Phenomena to determine unknown values of interest[12]. From (4.1) in the
aforementioned text[12], we have

ρ1 =
γ +1
γ−1

ρ0 (1)

p1 =
2

γ +1
ρ0D2 (2)

u1 =
2

γ +1
D (3)

We will first perform the calculations for the low density gas. Plugging ρ0 into (1), we have

ρ1 =
1.4+1
1.4−1

(0.125)

=
3
4

ρ1 = 0.75

We now solve for D, the wave propogation speed, using the p1 = 0.3 estimate from the
code and Equation (2) from the text[12].

0.3 =
2

1.4+1
(0.125)D2

=⇒ D2 =
72
25

=⇒ D =
6
√

2
5
≈ 1.697 (4)

Using the result from (4) and Equation (3), we have

u1 =
2

1.4+1

(
6
√

2
5

)
u1 =

√
2

Numerical Results

In this section, we will display the numerical results of the one-dimensional shock tube model.
We used the aforementioned hydrocode as a basis, and we made some slight modifications to
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this code [10]. The resulting plots show the relationships of position and pressure. The green
line in each image illustrates the analytical solution of the position of the shock. Note that as
time progresses, the analytical solution and the numerical solution differ by a greater amount
than at the previous time step.

Figure 1: Cell Pressure as a Function of Position with Wave Front Velocity, t=1
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Figure 2: Cell Pressure as a Function of Position with Wave Front Velocity, t=2

Figure 3: Cell Pressure as a Function of Position with Wave Front Velocity, t=3
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Figure 4: Cell Pressure as a Function of Position with Wave Front Velocity, t=4

Figure 5: Cell Pressure as a Function of Position with Wave Front Velocity, t=5
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Limitations

The wave front position predicted from first principles is plotted in the density figures in this
section. While agreement between the 1-D hydrocode and the derivation in Zel’dovich and
Raizer [12] is fairly good, the hydrocode’s wave front lags behind the predicted value as time
progresses. This may be due to artifical viscosity.

Additionally, the hydrocode [9] computes the c values needed to complete further analysis.
The function that returns sound speed does not include density, although density is initialized
as one of the input variables of the sound speed function. We also note that, computing the
sound speed as in the code, the resulting units are not the expected units. We believe there may
be an omission of the density term in the sound speed calculation.

Roxane Simulations

1-D Shock Tube

In the one-dimensional shock tube problem, we consider two gases of varying pressures sepa-
rated by a thin membrane. When the membrane is broken, we observe a shock wave propagat-
ing through the gases. We modeled the Sod problem in Roxane [9]. The resulting figures are
displayed below, with the time given in microseconds. The lines represent the density in the
shock tube, which changes as the shock wave moves through the materials.

Figure 6: Shock Tube, t = 0 µs
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Figure 7: Shock Tube, t = 3.05267 µs

Figure 8: Shock Tube, t = 6.28806 µs
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Figure 9: Shock Tube, t = 9.52247 µs

Figure 10: Shock Tube, t = 12.75696 µs
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Impact Analysis

Introduction to the problem

In the following examples, we assume planar, normal, and parallel impacts, which can be be
described by the conservation equations:

ρ0Us = ρ(Us−Up)
P−P0 = ρUsUp (5)

PUp =
1
2

ρ0UsU2
p +ρUs(E−E0)

In these equations, Us is the shock velocity, and Up the velocity of the particles within the shock
wave. We now turn to an impact situation where the projectile impacts the target with initial
velocity V . After this impact, two resultant shock waves are created, one which propagates into
the target material and one that propagates in the reverse direction (opposite the initial velocity).
The particle speed in this back propagation shock wave must be identical to the particle speed
within the shock wave that propagates into the target material; if it were otherwise regions of
super high density or voids would be formed. In addition, we know that when the compression
is complete, and the interface between the two materials stops the motion associated with initial
compression, the pressures in the two materials will be equal. Thus:

V −Upi = Up j (6)
Pi(eq) = Pj(eq)

Where the region denoted i represents the projectile and the region denoted j represents the
target.

Finding expressions for pressures created by planar impacts

To begin, we start with the principle of momentum conservation (5) and set P0 = 0 to obtain:

Pi = ρ0iUsiUpi

Pj = ρ0 jUs jUp j

Using the known equation of state for both materials, Us = C +SUp, where C and S are exper-
imentally defined constants that depend on the material, we can write for the two materials:

Pi = ρ0i(Ci +SiUpi)Upi (7)
Pj = ρ0 j(C j +S jUp j)Up j (8)

Now using (6) to express Upi in terms of V and Up j, we obtain:

Pi = ρ0iCi(V −Up j)+ρ0iSi(V −Up j)2

We then set Pi = Pj to obtain a quadratic equation for Up j:

ρ0 j(C j +S jUp j)Up j = ρ0iCi(V −Up j)+ρ0iSi(V −Up j)2
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Rearranging terms, we obtain a quadratic equation purely in terms of Up j:

U2
p j(ρ0 jS j−ρ0iSi)+Up j(ρ0 jC j +ρ0iCi +2ρ0iSiV )−ρ0i(CiV −SiV 2) = 0 (9)

Using the quadratic formula to obtain the roots of this equation, we can plug our Up j values
back into the momentum conservation equations (7) and (8) to find the pressure in the two
shock zones of compressed material.

Examples
In this section, we will examine some examples related to shocks in order to better understand
how solids behave immediately following a collision.

Example 4.1, Dynamic Behavior of Materials

We wish to calculate the pressure generated by the impact of a copper projectile against a
copper target at 500 m/s. Using Table 5.1 in the text[6], we determine the value of C0 to be
3.94 km/s. Because our impact rate is given in m/s, we convert to obtain the C0 value used in
this problem[6]:

C0 = 3.94×103 m/s

Again using the table provided in the text[6], we determine S for this problem. Because both
of our materials are copper in this case,

S1 = S2 = S = 1.49

Using the same table[6], and again because both materials are the same, we find the density:

ρ01 = ρ02 = ρ0 = 8.93∗

∗ Both Tables 4.1 and 5.1 in the text [6] list the ρ value for copper to be 8.93. The worked
example in the text uses 8.92. We are proceeding with the value listed in the two tables.

Because we have two materials that are the same, we can utilize Equation (4.20) (10) in the
text[6] to obtain our particle velocity, Up, by using the given velocity:

Up =
1
2

V (10)

=
1
2

500 m/s

Up = 250 m/s

We have now determined the necessary values to solve for pressure using Equation (4.17)
from the text (11) [6]:

P2 = ρ02(C2 +S2Up2)Up2 (11)
P = ρ0(C +SUp)Up

= 8.93×103(3.94×103 +1.49(250))250
≈ 9.6×109 N/m2

= 9.6 GPa (12)
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Note that (12) differs from the text’s answer of 8.4 GPa [6]. This is due to a calculation
error in the text.

Example 4.2, Dynamic Behavior of Materials

We seek the pressures in both the target and projectile of a tungsten carbide projectile impacting
a steel target at a velocity of 1200 m/s. From the text, we are given the following [6]:

Table 2: Us, ρ , S, and C for Example 4.2

Material Us ρ S C
Tungsten carbide 4.920+1.339Up 15 g/cm3 1.339 4.92

Steel 3.57+1.92Up−0.068U2
p 7.85 g/cm3 1.92 3.57

P1 = ρ1(C1 +S1Up1)Up1 (13)

Using Equation (4.16) (13) and Equation (4.17) (11) from the text[6], along with substitut-
ing Up1 = V −Up2, we obtain the following quadratic equation:

(ρ1S1−ρ2S2)︸ ︷︷ ︸
A

U2
p2− (ρ1C1 +2ρ1S1V +ρ2C2)︸ ︷︷ ︸

B

Up2 +(ρ1C1V −ρ1S1V 2)︸ ︷︷ ︸
C

= 0

We now use the information in Table 2 to find A (14), B (15), and C (16), which we will
use in the quadratic formula to solve for Up2.

A = 15(1.339)−7.85(1.92) = 5.013 (14)
B = −15(4.92)−2(15)(1.339)(1.2)−7.85(3.57) =−150.0285 (15)
C = 15(4.92)(1.2)+15(1.339)(1.2)2 = 117.4824 (16)

Up2 =
−B±√B2−4AC

2A

=
150.0285±

√
(−150.0285)2−4(5.013)(117.4824)

2(5.013)
Up2 ≈ 0.805 km/s (17)
Up2 ≈ 29.02 km/s

Because the particle velocity must be lower than our impact velocity of 1.2 km/s, we use
(17) as Up2 in (11) to calculate the target pressure:

P2 = 7.85(3.57+1.92 ·0.805)0.805≈ 32.3 GPa

Final Reports: 2015 Computational Physics Student Summer Workshop Page 95



Determining the Efficacy of the Menikoff-Kober Crush-Out Model for Lunar Crater Formation

Using the substitution of Up1 = V −Up2 in (13) [6], we calculate the projectile pressure:

Up1 = 1.2−0.805 = 0.395

P1 = 15(4.92+1.339 ·0.395)0.395≈ 32.3 GPa

Aluminum on Copper Impact Problem

This problem deals with an aluminum projectile striking a copper target at V = 1682 m/s. We
first draw up the following table for the relevant physical constants of the problem [6].

Table 3: C, S, and ρ Values for Al-Cu Impact

Parameter Al 2024 Value Cu Value
C 5.33×103 m/s 3.94×103 m/s
S 1.34 1.49
ρ0 2.79×103 kg/m3 8.93×103 kg/m3

From (9), we can use the quadratic equation to solve for Up j, where the elements in the
quadratic equation a, b, and c are given by:

a = ρ0 jS j−ρ0iSi

b = ρ0 jC j +2ρ0iSiV +ρ0iCi

c = −ρ0i(CiV +SiV 2)

Substituting our values from the table above, we find:

a = 9.567×103 kg/m3

b = 6.263×106 kg/m2s
c = 3.543×1010kg/m s2

We use substitute these values into the quadratic equation to arrive at the value of Up j =
5.242×102 m/s. As one of our initial conditions for this problem was V = Upi +Up j, we can
easily obtain the value of Upi = 1.1578×103 m/s.

We then use the equation of state Us = C + SUp to find the value of shock velocities as
follows:

Usi = 5.33×103 +(1.34)1.1578×103

= 6.88×103 m/s
Us j = 3.94×103 +(1.49)5.242×102

= 4.72×103 m/s
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Getting these shock velocities enables us to obtain the values of pressure in the two shocked
regions by using (5). The final values of interest for the shocked regions of the projectile and
the target are shown in Table 4.

Table 4: Velocity and Pressure for Al-Cu Impact

Parameter Al Value Cu Value
Particle Velocity 1.1578×103 m/s 5.242×102 m/s
Shock Velocity ×103 m/s 4.72×103 m/s
Shock Pressure 22.224 GPa 22.095 GPa

Mesh Resolution Study

To aid in the verification of Roxane, we produced a resolution study for our solid aluminum
on copper simulation. Starting from the original mesh, we began by multiplying the number of
cells in the mesh by 2, 4, and 8 to improve resolution in the hydrocode. Then to see how the
model performed under decreased resolution, we divided the number of cells in the original
mesh by 2, 4, and 8 to investigate convergence under reduced resolution. The figure below
shows the results of this resolution study and demonstrates good convergence, as all versions
of the mesh arrive at the same value for shocked pressure of approximately 24 GPa. Roxane
converges to a value that is approximately 2 GPa above the value for pressure in the shocked
region arrived at by our analytic solution demonstrated in the previous section.
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Figure 11: Mesh Resolution Study in Roxane

Simulations Using Different Equations of State
The simulations of the Menikoff-Kober model are intend to mimic the experiments performed
on regolith simulant impact. The experimental setup consisted of an aluminum projectile 13
mm thick impacting a target composed of three materials: a 2 mm layer of copper, a 44 mm
regolith sample, and an 11 mm PMMA backing. For the simulations, we utilized two different
equations of state for the regolith sample while using consistent equations of state for the other
three materials. For each simulant equation of state, we ran simulations both without porosity
and basalt with porosity, in order to detect the effect of the porosity on the model. The results
of the simulations are discussed in this section.

Simulant Materials, Solid

We ran simulations using the equations of state for materials similar to the regolith surrogate
used in the experiment. For these initial simulations, we used only solid materials. This was in
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order to ensure the input file was working properly and giving reasonable results. We did not
compare these results to experimental data because the experimental data was taken from an
experiment that used a porous substance with a lower sound speed.

Basalt

For the first simulation, we used the SESAME equation of state for basalt. The reason basalt
was chosen was due to the nature of many regolith simulants, which are composed in part of
volcanic ash [8]. More than 90% of all volcanic rocks contain basalt, and many of the moon
rocks collected during the Apollo missions are composed of basalt [7].

Figure 12: Pressure at the end of the solid basalt simulation

Dry Sand

To accurately model the flyer plate experiment in a one-dimensional Roxane simulation, we
first need a choice of material to act as our lunar regolith simulant. The lunar regolith is com-
posed of approximately 60% pyroxenes, 30% plagioclase, and 10% brown glass and opaques
[1]. This mixture has an intrinsic density of 3.10 g/cm3 and different experimental procedures
have reduced its initial density to model the porous behavior of the lunar surface. This value for
initial density of the simulant is given at 1.80 g/cm3, which gives an initial porosity of 58.065%
[1].
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In the following simulation, the sample material in the Roxane simulation is dry sand (Sesame
Database #7100). Dry sand is composed of 70% silica, a naturally occurring molecule that is
materially similar to the basalt regolith material found on the lunar surface. The other 30%
of dry sand is composed of a variety of compounds (water, Carbon Dioxide), some of which
are not found on the lunar surface, which could lead to some disagreements between experi-
ment and simulation. However, the porosity that is exhibited by terrestrial dry sand and lunar
regolith material makes it a viable option for these simulations. In addition, the material char-
acteristics of shocked dry sand have been experimentally treated by Sandia National lab, with
the theoretical Hugoniots in good agreement with their experimental results. We first tested
the experimental setup of the flyer plate experiments without porosity to see the qualitative
characteristics of the shocked material before including the porosity model in our simulation.

Figure 13: Forward and backward propogations of shock wave
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Figure 14: Pressure at end of dry sand simulation, illustrating the transfer of energy from the
projectile to the simulant material through the shock wave

Sesame EOS Simulations, with Porosity

We implemented porosity in the simulant material after checking that the models for the solid
materials were well behaved. We initialized the porosity to be consistent with the density of
the lunar regolith. Each of our canditate materials had slighly different table densities, so we
varied Φ to give a porous density for each material that matched the regolith simulant.

Basalt

When attempting to run the simulation with porosity, we encountered various problems. How-
ever, before we encountered these issues, we were able to obtain data for 3 time steps. These
preliminary results are displayed in this section. The solid simulation at the same time step is
shown for comparison.
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Figure 15: Basalt, 100% solid, t=0.02240 µs

Figure 16: Basalt, 80% solid, t=0.02240 µs
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These figures highlight a possible problem with the material state initialization in the poros-
ity simulation. Note that when a porous material is used, the backing material initializes to a
higher pressure relative to the impactor than in the solid material simulation. We consulted
the code team about this possible issue, but we were unable to resolve the problem in the time
allotted.

FLAG Simulations

Roxane vs. FLAG

After we ran Roxane simulations on the solid materials, our next step was to include porosity.
The Menikoff-Kober model was an option in both Roxane and FLAG. However, the Roxane
implementation did not run to completion. The FLAG implementation was sufficient for testing
the Menikoff-Kober model.

Specifying the input deck

We set up the input decks for FLAG with four materials: aluminum (flyer), copper (buffer),
sample material (simulant), and polycarbonate (backing). We specified these materials in the
input deck with their Sesame IDs. We used an initial time step of 0.01 µs. We selected
the initial temperature to be room temperature (273 K), and we utilized the Sesame tables to
determine the initial density. We varied the initial porosity parameter (Φ0) of the simulant
material in our simulations. We set rs0 = ρ for each simulant material, and we set pc = 1.0.

Table 5: Material Properties and Initial Velocities

Material Sesame ID ρ V0
Aluminum 3720 2.7 1.682×10−1

Copper 3333 8.93 0
Basalt 7530 2.868 0

Dry Sand 7100 2.6 0
Polycarbonate 7740 1.196 0

Sample Material: Garnet

As a test of explicit porosity modeling through the Menikoff-Kober model versus implicit
porosity modeling through the equation of state, we ran the porosity model in FLAG with
two substances as the simulant: garnet and garnet sand. For the garnet simulation, we set the
porosity for the model. For the garnet sand simulation, we did not, because the associated
Sesame equation of state already accounts for this. Table 6 shows the Sesame IDs, densities,
and Φ0 value (for garnet).
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Table 6: Garnet Material Properities and Φ0

Material Sesame ID ρ Φ0
Garnet 7760 4.05 0.5926

Garnet Sand 7761 2.4 N/A

Solid Garnet, Garnet Sand Comparison

After running the hydrocode with both solid garnet (using Menikoff-Kober) and garnet sand
(using the EOS for porosity rather than Menikoff-Kober), we obtained different results for what
should have been the same material. In each simulation, we used the same geometry as was
used in the actual experiment, altering only the simulant material. Additionally, the impact
velocities used in each simulation were identical to one another and to the impact velocity of
the experiment.

Figure 17: Densities of Solid Garnet with Porosity and Garnet Sand after Pressure Adjustments

This figure illustrates that making these pressure adjustments does reduce the initial drop
in density of the solid garnet with porosity. However, the densities do not allign, as one would
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expect two identical materials to do. The shock times are different for solid garnet with porosity
and garnet sand. The garnet sand simulation had an earlier shock time than the solid garnet
with Menikoff-Kober porosity simulation. The shock arrival time differed by approximately
35-40 µs. Additionally, the peak densities for the two simulations were inconsistent. The
garnet sand simulation had a peak density about 2 g/cc higher than that of the simulation using
solid garnet with Menikoff-Kober porosity. Consequently, the Us value for the garnet sand
simulation, which has implicit porosity from the equation of state tables that is derived from
experiment, is higher than the Us value for the solid garnet with modeled porosity.

EOS problems

Initially, we selected basalt and dry sand as our simulant materials. Upon running simulations,
we discovered that we needed to provide specific internal energy instead of temperature for
each material. The goal of this was to ensure that either each material initialized with zero
pressure or, if that was not possible, to ensure that the regolith simulant and polycarbonate
initialized with the same pressure. This was to avoid spurious pressure waves on the mesh.

Dry Sand

The dry sand material alternated between two pressure values,−4.19098×10−2 and−6.61653×
10−2. We were unable to initalize the polycarbonate pressure to either of these two values.
After trying multiple positive and negative energy values, varying across multiple orders of
magnitude, we concluded that there was an error in the calculation of this value. Because we
were unable to initialize the specific internal energies in such a way as to avoid spurious pres-
sure waves in the backing material, we could not move forward with dry sand as our simulant
material.

Westerly Granite

Next, we tried using westerly granite, another igneous rock with density of 2.627. We experi-
enced the same issue with this material, with pressure limited regardless of energy. Again, we
concluded that there was an error.

Nevada Alluvium

Our next material of interest was Nevada alluvium, a kind of river silt with density 2.35. We
anticipated this material to be somewhat similar to the sand. However, we were again met with
the problem of being unable to change the initial pressure. Once again, we had found an error.
The following figures show the shock wave propagation at three different times using Nevada
alluvium as the simulant. The energy has been specified to −1.45783×10−5.
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Figure 18: Nevada alluvium, t = 150µs

Sample Material: Mica

Next, we tried mica. The density of mica is 2.7, which is similar to the densities of the other
materials we had tried. Because mica is a silicate mineral, we selected this material, expecting
some similarities between it and sand. With mica, we were able to designate an energy such
that the pressure initialized to zero, as desired. Thus, because we did not experience the same
problems with mica as we did with the other materials, we opted to use mica for our other
simulant material. The following images show velocity and density at the back of the mica.
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Figure 19: Mica: velocity over time

Figure 20: Mica: density over time
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Figure 21: Mica Simulation vs. Experimental Data

The shock speed through the mica was 4.5 km/s, while the shock speed through the simulant
(JSC-1A) from 5.536 km/s.

Sample Material: Basalt

We ran FLAG with porosity, using basalt as the simulant material. We used four different values
for Φ0. Using Ensight92, we found Up for each Φ0 value, which we then used to calculate Us.
The results are displayed in Table 7. Basalt was chosen as the primary material for modeling
the lunar simulant JSC-1A. The choice was motivated by the lunar regolith composition and
the composition of the simulant itself, which is a basaltic ash with a high glass content. While
basalt is not a well-defined material, meaning that any equation of state is an approximation
made to some ideal basaltic composition, the sesame file was well behaved in FLAG, and we
were able to equalize the pressures within the sample to avoid pressure wave propagation which
threatened to upset the simulation results.
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Table 7: Basalt Simulation Results

Φ0 Us (km/s) Up (km/s)
0.9 6.047 0.873
0.8 6.043 0.867
0.7 6.021 0.867

0.6276 6.028 0.867

We plotted density, pressure, and volume against time for the end of the basalt region.
Figure 22 displays these results.

Figure 22: Density, Pressure of Basalt

Comparison to Experimental Data

Lasers measure the particle velocity at three different points in the experimental assembly, one
where the flyer collides with the copper buffer plate, one at the buffer simulant barrier, and
another where the JSC-1A and PMMA meet at the back end of the simulant. We compared the
experimental data to a FLAG simulation and obtained the plot below.
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Figure 23: Basalt Simulation vs. Experimental Data

This figure is significant because it shows that when the equations of state are compatible
with the Menikoff-Kober model, the model gives accurate predictions of particle velocity for
shock waves propagating through porous materials. The plot above shows an idealized scheme
where the shock speeds are virtually identical. However, we estimate from the experimen-
tal data that the shock speed through JSC-1A is approximately 5.536 km/s, while our model
predicted a shock speed of 4.608 km/s. This represents a non-trivial error in shock speed but
only results in a 16 microsecond time lag between the experiment’s shock front and that of
the FLAG simulation. This discrepancy could be partially explained by the missing pressure
term in the hydrocode calculations that will be discussed in the conclusions. However, we have
demonstrated the model’s performance on particle velocity predictions.

Conclusions
Through this study, we have verified that the Menikoff-Kober porosity crush-out model can be
effective for predicting shock properties in solid material hydrocodes. The verification of this
model was predicated on FLAG’s implementation of the Menikoff-Kober model being compat-
ible with the sesame tabular equations of state. However, this was not a foregone conclusion,
as we experienced multiple problems with the porosity models agreeing with these tabular
equations of state.
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Roxane

In Roxane, we were unable to run a simulation with the Menikoff-Kober model working along-
side the tabular equations of state in the sesame database. We have multiple theories as to why
these two models are not currently compatible. The first has to do with generating NaNs within
the solver, which could be a result of division by zero. However, we feel it is more likely like
that specific volume or specific energy, two state variables that are taken directly from the tables
in the sesame database are being set to “NaN” within the solver and are then being advected
through the rest of the hydrocode.

FLAG

In FLAG, this problem was still present, but was more subtle as we were able to run the
Menikoff-Kober model to simulate some porous materials. While all materials were able to
initialize in FLAG, for some materials, the initialization pressures could not be adjusted to
eliminate pressure waves, of the kind shown in the figure below.

Figure 24: Abnormal Pressure Waves in FLAG

These waves have small amplitudes compared to the overall material density, however they
were extremely problematic for our comparisons to experimental data, as they originate from
the material interfaces, which is exactly where our data is taken from. While we were able
to equalize the pressure discontinuity and eliminate these waves for porous basalt, many other
materials exhibited a range of initialization pressures, independent of their specific internal
energy, which made eliminating these pressure waves impossible. This represents another
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instance of endemic problems with the Menikoff-Kober model’s compatibility with the tabular
equations of state in the database.

Future Work
The future work needed to address the effectiveness of the Menikoff-Kober model centers on
both theoretical work and code development. On the theoretical front, we are worried that sim-
plifications in the thermodynamics of the Menikoff-Kober model could result in errors when
compared to experimental data. Specifically, the model ignores V dependence in φ in parts
of its derivation, and it would be worthwhile to include the extra term that comes from not
neglecting this dependence to investigate possibly divergent trends in model behavior.

The code development aspect of future work needs to be geared at making both the imple-
mentation in both models (FLAG and Roxane) compatible with the tabular equations of state
for solid materials in the database. This issue is considerably more pressing than the theoretical
work, as without simulations, we have no indication on whether or not the model is useful. Our
basalt simulation is a good first proof of concept, but more robust tests are needed to verify the
Menikoff-Kober more completely.

Theoretical Problems With Menikoff-Kober Implementation

The Menikoff-Kober model operates in a thermodynamicly consistent manner by adding a
potential to the Helmholtz free energy in the following manner:

Ψ(V,T,φ) = Ψs(V,T )+B(φ)

where Φ is the full equation for Helmholtz free energy, Φs is the free energy equation for
the purely solid version of the material, and B(φ) is a potential associated with the crushing
out behavior of a porous material. The paper by Menikoff and Kober is aimed purely at the
derivation of this potential function B(φ), but in hydrocode development, we must be aware
of state variable values so that we can advect them through the code. To that end, we use the
following thermodynamic relation to find the pressure from the newly defined Helmholtz free
energy:

P = −∂Ψ

∂V
|T

P = − ∂

∂V
[Ψs(V,T )+B(φ)]|T

Both Φs and B(φ) are functions of V , so we must not ignore any term in this differential.
Turning the crank, we obtain:

P = −∂Ψs

∂Vs

∂Vs

∂V
− ∂B

∂φ

∂φ

∂V
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From our definition of the bulk porosity as φ = Vs
V , and remembering our thermodynamic

relation for pressure, we obtain the following three relations:

∂Vs

∂V
= φ

∂φ

∂V
=
−Vs

V 2

∂Ψs

∂Vs
= −Ps

Substituting these relations into the original differential equation for pressure of the porous
material, we now have an equation with only one differential term:

P = Psφ +
∂B
∂φ

Vs

V 2

This gives us a way to determine pressure in a porous material that is in keeping with the
thermodynamic consistency of the Menikoff-Kober model. However, the second term in the
above equation is not found in the current implementations of FLAG or Roxane, which we
believe may be responsible for some of the problems with calculations of shock speed, particle
velocity, and the initialization pressure waves discussed above. We think that this term cannot
be tacitly assumed to be trivial without possibly compromising the thermodynamic consistency
of any hydrocode running a Menikoff-Kober porosity model.
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Abstract

There is an acute need in recent years to restructure the way scientific codes are writ-
ten. Traditional scientific codes are written in a linear, assembly-line fashion where the
physical models, algorithms, data structures, parallelism, visualization etc. are disparate
building blocks. Challenging this approach now is the advent of multiple new architectures
requiring code specialization. In view of this, the promise of a domain-specific language
(DSL) for computational physics applications is particularly appealing. A DSL provides
a unified framework in which code development from the physical model to visualization
is fully integrated and in which the data structures involved are specific to the domain.
Finally, scientists and users need only to focus on the actual modeling and algorithm de-
velopment while the programming details are handled behind the scenes.

The main aim of the present work is to critically exercise and analyze the capabilities
of Scout, a promising computational physics DSL developed at Los Alamos National Lab-
oratory (LANL). In this report, we describe the Scout programming language and our im-
plementation of various computational methods in Scout such as the staggered-grid hydro
(SGH) method, the finite element method (FEM), the finite difference (FD) method as well
as a linear algebra framework. Our results indicate that Scout provides a robust framework
for implementing computational physics algorithms which was verified by close agree-
ment with results from traditional general purpose languages.

keywords – Computational Physics, Domain-Specific Language, Staggered-Grid Hydro,
Finite Elements, Linear Algebra, High Performance Computing
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Introduction
Many computational physicists, scientists and engineers today face the need to swiftly and eas-
ily design parallel, large-scale and architecture-independent code specific to their respective
domain. Unfortunately, their efforts are often plagued by the following issues.

First, many scientists work with large legacy codes that were developed by host institutions
over the course of decades. Very often, these codes are written in formats that were not orig-
inally designed to be parallelized. The task of recoding a large code base into a more modern
format is a daunting one, especially if the code must be parallel.

Second, most scientific code is written in fairly generic languages that are also used in
other domains such as sales, management, etc. This means that scientists need to first develop
a broad, domain-specific infrastructure before being able to write scientific code. This infras-
tructure development includes constructing relevant data types, specific methods, and linking
with scientific libraries. This “pre-coding” stage can be as taxing, if not more taxing, than
coding the actual scientific algorithms.

Third, even if a domain-specific infrastructure were available, it may be architecture-dependent,
and changes in machine architecture or hardware updates result in the need to recode or even
reengineer the original code.

All of the issues listed above put a tremendous strain on the scientist to catalog and update
code rather than spend the time to improve upon the science and physics behind the code. It
would thus be of great value if the responsibility of managing the hardware, compiler issues,
and parallelism were taken care of independently of the science and algorithm design.

Need for DSLs

In order to address these concerns, effort has been put into developing inherently parallel,
architecture-independent domain-specific languages (DSLs). While clearly it is optimal to
have the triad of parallelism, architecture-independence, and domain-specificity in the same
structure, there still is a large amount of freedom in the actual software design of such DSLs.
We now briefly mention some DSLs with a short summary of each:

• Julia: Julia is a high-level, high-performance dynamic programming language for tech-
nical computing. Julia has a sophisticated compiler and distributed parallel execution
with an extensive mathematical function library [1].

• Liszt: Liszt is a domain-specific language for constructing mesh-based PDE solvers. It
is based on a topological classification of mesh elements (vertices, edges, faces, etc.).
Liszt exploits the data parallelism in the mesh data type composed of mesh elements and
targets three programming models: MPI, CUDA and pthreads [5].

• Halide: Halide focuses on the optimization of the image processing pipeline. It is ap-
plicable across different hardware architectures including multicores (with SIMD) and
heterogeneous CPU+GPU execution [10].

While one may argue that instead of a DSL, one can simply take a general purpose language
and combine it with an application specific API that provides a DSL-like functionality, there
are a number of advantages of a dedicated DSL for computational physics.
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Figure 1: Comparison of traditional vs. Scout based scientific code generation

First, such a DSL offers appropriate notation specific to the computational physics domain.
Second, domain-specific abstractions can be optimized by the compiler in some cases. A
compiler for a general-purpose language would not recognize domain-specific opportunities
for optimization. A DSL compiler can incorporate programming model runtime systems for
parallelism and other runtime libraries to support capabilities such as visualization and domain-
specific functionality. Finally, a DSL compiler can collect domain-specific information that
makes it possible to debug domain-specific data structures such as the mesh.

The Scout DSL

Our original aim in the Computational Physics Student Summer Workshop was to explore the
use of the DSL Scout. Scout is an architecture-independent, parallel, mesh-based DSL made
for computational physics and science applications.

Scout is not a stand-alone DSL but rather a conservative extension to the C language. It is
mesh-based in the sense that meshes are the fundamental data structures used in the language.
Scout strikes a balance between existing implementation infrastructures and a stand-alone lan-
guage and/or a general programming language. Scout is built on the Clang/LLVM compiler
infrastructure and uses the Legion programming model to incorporate parallelism to allow for
both data and task parallelism. We will delve deeper into the specific details of Scout constructs
and working in the following section.

Specific Goals of the Project

Our main goals were to exercise the use of Scout as a computational physics DSL by imple-
menting a variety of computational methods in it. These methods include the staggered-grid
hydro (SGH) method, the finite element method (FEM) and the finite difference (FD) method
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for the Poisson problem. These methods are algorithmically distinct and thus offer insight into
the current capabilities as well as limitations of Scout from different perspectives. Midway
through the project, we also found the need to develop a Scout-based linear algebra solver
which we implemented on a few examples.

Another key goal of the summer project was to identify and address the implementation
issues with the current version of Scout. While doing so, we found it necessary to regularly
report the technical difficulties we experienced to the development team. The outcome of
these interactions was very productive; not only did we help the development team understand
the needs and expectations of active Scout users from a computational science perspective,
we were also able submit timely bug reports and instances of compiler crashes that aided the
overall resolution of deeper problems in the fundamental constructs within Scout. Furthermore,
we were able to provide an active list of future considerations that would enhance the usability
of Scout.

Paper Organization

The rest of this report is organized as follows. After this preliminary introduction, we discuss
the specifics of Scout in detail in the second section. We then discuss our in-Scout imple-
mentation of various computational methods in the subsequent sections. In the following two
sections, we provide an introduction to the staggered-grid hydro method (SGH) and go into the
details of the Scout implementation of SGH in two spatial dimensions along with a remapping
procedure. Next, we provide a self-contained summary of the finite element method (FEM)
and its implementation in Scout for the one-dimensional Poisson problem. We then discuss the
need for a Scout-based, on-mesh linear algebra solver and provide details of our Jacobi iterative
solver for the one- and two-dimensional Poisson problem discretized using finite differences.
Finally, we provide a brief summary of our work as well as current limitations of Scout and
future extensions to Scout which would render it a more versatile computational physics DSL
and close with references.

Scout Overview and Functionality
In this section, we will provide a broad overview of the DSL Scout. We will focus on the
fundamental constructs of Scout and explain the mechanisms that allow for Scout’s parallelism
and architecture-independence. We provide a systematic overview of the basic features of
Scout and, where appropriate, code segments with explanations which allow one to understand
how the constructs are used in practice.

Salient Features of Scout

Scout is an open source [9], C-based language and consists of conservative extensions to C,
including additional fundamental data types and language constructs. Scout consists of the
following fundamental aspects:

• Mesh Data Types

• Parallelism (Data and Task)
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• Data Visualization and Plotting

• Supports Domain-Specific Expression of Algorithms

• Architecture-Independence

• Debugging Support

Mesh Data Types

As was previously mentioned, Scout uses meshes as the fundamental data type in computa-
tions. Meshes are defined by topological entities (vertices, edges, faces, and cells) that hold
independent data called fields. The mesh can be defined by any subset of these entities; thus, a
mesh can contain, for example, cell fields and face fields while another mesh can contain vertex
fields and edge fields. Algorithms can be written that access and/or modify the data contained
in the fields through loops that are inherently parallel. By default, one specifies the size and
dimension of a mesh in terms of the number of cells in each dimension. Figure 2 shows an
example of how to declare a mesh and corresponding mesh properties.

Figure 2: Code for Mesh and Field Declaration

The type AMesh is a uniform mesh which allows fields to be stored on cells and vertices.
Currently, the types of the fields can only be numeric data types; Scout does not allow C-style
pointers to avoid overly complicated data layout decisions and to promote parallelism [9]. The
mesh M is a two-dimensional mesh of type AMesh with 4 cells in the x-direction and 5 cells in
the y-direction. Scout currently supports uniform meshes from one- to three-dimensions.

Parallelism (Data and Task)

Scout provides for both data and task parallelism. Data parallelism is facilitated by means of the
forall loop construct which processes a set of locations (cells, vertices, etc.) independent of
one another. The programmer cannot make any assumptions regarding the order of execution
across the different locations, e.g. a cell that “comes later” in the mesh may be accessed first.
An example of a forall construct is shown in Figure 3 using the mesh AMesh defined in
Figure 2.
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Figure 3: Forall Loop on a Mesh

Both cell fields are initialized for every cell in the mesh M. The cell c is referred to as
the ‘active cell’. The forall loop is contructed to run on each cell independetly so each
initialization can be run in parallel with one another. Within this code segment, the built-in
function positionx() is also called which returns the global index of the x-position of the
active cell. In this case, since there are five cells in the x-direction on the mesh M, the function
will return 0-4 depending on which cell c refers to.

Within a forall loop, it is often necessary to access fields of neighboring topological
entities (cells, vertices, etc.). Scout facilitates this access through a number of methods. Figure
4 shows a few of these means of accessing fields from surrounding entities.

Figure 4: Field Access Within Forall Construct

The nested forall loop is used to access fields from dissimilar topological entities, e.g.
cells from a vertex or edges from a cell. The nested forall accesses all the relevant cells,
vertices, etc. for the called entity. In the example, all cells on the vertex are called, and since
the mesh is two-dimensional, the nested forall loop accesses the surrounding four cells
corresponding to a particular vertex. If it is desired to access a field of a neighboring vertex
from a cell, the built-in function vfield() can be called. The function takes a field and a
number of indices to indicate what from direction to access the vertex field. The syntax is
similar to the built-in function cshift().
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The cshift() function is used to access fields from similar topological entities, e.g. cells
from a cell or vertices from a vertex. The cshift() function takes a few parameters: the field
to be accessed and a number of indices, equal in number to the dimension of the mesh being
operated on. In the example, the cshift() call accesses the ‘d’ field from the vertex one
index to the north of the considered vertex. No movement is taken in the x-direction since the
second parameter passed, the x-index, is 0.

In order to facilitate parallelism within these forall constructs, some restrictions must
be made. First, within any single forall loop, the mesh fields must be either read-only or
write-only, but not both. If they were both readable and writeable, and neighboring fields
were accessed, the end result would depend on the order of execution. Second, the constructs
for accessing neighboring fields (nested forall loops, cshift(), vfield()) are always
read-only.

We now address task parallelism. Tasks in Scout are represented by C-style function dec-
larations prefixed by the keyword task. Scout demands task functions be side-effect free
in that they must return the same result when provided with the same inputs, cannot modify
or depend on hidden and/or global state, cannot contain statically declared variables, and can-
not access input/output devices/streams [9]. Also, any C-language types used as parameters to
tasks must be passed by value. With these constraints, Scout allows for task parallelism.

In addition, the Scout compiler runtime library uses the Legion programming model to
create portable parallel and distributed programs. Legion is an open-source, task-based data-
centric programming model and runtime system that has a variety of advantages that make it
appropriate for use within Scout. It uses data dependencies to schedule tasks asynchronously
and minimize data copying [9].

Data Visualization

Data visualization in Scout is done using a structure called the renderall construct. The
renderall construct allows for an in-situ visualization of mesh fields which works in a way
that is analagous to the forall construct. Also, the renderall construct requires a value
(the “color” value) which represents a four-component floating point value (three for the RGB
red, green, blue color space and the fourth representing the opacity/transparency value). Figure
5 shows how to visualize the data initialized in the previous code segment.

Figure 5: Code for Visualization in Scout
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To render the data to an image, first the image is declared: win, which is 512×512 pixels.
The norm value is the normalized value, representing what fraction of the maximum value
the data represents. In the case of the code segment, the field b will vary from 0− 4, so the
maximum value is 4. To set the color, the keyword color is used and is initialized using the
built-in function hsv(). The first argument will vary between 0 and 240, setting the color
between red and blue, respectively. In this way, the data can be displayed as the code is run so
that an accurate visualization can be achieved.

Domain Specific Algorithms

The fundamental mesh data types in Scout allow for domain specific algorithms. In particular,
one can cast computational methods such as finite differences in the language of meshes. A
simple 1D problem of the form u′ = λu in the interval [0,1] provides a good example. Here,
one would define a uniform 1D mesh that contains N cells. Each cell would contain a value
corresponding to the function value at that particular cell location. If one uses a forward Euler
scheme, one can then arrive at a difference equation of the form un+1 = (1+hλ )un where h is
the step size. One then applies this scheme on the mesh by updating each cell field according
to the difference equation until convergence. Thus, Scout allows for a domain-specific way of
writing computational physics algorithms

In addition, Scout has the capability to support built-in functions specific to meshes and
computational physics. For example, the remapping of a mesh can be implemented as a built-
in function so that the user need not to implement it.

Architecture-Independence

By building on the LLVM compiler infrastructure, Scout achieves architecture-independence
since the LLVM-IR is targeted towards several architectures. In addition, Scout’s use of the
run-time system Legion allows it to be more architecture-independent as well since Legion
tasks and memory hierarchy can be mapped onto different architectures in optimal ways.

Debugging Support

Scout is built on top of the Clang and LLVM components, so Scout is able to leverage the
LLDB infrastructure to implement a robust debugger. LLDB is a debugger similar to GDB
but for Clang/LLVM. Scout extensions are implemented with metadata that is used later for
debugging. This metadata enables a domain-aware debugger. LLDB uses Clang as a library,
so Scout constructs are available there. For example, forall constructs and renderall
constructs can be used in the debugger.
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SGH with Remap Overview
The staggered-grid hydro (SGH) method is a computational physics algorithm commonly used
at LANL. It is most frequently used to model high velocity material deformation, but it can
be applied to a variety of problems. The staggered-grid hydro method gets its name from the
nature of the algorithm. Fields are stored on both cells and vertices; however, each vertex also
has an associated staggered cell which is centered at the respective vertex and is bound by the
centers of the surrounding cells. Figure 6 shows an example of a staggered cell in blue.

The staggered cell is used in each time step and is a fundamental aspect of the algorithm.
The ‘hydro’ in ‘staggered-grid hydro’ refers to the high velocity material deformation problems
for which SGH was made. At high strain rates such as in hypervelocity deformation, solid
materials behave more like liquids than solids, so historically ‘hydro’ was associated with
these codes [7].

Figure 6: Staggered Cell on a 2D Mesh

One of the problems associated with staggered-grid hydro when run in pure Lagrange mode
is that of mesh tangling. As the staggered-grid method progesses, vertices can move in such
a way that causes cells to overlap. If this occurs, physical parameters can become irregular
and inaccurate, and as the method continues the problem only gets worse [8]. One way to
address this issue is to remap parameters from the deformed mesh to a more regular mesh, thus
spacing the vertices more evenly and avoiding the problem of overlapping and tangling. The
remap process can be computationally expensive; however, it avoids the issue of mesh tangling.
Commonly, the remap algorithm is only implemented periodically or just to highly deformed
sections of the mesh.
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Reasons for Choosing SGH with Remap

The staggered-grid hydro method was chosen to be implemented in the DSL Scout for a few
reasons. First, SGH can be easily implemented in parallel; the update for individual cells
does not depend on the update of other cells, and likewise for vertices. Second, fields are
stored on both cells and vertices, which Scout supports. However, it is necessary to test the
communication between these two structures. The update for cell properties depends on the
surrounding vertices, and the update for vertex properties depends on the surrounding cells.
Since Scout easily facilitates this access, it is a good method to demonstrate how the DSL
can simplify implementations. Lastly, in running the SGH algorithm, mesh tangling should be
avoided, so a remap algorithm was implemented as well. While the Lagrange implementation
tests the communication primarily from cell to vertex or vertex to cell, the remap algorithm
tests communication primarily from cell to cell, or vertex to vertex. The promise of parallelism
and the storing of fields on multiple mesh types were the underlying motivations for choosing
the non-trivial SGH with remap implementation.

Physics of Staggered-Grid Algorithm

As mentioned earlier, fields are stored on both cells and vertices in the SGH method. The cells
hold the physical fields of density, pressure, and specific internal energy, while the vertices hold
the kinematic fields of position and velocity. The SGH method, like many other computational
physics algorithms, starts with conservation equations for mass, momentum, and energy. These
are all viewed here from the Lagrangian perspective.

The conservation equation for mass is given by,

D
Dt

∫
V

ρdV = 0 (1)

where ρ is the density of the material and D
Dt is the material time derivative. This condition is

upheld by asserting that the mass in each cell is held constant with each Lagrange time step.
Therefore, the time derivative is inherently zero and the condition is satisfied.

Next, the conservation equation for momentum is given by,

D
Dt

∫
V

ρudV =
∫

S
pn̂dS (2)

where ρ is the density of the material, u is the velocity, p is the pressure acting on the surface,
and n̂ is the unit normal vector from the external pressure. This condition is applied to each
staggered cell since velocity fields are associated with the vertices. The net force due to surface
pressure is calculated on each staggered cell, and the net force induces a change in momentum
according to the above equation. The time derivative is handled using small time steps and
using a forward Euler method.

Lastly, the conservation equation for energy is given by,

D
Dt

∫
V

ρ(
1
2

u ·u+ e)dV =
∫

S
p(u · n̂)dS (3)

where ρ is the density of the material, u is the velocity, e is the specific internal energy, p is the
external pressure, and n̂ is the unit normal vector from the pressure. In compatible hydro codes,
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the energy equation is applied to the internal energy, and the kinetic energy is handled implictly
by the update to vertex velocities [8]. The equation is applied to each cell and considers the
work done on/by the surrounding staggered cells to update the specific internal energy on each
cell.

The SGH method is carried out in discrete time steps. With each time step, a sequence of
calculations is performed. First, to avoid unwanted oscillations, the artificial viscosity is calcu-
lated for each cell which contributes to the cell pressure. The artificial viscosity is calculated
from spatial gradients in the velocity fields and causes additional energy transfer from kinetic
energy to internal energy. Next, the total force is calculated on the staggered cell associated
with each vertex from the surrounding cells, and the change in staggered cell momentum is
calculated according to the conservation of momentum equation above. From the change in
momentum, the new velocity of the vertices can be calculated, which in turn can be used to
calculate the new positions of the vertices.

From this point, all that must be calculated is the new cell quantities. The cell density is
calculated according to the conservation of mass; mass must be held constant within each cell.
In compatible hydro, the energy is split: internal energy on the cell, and kinetic energy on the
vertices. The work done by the cell on the vertices is used to evolve the specific internal energy
on the cell. Finally, the cell pressure is updated by applying an equation of state. In the SGH
example problems considered, the equation of state is given by,

p = γρe (4)

where p is the pressure, γ is the adiabatic index (5
3 for an ideal gas), ρ is the density, and e is

the specific internal energy. After all the cell and vertex fields are updated, the procedure for
the next time step can be executed, unless a remap of the mesh is executed first.

Physics of Remap Algorithm

The remap algorithm serves to map the fields from a deformed mesh onto a new, uniform
mesh. Figure 7 shows the remap of a deformed mesh to a regular mesh. The remap method
is implemented by applying the conservation of the same three quantities as in the SGH im-
plementation, namely, mass, momentum, and energy. It must be emphasized that while the
conserved quantities are extensive properties, the fields associated with the cells and vertices
are intensive properties. So, the intensive properties must be converted to extensive properties
in order to perform the remap.

Figure 7: Remap of Deformed Mesh
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The extensive properties can be calculated by simply multiplying the corresponding inten-
sive property either by the area or the mass of the cell or staggered cell. After the extensive
properties have been calculated, they must be mapped from the deformed cell to the regular
cell. This is done by considering the area of overlap between a deformed cell and the regu-
lar cell and mapping that fraction of the total deformed area of the extensive properties to the
regular cell. Figure 8 shows the remapping process for a particular cell.

Figure 8: Remap of Deformed Mesh

The mass and energy are mapped from deformed cell to regular cell while the momentum is
mapped from deformed staggered cell to regular staggered cell. After the extensive properties
are calculated, the intensive properties can be calculated by dividing by the mass or area of
the cell. Lastly, the pressure can be recalculated using the same equation of state in the SGH
method.

The remap procedure can be executed after every Lagrange step or it can be performed
periodically. Similarly, the remap can potentially be applied to only highly deformed sections
of the mesh. Unlike the Lagrange method, the remap step has no associated time step with it;
the update is purely spatial. The remap can be applied as liberally or conservatively as the user
wishes; however, the remap should be applied so that tangling does not occur for the time step
and the grid size considered. If tangling can be avoided, the SGH method can be applied for as
long as necessary to produce the desired results.

SGH Implementation in Scout
The staggered-grid hydro algorithm was implemented in Scout for two test cases: a 1D piston
problem and a 1D Sod tube problem on a 2D mesh. The problems are shown in Figure 9.
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Figure 9: Considered Problems, a) 1D Piston Problem, b) 1D Sod Problem on 2D Mesh

The 1D piston problem was considered simply to become familiar with the SGH with
remap algorithm and to become comfortable coding in Scout. The main focus is the Sod
problem on the 2D mesh. A traditional implementation was provided for the Sod problem as a
reference for the expected results from the Scout implementation. Details on the problem, the
implementation and the results for the 2D problem are discussed in this section.

1D Sod Problem on a 2D Mesh

The Sod problem starts with a gas at two different states separated by a thin membrane in a fixed
domain. The gas on the left is at a high pressure and high density, whereas the gas on the left is
at a low pressure and low density. Dirichlet boundary conditions are applied to the positions at
both the x- and y-boundaries that allow for horizontal sliding. At time t = 0, the membrane is
removed, and the gases at the two states are allowed to interact. A shock wave propagates from
the center to the right boundary of the domain, followed by an equilibration to a final state.
Since there is symmetry in the vertical direction, it is expected that the fields should only vary
in the horizontal direction, making the results only one-dimensional. However, since the mesh
is two-dimensional, the cells must interact with the four surrounding vertices, and the vertices
must interact with the four surrounding cells. The code in Scout was verified by comparing the
generated results to the results of a traditional implementation at the same time step and grid
size.

Implementation of Lagrange Step

The Lagrange step algorithm is very similar between the Scout implementation and the tradi-
tional implementation. Density, pressure and specific internal energy are stored on the cells,
while position and velocity are stored on the vertices. In addition, several other parameters
are stored on the cells and vertices to aid with calculations, such as cell artificial viscosity, cell
area, force on staggered cells, and staggered cell mass. Figure 10 shows the mesh declaration
used in the SGH implementation in Scout.
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function

Figure 10: SGH Mesh Declaration

There exist two of each field for both cells and vertices: an old variable and a new vari-
able. This is necessitated by the underlying parallelism and the restrictions on fields within the
forall loops. Since fields cannot be both accessed and modified within the same forall
construct and since some field updates, such as velocity, depend on previous field values, it is
necessary to declare two of each variable. The presence of two fields is also beneficial in the
remap method and in the half Lagrange step.

Using the SGH algorithm, a sequence of calculations are performed to update the fields in
the following order:

• The artifical viscosity for each cell

• The total force on each staggered cell

• The new velocity for each vertex

• The new position for each vertex

• The new density for each cell

• The new specific internal energy for each cell

• The new pressure for each cell
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To improve accuracy, a half time step is performed to calculate a new pressure, then this pres-
sure is applied for the whole Lagrange time step. This is done in both implementations to
maintain consistency.

In Scout, the implementation follows a unique pattern. First, two fields are declared for
every physical parameter on each cell and vertex, as shown previously in Figure 10. Then,
forall loops are used for three general purposes: initialization of original parameters, calcu-
lation of new fields, and reassignment or update from new fields to old fields. The initialization
is straightforward and similar to a traditional implementation. The calculation of new fields is
unique to Scout; an example is provided for such a calculation in Figure 11.

Figure 11: Velocity Calculation Method Within Lagrange Step

The velocity on each vertex is calculated by first finding the acceleration, equal to the force
divided by the mass, and multiplying it by the time step. The acceleration is assumed to be
constant within the time step, so by applying the fundamental kinematic equation, the new ve-
locity can be obtained. By storing two fields on the mesh, the velocity can be accessed through
the ‘old’ variable, and they can be initialized onto the ‘new’ variable. In Figure 11, the fields
v u old and v v old are accessed, and the fields v u new and v v new are initialized. This
does not violate the restrictions placed on the forall loops since the fields are unique.

Once all the calculations are performed, it is necessary to reassign the ‘new’ variables back
to the ‘old’ ones. Figure 12 shows an example of an update method in the Scout implementa-
tion.
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Figure 12: Update on All Mesh Fields

With the update method, the roles are reversed: the fields are accessed through the ‘new’
variables, and the fields are assigned to the ‘old’ variables. This way, the calculated fields
can be stored back onto the ‘old’ fields, and the ‘new’ fields can take new values from the
calculation for the next time step.

Aside from how the code was written, the traditional implementation and the Scout im-
plementation are very similar. However, there are slight differences between the two imple-
mentations in a few aspects of the Lagrange step. First, the calculation of the staggered mass,
which is necessary for the velocity update, is different between the two implementations. In the
traditional implementation, the mesh is always assumed to be regular, so the staggered mass
takes 1

4 of the mass from each of the surrounding cells. The implementation in Scout calcu-
lates the area of intersection between the staggered cell and each regular cell, calculates the
fraction of the total cell area that intersection represented, and maps that fraction of the mass
to the staggered cell. The Scout implementation is more accurate, but in the case of low mesh
deformation, the approximation used in the traditional implementation is sufficiently accurate.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 130



Implementation Of Computational Physics Methods In The Domain-Specific Language Scout

The other difference between the Scout and traditional implementations stems from the calcu-
lation of force from each surrounding cell. The traditional code assumes a regular mesh when
calculating force, whereas the Scout code does not make such an assumption and calculates the
force for any non-tangled, deformed mesh. Again, the Scout implementation is more accurate,
but in the case of low mesh deformation, the discrepancy is not large.

Implementation of Remap Step

Two implementations for the remap step were performed. For both, the remap is executed
after every full Lagrange step to ensure tangling did not occur. One implementation in the
traditional code uses a sampling of points to determine the overlapping area fraction which is
then applied to the extensive quantities. The Scout implementation on the other hand applies
the Sutherland-Hodgman algorithm [6] to find a sequence of points that defines the intersecting
polygon vertices. From the points, the overlapping area is calculated and compared to the
deformed cell area to find the overlap fraction. Likewise, this fraction is applied to the extensive
quantities to map from the old mesh to the new mesh.

The Sutherland-Hodgman method is exact, while the sampling is approximate. However,
the sampling is easily extended to three dimensions. With enough sampling points, they both
should produce similar, accurate results. In both implementations, the momentum of the stag-
gered cells is first mapped to the deformed cells, then back to the regular staggered cells.
This was done in the Scout implementation due to considerations with the deformed stag-
gered cells. The Sutherland-Hodgman algorithm must be modified to handle cells which are
concave polygons, which in turn may produce multiple areas of intersection. Mapping from
deformed staggered cells to actual cells reduces the risk of inaccurate intersection areas through
the Sutherland-Hodgman method. It was also chosen to maintain consistency between the two
codes to produce more consistent results.

Once the extensive properties are mapped from the deformed mesh to the regular mesh,
the intensive properties of the regular mesh can be determined. Density, velocity, and specific
internal energy are all determined from the extensive properties mass, momentum, and energy,
respectively. The cell pressure is then determined using the new density and energy fields and
applying the equation of state. The implementation in Scout for the remap step has the same
application of the forall constructs with calculation and updates using the ‘old’ and ‘new’
fields.

Results of Sod Problem

The results of the two SGH codes for the Sod problem are shown in Figures 13, 14, 15, and
16. The plots shown were generated after 10 time steps with dt = 0.001 for a grid size of
100 cells in the x-direction, and 100 cells in the y-direction. However, since the problem is
one-dimensional, the fields vary only in the horizontal direction.
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Figure 13: Density Plot for Traditional and Scout codes on Sod Problem

Figure 14: Pressure Plot for Traditional and Scout codes on Sod Problem
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Figure 15: Energy Plot for Traditional and Scout codes on Sod Problem

Figure 16: Velocity Plot for Traditional and Scout codes on Sod Problem

The density and pressure plots show the two initial states at the right and left ends of the
plot, with a gradual step between them. The energy plot shows a shock wave propogating from
left to right with a high energy peak and a low energy peak. The velocity curve is the least
physical, but after ten time steps, there is a curve which has a maximum at the wave front.

These results are what we expect from this shock problem. The results for the two imple-
mentations are similar, but there are discrepancies which are most clearly seen in the energy
and velocity plots. The discrepancy between the results of the two codes can be attributed to
the differences in implementation. The different remap methods cause the velocity to differ
noticeably between the two codes, and the curvature of the energy curve along with the scale
of the plot exacerbate the discrepancy for the energy plot. However, the two codes produce
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reasonably consistent results. These plots demonstrate that the implementation in Scout is in-
deed accurate, and that the implementation was ultimately successful. Scout is fully capable of
running a 2D SGH code.

Figure 17: Visualizations for Density after a) 1, b) 50, and c) 100 time steps

In addition to the plots, visualizations were generated in Scout, shown in Figures 17 and
18. Figure 17 shows the density of the cells at a few points in time. Red cells represent a high
density, and blue cells represent a low density. The change in density propogates through the
domain as time progresses, eventually leading to a homogenization of the state of the gas.

Figure 18: Visualizations for Velocity after a)1, b) 50, and c) 100 time steps

Figure 18 shows the velocity of the vertices, displayed as points in the domain. The red
points represent high velocity vertices, and the blue points represent low velocity vertices. The
problem begins in a stationary state, so all the vertices are blue. As time progresses, the red
velocity peak follows the wave front, and has a distribution similar to that seen in the velocity
plot in Figure 16. Between the later two visualizations, it is observed that the area of non-
zero velocity extends further into the high pressure region as time progesses, implying a higher
degree of mixing.

There are some important features to point out in addition to the trends observed in the
visualizations. First, there appears to be multi-dimensional variation in the density and ve-
locity fields, most noticably in the velocity visualizations. The velocity peak is further along
toward the middle of the domain than at the centers. This is not expected since the problem is
one-dimensional in nature. One possibility for this phenomenon is that the application of the
boundary conditions is faulty, or that the half-staggered cells on the boundaries are not being
handled properly. However, the general shape and behavior of the visualization is consistent
with what is expected. In addition to this, it is important to point out the static cells and vertices
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on the boundary of the domain. There were problems encountered with the exterior vertices,
so ghost cells were implemented around the domain whose cells were initialized, but never
updated. Therefore, each visualization has an extra layer of points or cells on each side of the
domain to handle the problems encountered with the exterior vertices.
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FEM Implementation in Scout
We now describe the implementation of the 1D finite element method in Scout. As a prelimi-
nary treatment, we first give a general overview of the finite element method.

Historical Background of FEM

The finite element method (FEM) was historically developed for solving problems arising in
civil engineering in the 1950’s with the pioneering work of Boris Galerkin. The method was
successful for a variety of reasons. First, the accuracy of the method was quite high, especially
for linear elliptic problems. Second, the construction of the basis functions used in the method
was quite inexpensive and a few polynomials up to degree 2 or 3 were sufficient for the method
to deliver very accurate results. Finally, for a large class of problems, the method was very
stable to perturbations.

The method was soon found applicable to a wider set of applications including fluid dy-
namics, electromagnetism and more recently, computer graphics. At the same time, a number
of advances on the theoretical side of the method gave rise to adaptive FEM techniques which
include the h, p and the hp adaptive FEM methods [4]. Changing the standard FEM formu-
lation to a non-symmetric setting gave rise to Petrov-Galerkin methods. Moreover, the use of
discontinuous functions for the approximation scheme resulted in various FEM-like methods
including the discontinous Galerkin (DG), hybrid discontinous Galerkin (HDG) and disconti-
nous Petrov-Galerkin (DPG) methods [3], [2], [11].

The increase in numerical methods fathered by the original FEM also created a niche for
large, fast, parallel linear solvers since the FEM typically results in a large, sparse matrix that
needs to be inverted. Various methodologies that try to use the accuracy of the FEM method
coupled with efficient solvers have also been developed, most importantly the multigrid method
and domain decomposition method.

The main goal of this part of the summer project was to see how much of the FEM infras-
tructure could be currently developed in Scout. In particular, we focussed on the 1D Poisson
equation, since it is amenable to a simple solution, yet has all the major components that go
into a traditional FEM code.

Variational Formulations

We now briefly describe the mathematics behind the FEM using the 1D Poisson equation as an
example.

The FEM, unlike the Finite Difference method, works not with the original (or strong form)
of a PDE, but rather a different formulation called a weak or variational formulation. As this
is best described by example, we consider the case of the 1D Poisson equation with Dirichlet
boundary conditions on the unit interval [0,1]:

−u′′ = f (5)

with
u(0) = u(1) = 0. (6)
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We refer to the above equation as the strong formulation. We then multiply the equation by a
“test” function v that also vanishes on the endpoints and integrate both sides:∫ 1

0
−u′′v =

∫ 1

0
f v, (7)

and finally perform an integration by parts on the left hand side, which, along with the assump-
tion that v vanishes on the endpoints, results in:∫ 1

0
u′v′ =

∫ 1

0
f v. (8)

We call the above equation the variational formulation. We then look for a differentiable
function u vanishing on both ends of [0,1] satisfies the variational formulation for all test
functions v that also vanish on the both endpoints. It can be shown that not only do we have a
unique solution u to this question, but also, the same u satisfies the strong formulation. Thus,
in order to solve the strong formulation, one can simply compute the solution to the variational
formulation.

Polynomial Approximation

In order to obtain a numerical (approximate) solution to the variational formulation, it is cus-
tomary to approximate the desired solution u by polynomials upto a fixed order p. We denote
the space of polynomials of degree up to p as P p. Since we are interested in a function that
vanishes at the endpoints of [0,1], we restrict our approximation to the subspace P p

0 of poly-
nomials that vanish at the endpoints. We denote a (fixed) basis of P p

0 as ei with i = 1, . . . ,N.
We thus can write the approximate solution û = ∑

N
i=i aiei where the coefficients ai uniquely

determine û. We now pick for the test functions v each of the ei in succession. In order to keep
the notation simple, we write ∫ 1

0
f gdx = ( f ,g)L2, (9)

since the right hand side of the above equation is the L2 inner product. Our testing process with
the N basis functions ei yields the linear system Ax = b, where

Ai j = (e′i,e
′
j)L2 (10)

is a square matrix A consisting of pair-wise inner products of the derivatives of the basis func-
tions. The matrix A is traditionally referred to as the stiffness matrix of the system, in keeping
with the civil engineering origins of the method.

Moreover:
bi = ( f ,ei)L2 (11)

is a vector containing the inner products of the original right hand side function f of the strong
formulation with each of the basis vectors ei. This vector is referred to as the load vector.

Finally, the unknown vector x contains the coefficients we are solving for, namely, the ai in
the expansion û = ∑

N
i=i aiei.

After solving the system for the ai, we simply reconstruct the approximate solution by
taking linear combinations of the ai with the ei. This, in essence, is a simple description of the
classical FEM on a single element.
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Multiple Elements and the Master Element

In practical implementations, we are not interested in only the interval [0,1] but rather a more
general interval [a,b]. In order to reformulate the classical FEM to general intervals, we simply
subdivide [a,b] into N subintervals (“elements”) and perform the usual FEM on each element.
We would then get N stiffness matrices and N load vectors which are the element stiffness
matrices and load vectors respectively. These element matrices and vectors are then patched
together into a global stiffness matrix and global load vector which is the final system that is
solved.

However, the important point is that integration is done over the “master” element (0,1) and
we simply scale the result to the interval (h j,h( j+1)) by the map x→ a+(b−a)x, j = 0, . . . ,N
where h = (b−a)

N is the element width of each sub-interval for a uniform mesh. The assembly
of the global stiffness matrix and global load vector is done using a connectivity matrix that
encodes information about the intervals and how to patch up functions over entire domain from
functions defined only on one element. The connectivity matrix can be thought of as a local-to-
global numbering system which tells us where inside the global matrix/vector the contribution
of each element matrix/vector resides.

Finally, the global system is solved for the global coefficients and we use the connectivity
matrix again to go from the global to local basis functions in order to do the reconstruction.

Scout implementation

We now come to the Scout implementation of the FEM. We restricted ourselves to the p = 2
case (i.e., quadratic elements) in 1D. We solved the Poisson equation with Dirichlet conditions
on the interval [0,L] where L is the length of the interval. In Scout, we implemented the FEM
with the following steps:

• Initialize 2p + 1 Gauss-Legendre quadrature nodes and weights corresponding to the
master element (0,1) on two Scout meshes. We store the quadrature nodes and weights
as the cell fields of the corresponding meshes.

• Next, initialize the quadratic shape functions and their derivatives into respective Scout
meshes, again using only cell fields.

• Next, compute the element stiffness matrices and element load vectors corresponding to
the Poisson problem using the stored values of the quadrature nodes and weights along
with the shape function values.

• Since the number of elements is decided beforehand, we pre-compute the connectivity
array that gives us the local-to-global element numbering.

• Finally, assemble the global stiffness matrix and load vector and solve the system us-
ing the external GSL (GNU Scientific Library) solver after implementing the Dirichlet
boundary conditions. We were motivated to use a GSL solver since, as of now, we do not
have full linear algebra capabilities within Scout. We will come back to this particular
aspect of the solver in the subsequent section.
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Figure 19: Basic FEM mesh declaration

We note that the global stiffness matrix and load vector are stored as double arrays and then
converted into GSL objects before we solve for the global coefficients (also called degrees of
freedom).

FEM Results

We plot the results of our simulation on the interval (0,2). We first plot the shape (basis)
functions used and then the reconstructed solution using 5 elements.

We see that there are 11 basis functions with p = 2 quadratic elements and with 5 elements
in the interval [0,2]. The reconstructed solution obeys the Dirichlet boundary conditions on
both ends of the interval.

Linear Algebra Library in Scout
As we saw in the FEM section, a critical step in the solution for the global degrees of freedom
was the solution of a linear system Ax = b. This is not an isolated situation with the FEM.
In fact, at the end of many useful numerical methods, we are left with the task of solving a
matrix equation Ax = b. Moreover, the matrix A to be inverted is usually structured, and in
many cases is sparse, i.e., contains only a few non-zeros. While it would be acceptable for a
Scout implementation of a generic method to assemble the system to be solved and send the
system to an external linear algebra package (such as LAPACK or GSL) to be solved, it would
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Figure 20: Initializing Gaussian nodes and weights on the mesh

be more efficient and elegant to have an in-Scout on-mesh solver.
More specifically, one can consider a sparse N ×N matrix with k << N non-zeros on

each row to be stored as a N length 1D mesh with k fields in each cell containing the k non-
zeros. We would also store the relationship between the cells, namely, we would encode in
each cell the information about the interaction of the corresponding row of the matrix with
the unknown elements of the vector. For instance, a row with only three consecutive non-
zeros would correspond to a cell that stored the three non-zero values of the row as well as the
location in the unknown vector where the three nonzeros would multiply the elements of the
vector. We refer to such a distributed mesh that stores a k sparse N×N matrix as a “solver
mesh”.

Once this structure is set up, one can run an iterative procedure on the solver mesh directly.
Indeed, one can iteratively update the mesh quantities using the matrix entries stored on the
mesh until a convergence criteria is satisfied. Thus, Scout would solve the linear system locally
on each cell using the sparse row associated with the cell.

This is the basic ideology behind the development of an on-mesh linear solver for Scout.
A few advantages of such an approach are:

• An in-Scout solver allows for a complete exploitation of the relation between the matrix
structure and mesh geometry. In other words, since the mesh geometry heavily influences
the matrix structure, having an on-mesh solver allows us to tailor the solver specifically
for the given mesh. This could significantly increase the speed of the solver.
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Figure 21: Connectivity array

• By having a Scout based solver, one can reduce dependencies on an external library and
thereby have more control over the accuracy of the final solution.

• The use of Scout’s parallel constructs will allow for a parallel, architecture-independent
solver on the mesh and opens up the possibility of problem-specific parallel iterative
solvers.

• Most importantly, the scientist would only be involved in specifying the relationship
between the cells of the solver mesh, i.e., only how the matrix interacts with the unknown
vector. Scout can then take over and complete the linear algebra behind the scenes with
implicit matrix-vector products and vector updates. The scientist is fully aware of Scout’s
functioning but does not get involved directly with the details of the solving process.
This saves the scientist the additional task of coming up with a solution procedure for
the linear system generated by an algorithm that was coded.

In order to test our ideas, we decided to consider simple 1D and 2D finite difference
schemes for the Poisson equation with Dirichlet conditions. The resulting linear system is
sparse. In 1D, the computational stencil consists of three nonzeros (three point stencil) while
in 2D, we get a five point stencil. In view of the inherent parallelism of Scout, we decided to
utilize a Jacobi iteratitive method which yields a parallel solution method. We now describe
our in-Scout Jacobi solver.
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Figure 22: Plot of the basis functions with p = 2 quadratic elements

in-Scout Jacobi Solver

We first describe the Jacobi method and then show how we implemented it in Scout for the
finite difference scheme.

The Jacobi method is an iterative procedure to solve the matrix equation Ax = b for the
unknown vector x. It belongs to a class of iterative methods called stationary methods which
convert the equation Ax = b into a fixed point iteration of the form x = Gx + c. For a general
stationary method, one picks an initial guess x0 and iteratively applies the mapping xk+1 =
Gxk +c. The squence of iterates xk will converge to the unique solution of the original equation
Ax = b if the iteration matrix G has spectral radius less than unity, i.e., if the magnitude of the
largest eigenvalue of G is less than 1, we can guarantee the convergence of the sequence xk to
the solution of Ax = b.

In the case of the Jacobi method, one first splits the matrix A into the form

A = D+M +N, (12)

where D is a diagonal matrix consisting of the diagonal entries of A, M is the (strict) lower
triangular part of A and N the (strict) upper triangular part of A. The expression Ax = b then
becomes

Dx+Mx+Nx = b, (13)

which, assuming that all the diagonal entries of D are non-zero, can be written as

x =−D−1(M +N)x+D−1b. (14)

If we call G =−D−1(M +N) and c = D−1b, then the Jacobi method can be written as the fixed
point iteration x = Gx+c, and one can apply the map Gx+c to the sequence of iterates starting
from an arbitrary guess x0.
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Figure 23: Plot of the reconstructed solution

The question of convergence still exists, i.e., how do we know that the spectral radius of
G < 1? In order to address this, one usually considers a preconditioner, which is a matrix P
which multiplies the expression Ax = b on both sides thereby modifying the spectral properties
of the original problem to result in a convergent method. In other words, we solve PAx = Pb
which, by a careful choice of the matrix P, has spectral properties that ensure convergence.
After obtaining the solution x̂ of PAx = Pb, one then obtains the solution x∗ of Ax = b by the
map P−1x̂. It is assumed that P is designed in such a way that the inversion of P is very cheap,
i.e., requires very little work.

We note in passing that the Jacobi method is inherently parallel, i.e., updating entries be-
tween iterations can be done on each component of the current iterate vector independently of
the other components.

The Jacobi Method in Scout

We now describe the Jacobi method as implemented in Scout. To keep the problem simple,
we considered the 1D and 2D Poisson problem discretized using finite differences. We note
that the Scout team has already implemented a finite difference scheme for the heat diffusion
problem [9]. However, our approach is different and we emphasize the role of the on-mesh
iterative solver.

1D Implementation We first consider the 1D case in the interval [0,1]:

−u′′ = f , (15)
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Figure 24: Basic 1D solver mesh declaration

and u(0) = u(1) = 0. We first discretize the interval [0,1] into N intervals consisting of N + 1
nodes: 0 = x1 < x2 < .. . < xN+1 and ∆x = 1

N . The standard finite differencing scheme results
in the following iterative procedure:

un+1
i =

un
i+1 +un

i−1− (∆x)2 fi

2
, (16)

where the superscripts indicate iteration indices and the subscripts indicate the position along
the interval [0,1] where the function evaluation happens. In other words, gn

i is the n-th iterate
of g(xi) for any function g(x). Note that since u(0) = u(1) = 0, we know that u1 = uN+1 = 0
and we need to solve for the intermediate values ui for i = 2, . . . ,N. This is actually our Jacobi

scheme, namely, we repeatedly apply
un

i+1+un
i−1−(∆x)2 fi

2 to an initial vector u0.
In order to implement this in Scout, we first define a mesh of N + 1 cells with each cell

containing an old and new function value. In addition, each cell contains the scaling values
1
2 and ∆x. Finally, we store the shifting indices +1,−1 on each cell. The Jacobi iteration
then initializes a guess, and uses the forall construct to repeatedly update the new function
value of cell i, i = 1, . . . ,N +1 by accessing the neighboring cell fields specified by the shifting
indices +1,−1 with +1 indicating the next cell and−1 the previous cell. Next, the neighboring
cell fields are scaled by the scaling value 1

2 and added together along with the (non-iterating)
value −(∆x)2 fi. Every iteration enforces the boundary condition u1 = uN+1 = 0. After the
pre-specified convergence tolerance is reached, the iteration ends.
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Figure 25: Main 1D Jacobi solver

2D Implementation The 2D implementation is algorithmically identical, except with the
obvious changes in the iteration procedure. We again solve

−∆u = f , (17)

on the square [0,1]× [0,1] with zero Dirichlet boundary conditions on the boundary. We dis-
cretize the square into N2 cells and index the position of the (i, j)−th node by subscripts with
i, j = 1, . . . ,N +1. The Jacobi iteration scheme becomes:

un+1
i, j =

(un
i+1, j +un

i−1, j)(∆y)2 +(un
i, j+1 +un

i, j−1)(∆x)2− (∆x)2(∆y)2 fi, j

2((∆x)2 +(∆y)2)
, (18)

where the superscripts again indicate iteration indices and the subscripts indicate the value of
the function at the (i, j)−th position of the grid.

As in the 1D case, we implemented the Jacobi iteration on a Scout mesh. We first defined a
2D mesh whose cells hold the old and new function value at the (i, j)−th node along with the
shifting indices +1,−1 and scaling values (∆x)2,(∆y)2 and 2((∆x)2 +(∆y)2. We then initialize
a guess and run the Jacobi iteration using the forall construct using only the stored values on
each cell. Once the convergence criteria is reached, we break the iteration.

Discussion of in-Scout Solver

The in-Scout solver we implemented has several advantages. First, we do not explicitly store
the iteration matrix. Instead, we store only the non-zeros that contribute to the iteration. Sec-
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Figure 26: Schematic of the linear solver

ond, we store the connectivity information between nodes using the shifting indices +1,−1
which means that we access only the required neighbors for each update and do not access
the entire mesh values. Finally, the entire iterative procedure is completely parallel, thereby
increasing the convergence speed. This is due both to the fact that the forall construct imple-
ments cell accessing in a parallel manner as well as the Jacobi scheme itself being a parallel
method.

Future of in-Scout Linear Algebra

Our experimentation with the Jacobi scheme has led to a new view of doing linear algebra in
Scout. Indeed, most useful computational methods involve solving the matrix equation Ax = b
at some point of time. Thus, the scientist using Scout would presumably prefer if the linear
solving could be relegated to Scout, which would do the necessary solving in the background.
From this point of view, the scientist should have to specify the inter-node relationship along
with the non-zero matrix entries contributing to the iteration. Scout would then automatically
create the necessary data structures and inter-node communication and run a user-specified
scheme and return the solution. While ambitious, this view of Scout would enhance not only
its applicability, but also is a natural way of tapping into its already existing data structures and
parallelism. Moreover, it is conceivable that such an approach to in-Scout linear algebra would
facilitate the use of various computational methods including finite volume, mimetic, hydro
and finite element approaches. These ideas are therefore some goals to be explored in the near
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Figure 27: A big-picture view of how linear algebra can be handled in Scout

future.
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Summary and Conclusion
In this summer project, we have demonstrated the feasibility of Scout as a promising compu-
tational physics DSL. As we saw, Scout is a parallel, mesh-based DSL which is designed as
a conservative extension to the C-programming language. Scout addresses both data and task
parallelism and is built on the Clang/LLMV compiler. Scout also uses the run-time Legion
programming model to allow for parallelism.

We successfully tested the current capabilities of Scout by implementing a host of distinct
computational methods such as the staggered-grid hydro (SGH) method, finite element method
(FEM) and finite difference (FD) method. During the course of the project, we also found great
promise in considering in-Scout linear algebra capabilities. Towards this end, we were able to
develop a simple Jacobi solver that was fully Scout based and where all the linear matrix-
vector operations were distributed on the mesh. In addition, we were able to communicate
effectively with the Scout compiler team in the CCS division at LANL to help progress Scout’s
capabilities.

Advantages of Scout-based Code

Our experience with implementing scientific code in Scout has made us aware the many ad-
vantages that Scout provides. First, the mesh data type is a very simple yet versatile coding
platform. For example, the ability to use different topological entities (vertices, cells etc.) to
store and access data made the SGH implementation transparent. Moreover, the translation of
algorithms into code was relatively smooth due to the mesh data type. Second, data access
between topological entities was easily accomplished using the cshift() operator. This, in
conjunction with the forall construct allowed us to write inherently parallel algorithms.

Challenges Surmounted

Our results indicate that Scout has great applicability in various computational scenarios. How-
ever, we also ran into some technical issues within the Scout framework that required us to
change our programming style:

• In keeping with the need for parallel algorithms, we needed to re-work the sequential
nature of some of the algorithms we implemented. In particular, we adopted the pattern
of initializing separate loops for updating fields associated with different topological
entities.

• Since Scout is designed to allow for data and task parallelism, explicit indexing of topo-
logical entities (vertices, cells, etc.) within a mesh is not readily accomplished. However,
in the implementation of the SGH method, our algorithm necessitated the accumulation
of forces and work on vertices which required explicit handling of local indices. In order
to overcome this issue, we worked in conjunction with the Scout development team to
allow for local enumeration of vertices within a cell.

• Another issue we had to overcome was related to circular looping within a cell. Cur-
rently, the cshift() operator when applied to vertex fields on boundary vertices loops
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around the mesh and returns fields corresponding to the vertex fields on the other bound-
ary of the mesh. For instance, on a 1D mesh, applying cshift() to the rightmost
vertex would return fields corresponding to the first vertex, i.e., the leftmost vertex. In
order to circumvent this issue, we included a layer of ghost cells on the mesh bound-
ary and we would never access or modify the quantities on the ghost cells. Currently,
a solution the Scout team is pursuing is to add a “circular” or “regular” qualifier to the
mesh definition that would be implicitly understood by the cshift() and forall
constructs and lead to the correct handling of boundary data.

• Finally, during the process of writing Scout programs, we found a number of instances
where the Scout compiler would fail. These instances were duly brought to the attention
of the Scout development team as bug reports and were resolved.

Future Directions

While developing scientific code in Scout, we found a number of avenues where Scout can be
extended. Some of these future directions are quite pressing while others are interesting points
worth considering in the long term.

• Currently, all computations with Scout are done on a single mesh. However, there are
situations where quantities stored on two different meshes may need to be combined to-
gether in non-trivial ways. For instance, computing the correlation between data stored
on two meshes would require point-wise multiplication of the two meshes and a global
summation of the result. In order to facilitate this, we would require mesh-mesh interac-
tions.

• The Scout team is in the process of developing an ALE mesh that keeps track of vertex
coordinates for deformed meshes and has a built-in remap() operator. Also, they are
exploring the efficiency versus parallelism tradeoff between using the forall construct
with explicit indexing and a new vfield() construct.

• While we considered only one and two spatial dimensions for our code, Scout is designed
to handle upto three dimensions. This implies a need for more extensive face and cell
capabilities and the ability to modify vertex/edge/face/cell fields independently of each
other even if they are geometrically linked.

• A long term goal would be to consider block structured meshes. These meshes offer
more flexibility that uniform meshes as well as the ability to handle complicated do-
main geoemtries. Moreover, in many computational methods, one needs to consider
successively finer meshes where only certain cells are refined while other are not. These
adaptive mesh refinement capabilities would be an added bonus to Scout’s mesh data
structure.
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Abstract

A novel approach to the mesh-free solution of differential equations based on statistical
estimation and regression was proposed and studied. A mesh-free solver was successfully
implemented, numerous test cases were carried out, and the properties of the method were
investigated. Extensions of the underlying statistical method were researched for the pos-
sibility of the recovery of spherical symmetry.
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Introduction
At the core of most modern computational methods are meshes. Defined as sets of points or
vertices connected by edges, meshes form the basis of classical numerical methods such as
finite differences, finite volumes, and finite elements as well as more specialized methods such
as staggered-grid hydrodynamics.

There are are traditionally two approaches to mesh-based methods. In the Eulerian ap-
proach, the mesh is viewed as a stationary discretization of space through which the material
or object of interest moves. Benefits of a stationary mesh include the ease of implementation
of adaptive refinement and other techniques to resolve fine details in the simulation, yet, since
the objects move through a fixed mesh, material boundaries are not always well-represented,
potentially causing boundary diffusion as the system evolves. The alternative approach, the
Lagrangian viewpoint, moves the mesh discretization with the material. Here, the mesh con-
forms to the material as it deforms allowing for accurate boundary representation. However, in
the presence of large deformations, there is a risk of mesh tangling, where the mesh changes
in such a way that it flattens or even inverts cells. In an attempt to overcome the weaknesses of
pure Lagrangian or Eulerian methods, Arbitrary Lagrangian Eulerian (ALE) schemes combine
aspects of the two standard views together. For example, in a Lagrangian simulation, it may
be advantageous to remap the solution from a highly distorted mesh onto a more uniform one.
Consequently, in marrying the two approaches, such schemes may rectify the weaknesses of
one pure method at the risk of introducing the other pure method’s inherent weaknesses.

In the endeavor to simulate natural physical processes computationally, it is worth not-
ing that meshes are a contrived concept, not naturally arising but used out of convenience.
Therefore, by rethinking the discretization process itself, “mesh-free” possibilities emerge. In
this way, focusing exclusively on freely moving vertices or particles allows many mesh-based
difficulties to simply drop away along with the connecting edges, e.g. tangling, extreme defor-
mations, and adaptive refinement [9]. Of course, even with the promise of mesh-free methods,
new consequences arise as the loss of the mesh brings the loss of an intuitive discrete calculus.
This requires the development of a calculus on unconnected points. Nonetheless, mesh-free
methods present an attractive and effective alternative to meshes.

For the Computational Physics Student Summer Workshop at Los Alamos National Lab-
oratory, the authors investigated the prospects of an advanced method in statistics and data
estimation as the foundation of a novel approach to mesh-free. It is here that the authors chose
to investigate separate topics: Benjamin Grossman-Ponemon researched the applicability of
this method as a mesh-free solver of differential equations and built a proof-of-concept. Mean-
while, Nathan Levick studied an extension to the underlying statistical method which may have
implications in recovering symmetry.
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Background

A Brief History of Mesh-free Methods

Mesh-free methods originated in 1977, independently developed by Gingold and Monaghan [8]
and Lucy [13]. Termed Smoothed Particle Hydrodynamics (SPH) by the former, the method
centers around the use of an approximate delta function transform to estimate a function by a
weighted sum of known function values. Transforming differential equations in this fashion
results in a linear system, in turn solved for unknown function values at data points. After the
calculation of respective fields, the particles are then advected. In this way, SPH is a Lagrangian
method. The creators of SPH, however, saw their method more as Monte Carlo simulation, i.e.
the points that solved the equations were only one instance of an infinite number of trials.

Initially applied to astrophysics problems by its creators and others, SPH found use in
a variety of other fields including high-velocity impact problems [11], shock dynamics, and
other problems in solid and fluid mechanics such as multi-phase, quasi-incompressible, and
porous media flows [10]. In its original form, there exists several issues which have prevented
smoothed particle hydrodynamics from becoming as accepted among computational physicists
as other traditional mesh-based methods. These include the infamous tension instability [1], the
result of particles moving too far apart from each other, and, importantly, a lack of convergence
as the smoothing lengths and inter-particle distances are reduced [3].

Since the development of SPH, numerous mesh-free methods have been developed [9].
There are probabilistic tools like molecular dynamics and direct simulation Monte Carlo meth-
ods. Methods based on the Galerkin weak formulation such as the element-free Galerkin
method, reproducing kernel particle method, h-p cloud method, and finite point method came
out of the finite element community. Additionally, subsequent improvements have been made
directly to SPH such as replacing its traditional interpolant with moving least-squares (MLS) to
create moving least squares particle hydrodynamics (MLSPH) [2]. However, in all these meth-
ods, boundary conditions remain an issue, requiring special techniques to incorporate them
into the mesh-free framework.

Statistical Methods for Data Estimation

The statistics community has a long history of deriving information from points. Such powerful
foundational tools, e.g. data estimation and smoothing, have recently transcended disciplinary
lines to applications not only with mesh-free methods but also in machine learning, image
analysis, and computer vision. Notably Rosenblatt [14] in 1956 laid the groundwork for the
theory of kernel density estimation (KDE), a generalization of the histogram that attempts
to best recreate an underlying distribution from a collection of discrete data samples. In the
late 1970s, interestingly around the time when SPH was developed, KDE was extended into
the local regression estimator (LRE), a technique that estimates functional model correlations
between random variables [12]. Further, as demonstrated by Dilts [5], LRE, in a special case,
is equivalent MLS and provides a promising framework to a novel mesh-free method.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 154



Advanced Mesh-Free Methods for Mechanics

Local Regression Estimation
To build a successful mesh-free method, it is necessary to have a means of performing cal-
culations, such as derivatives, on points. Estimation of function values and derivatives are
ubiquitous in the world of statistics, and it is from here that the local regression estimator is
used.

Mathematical Preliminaries

Suppose that there exists a set of points {y j}N
j=1⊂Rd and at each point y j there is data u j ∈Rm.

{y j}N
j=1 is called the set of data points. Let {xi}M

i=1 ⊂ Rd , at which the data is to be estimated,
be the set of evaluation points

Let w : Rd⊗Rd → R be a weight function. The form of the function is not specified, only
that w(x,y) has compact support and w(x,y) ≥ 0 for all (x,y) ∈ Rd ⊗Rd . The purpose of the
weight function is to assign weight to the correlation between the data at points x and y. To this
end, it is customary to choose the weight function to be a kernel, w(x,y) =CK(|y−x|/h), where
C is chosen so that

∫
w(x,y)dx = 1. The dimensions of the support is specified by a smoothing

length h ∈ Rd , which is often labeled as a third parameter of the weight function. While many
such kernels exist, the standard in mesh-free methods is based on the cubic B-spline, defined
below in one dimension [2]:

B4(x) =


1−1.5|x|2 +0.75|x|3 |x| ≤ 1
0.25(2−|x|)3 1 < |x| ≤ 2
0 |x|> 2

(1)

For example, a weight function with a rectangular support would be:

w(x,y,h) = νd

d

∏
α=1

1
hα

B4

( |yα − xα |
hα

)
(2)

where νd is a normalization constant.

Local Regression

Given the set of data on the data points, the purpose of local regression is to estimate the
data on the evaluation points. As the name implies, at each evaluation point, a local Taylor
series polynomial approximation of the data is constructed. The Taylor series polynomial is
represented as an inner product of the shifted basis, p(xi,y j) and the unknown coefficients
β (xi). For example, in one dimension:

β (xi)p(xi,y j) = β0(xi)+β1(xi)(y j− xi)+
1
2!

β2(xi)(y j− xi)2 + . . . (3)

As a remark, the shifted basis can be constructed from a reproducing basis b(x) and a jet
matrix J(x). For example, in one dimension, the reproducing basis is

b(x) =
[
1, x, x2/2!, . . .

]T
(4)
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while the jet matrix is

J(x) =
[

b,
db
dx

,
d2b
dx2 , . . .

]
(5)

With these, the shifted basis is then

p(xi,y j) = J−1(xi)b(y j) (6)

The construction of shifted bases is not limited to monomial reproducing bases and Taylor
series jets. For example, trigonometric bases may be used [4] and the columns of the jet can be
linear operators other than derivatives. However, the jet matrix must be invertible. This will be
explained in greater detail later in the report.

The unknown coefficients are found by comparing this polynomial against nearby data,
producing the weighted least-squares problem for each evaluation point xi:

minimize (w.r.t. β (xi)) R(xi) =
N
∑
j=1

(u j−β (xi)p(xi,y j))2w(xi,y j,h j) (7)

There exists an analytical solution to this problem. Setting

∂R(xi)
∂β (xi)

= 0

the minimizer can be found:

β (xi) =
N

∑
j=1

u jψ j(xi)T (8)

where
ψ j(xi) = P(xi)−1 p(xi,y j)w(xi,y j,h j) (9)

P(xi) =
N

∑
j=1

p(xi,y j)p(xi,y j)T w(xi,y j,h j) (10)

ψ j is a vector of shape functions for data point j, where each row corresponds to shape function
for each derivative. P is the moment matrix. It is worth noting that as the smoothing length
decreases (i.e. the distance between points decreases), the moment matrix approaches singular.
This can make inverting P difficult. To account for this, dropping function arguments and
subscripts, the system is pre- and post-conditioned:

Pψ = pw

The conditioned system is then:
P̃ψ̃ = p̃w

where

P̃ = H−1PH−1

ψ̃ = Hψ

p̃ = H−1 p
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and the preconditioner is

H = diag(b(h))

Since the smoothing length h is usually chosen to be proportional to the average distance be-
tween points, preconditioning can drastically improve the condition of the moment matrix.

The solution of the local regression problem is the vector of coefficients β (xi). As these
are the coefficients of the Taylor series polynomial, Equation (3), they also represent estimates
of the function value and its derivatives. For example, in the one dimensional case:

β (xi) =

 û|x=xi
,

d̂u
dx

∣∣∣∣∣
x=xi

,
d̂2u
dx2

∣∣∣∣∣
x=xi

, . . .

 (11)

where û represents the estimate of u, etc. Properties of this estimate will be analyzed in the
sequel.

Convergence Results

The convergence of the local regression estimate β (xi) has been studied extensively in the
statistics literature. Originally formulated in [15], the salient points, as in [6,7], are reproduced
here for one-dimensional local regression.

Suppose that the data u is estimated with a polynomial of order n. Furthermore, suppose
that the number of data points N and smoothing length h are chosen such that Nh→∞. For the
estimate of the kth derivative, if n−k is odd, then the bias at a point x, or the expected value of
the error at x over all possible sets of data points, should converge like

Bias(x)∼ hn−k+1 (12)

Furthermore, if N and h are chosen such that Nh3→ ∞, then for n− k even, it is expected

Bias(x)∼ hn−k+2 (13)

What this means is that if the number of points and smoothing length are selected properly,
then the estimate should converge at least at the Taylor series convergence rate. Even more
attractive, if Nh3→ ∞, then n− k even estimates get a boost in the convergence rate!

It should be noted that the condition Nh3 → ∞ corresponds to the case where, for data
points distributed with uniform density, the number of neighbors goes to infinity. If the data
points are distributed uniformly in a box of side length L and a uniform smoothing length h is
chosen, then the number of neighbors should trend as follows:

B∼
(

N
Ld

)
hd

In order for the condition Nh3→ ∞ to be satisfied,

h >
1

N1/3
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Hence
B >

1
Ld N1−d/3

If d < 3, then B→ ∞ as N → ∞. For d = 3, the number of neighbors will remain constant.
Since the solution of the LRE minimization problem depends on the number of neighbors,
more neighbors means larger computation times.

Meanwhile, if only Nh→ ∞ is satisfied, then, in the example above, the smoothing length
can be chosen as

h = LN−1/d

In this case, the number of neighbors will go as

B∼ 1

or the number of neighbors will be constant as N→ ∞.

Reproducing Property of LRE

In addition to the above convergence property, the local regression estimate β (xi) possesses an
important feature: it is reproducing [5]. That is to say, suppose that the data to be estimated
can be expressed as a linear combination of the reproducing basis:

u(x) = λ
T b(x) (14)

where λ is a vector of coefficients, then the estimate will satisfy

β (x) = λ
T J(x) (15)

i.e., the estimate will exactly reproduce the jet of the basis, which, for Taylor series, means
the function value and its derivatives. This property has great implications in the possibility
of enriching the reproducing basis to recover underlying symmetries or behavior of the data.
For example, enriching b with the radius will allow the local regression estimate to exactly
reproduce any functions of the form f (r) = kr, where k is a constant.
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Tuned Regression Estimation
In the prequel, it was shown that local regression estimation is a convergent and reproducing
method to estimate function values and derivatives on a collection of points. In this section, it
shall be shown how a convergent mesh-free method may be built from local regression.

Constrained Local Regression

Suppose a priori it is known that data used in local regression should satisfy certain relations,
such as differential equations or boundary conditions. These conditions can be reframed as
constraints on the data and its derivatives.

For example, suppose that the measured data must satisfy a Poisson equation:

∆u = f

In one dimension, this is
uxx = f

If the data were to be estimated using a quadratic basis b = [1, x, x2/2!]T , then from Equation
(11) the local regression estimate would be:

β = [û, ûx, ûxx]

The differential equation can then be recast as a constraint on β :

βe2− f = 0

The constraints need not be global. For example, a problem with Dirichlet and Neumann
boundary conditions will have points on one boundary or on the other. Thus, the set of con-
straints are expressed:

D(x,β (x)) = 0 (16)

With these constraints, a new estimate at an evaluation point xi may be found from the mini-
mization problem:

minimize (w.r.t. β (xi))
N
∑
j=1

(u j−β (xi)p(xi,y j))2w(xi,y j,h j)

subject to D(xi,β (xi)) = 0
(17)

Because this approach modifies or “tunes” the estimate, it is referred to as tuned regression [5].
If a basis higher than the order of the constraint is used, then derivatives of the differential

equation can be used. If the Poisson problem above were to be estimated with a cubic basis
b = [1, x, x2/2!, x3/3!]T , then the additional constraint

uxxx = fx

could be used to improve the accuracy of the estimate. In this case, the constraints acting on
the estimate would be: {

βe2− f = 0
βe3− fx = 0
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Tuned Regression for the Solution of Differential Equations

In the previous discussion, both local regression and tuned regression have relied on the pres-
ence of data and data points when producing the estimate. However, when solving differential
equations, the solution is not known a priori!

To handle the lack of data when solving a differential equation, one makes use of the afore-
mentioned constraints. By constraining the estimate with a differential equation and appro-
priate boundary conditions, it should satisfy the equation, even if the data do not. However,
because the data may be inaccurate, the estimate may not solve the problem globally. On the
other hand, if the minimization problem were to find data u j given an estimate β (xi), the result
would be the data set which produces the estimate. If these two problems were performed
simultaneously, then one should be able to solve for an estimate which satisfies the differential
equation and boundary conditions all while choosing the correct data to produce that estimate.
This forms the basis of a mesh-free method.

As a note, the set of data points and estimation points are no longer distinct, {xi}M
i=1 =

{y j}N
j=1 and M = N. At each point an estimate is constructed and at each point a corresponding

data value is found. Thus, the residual to be minimized is that over all points {xi}N
i=1:

minimize (w.r.t. {β (xi)}N
i=1, {u j}N

j=1)
N
∑

i=1

[
N
∑
j=1

(u j−β (xi)p(xi,x j))2w(xi,x j,h j)

]
subject to D(xi,β (xi)) i = 1, . . . ,N

(18)

On the Enforcement of Constraints

In tuned regression, whether as an estimator or as a mesh-free method, there exist various
approaches to the enforcement of the constraints D . Detailed here are the direct substitution
and Lagrange multiplier methods.

To enforce the constraints directly, a reduced set of variables γ is constructed so that

β (x) = E (γ(x)) (19)

If different constraints are applied at different points (e.g. boundary conditions on boundary
nodes), then the set of variables γ will vary at each point, along with the map E . As an
illustration of the direct substitution, consider the Poisson equation in two dimensions:

uxx +uyy = f

If the two-dimensional, quadratic basis is b = [1, x, y, x2/2, xy, y2/2]T , then the constraint on
the estimate is

βe3 +βe5− f = 0

A reduced set may then be constructed by eliminating βe5:

γ = [βe0, βe1, βe2, βe3, βe4]

and the mapping β = E (γ) is:

β = [γe0, γe1, γe2, γe3, γe4, f − γe3]
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The advantage of this approach is that the size of the system is then reduced by the number
of constraints. However, as illustrated in the previous example, the choice of reduced set is
arbitrary, and it is unknown how the choice may affect the solution. Furthermore, algebraic
equations may not always have an analytical solution, meaning that for complicated equations
finding γ may be a nontrivial task.

With Lagrange multipliers, the constraints are added to the residual by an unknown mul-
tiplier. The new system is then minimized over the estimate β , the data u and the multiplier
λ :

minimize (w.r.t. {β (xi)}N
i=1, {u j}N

j=1, {λ (xi)}N
i=1)

N
∑

i=1

[
N
∑
j=1

(u j−β (xi)p(xi,x j))2w(xi,x j,h j)+λ (xi)T D(xi,β (xi))

]
(20)

The use of Lagrange multipliers eliminates the arbitrary choice of reduced variable set; how-
ever, the number of unknowns is increased. Furthermore, the residual loses convexity. All
results in this paper were computed using Lagrange multipliers.

Known Data

While the data are allowed to vary in the method described above, there may be situations
where data are known. For example, in a time-dependent problem, the solution at a time step
may be derived from the solution at a previous step. In this case, there are two approaches
to handle this previous data. The solution at the previous time step β (t−∆t) can be used as
a constraint on the solution at the current time step, β (t). Alternatively, the data or solution
from the previous time step can be used as data for the current. Due to the short nature of the
Summer Workshop, time-dependent problems were not investigated with this method, though
previous work in [5] does show that this is a viable method of time integration.

A Remark on Optimal Data

If Equation (18) (or Equation (20, where {xi}M
i=1 = {y j}M

j=1) is differentiated with respect to u j
and the result set to zero, then:

∂R
∂u j

= 2
M

∑
i=1

(u j−β (xi)p(xi,y j))w(xi,y j,h j) = 0

Solving for the optimal data u j:

u j =
∑

M
i=1 β (xi)p(xi,y j)w(xi,y j,h j)

∑
M
i=1 w(xi,y j,h j)

(21)

This is nothing more than the Nadaraya-Watson estimate (or, equivalently, zeroth order local
regression) of the local Taylor series polynomial [5] over the evaluation points! Since the
constraints are independent of u j, this result holds no matter which enforcement approach is
used. As solving for optimal data u j is redundant (because βe0 provides an estimate of the
function value), this result may be used for eliminating u j from the minimization entirely!
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Error Metrics

As described above, tuned regression for the solution of elliptic differential equations provides
a solution only at the evaluation points, unlike, e.g., the finite element where shape functions
reconstruct the solution between nodes, new error metrics need to be introduced.

The theorems from statistics regarding the convergence of local regression make use of the
bias, or the expected value of the absolute error at a point over all possible samples of points.
To account for the statistical nature of the bias, three metrics were considered: maximum, mean
and root mean square error. Let u be the true solution and β the estimate. Then

‖e‖∞ = max
1≤i≤N

|u(xi)−β (xi)| (22)

‖e‖1 =
1
N

N

∑
i=1
|u(xi)−β (xi)| (23)

‖e‖2 =

[
1
N

N

∑
i=1
|u(xi)−β (xi)|2

]1/2

(24)

The above notation is similar to that of the norms in the functional spaces L∞, L1 and L2, and,
in fact, there is some similarity. For example, for the L2 norm:

‖e‖L2(Ω) =
[∫

Ω

|e|2 dV
]1/2

A box of side-length h can approximate a piece of volume

≈
[

N

∑
i=1

hd|e(xi)|2
]1/2

If h∼ N−1/d , then

=

[
1
N

N

∑
i=1
|e(xi)|2

]1/2

= ‖e‖2

However, if the smoothing lengths are not chosen in this way, then there is a discrepancy in the
two norms. As the ∞-norm is equivalent to the bias, we expect similar convergence rates for
all three norms.
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Tuned Regression Example Problems and Results
Tuned regression shows promise as a tool to solve differential equations. To test the method,
a C++ implementation was built from the ground up. The implementation used the Lagrange
multiplier approach to enforcing the constraints. All simulations were performed on a cluster
of Intel Xeon E5-4650 2.70 GHz processors with a total of 64 cores.

Testing Local Regression Capabilities - Reproducing Property with Data

As local regression is simply tuned regression with zero constraints and prescribed data, pre-
liminary tests of the method involved recovering the desirable properties of local regression.

The first test involved recovering the reproducing property of local regression. Random
points were distributed on the unit square Ω = [0,1]× [0,1] and the smoothing length was
chosen to be h∼ N−1/2. The function

u(x,y) = 4x2 +3xy+2y2 + x+ y (25)

was prescribed as data at every point and no constraints were enforced. Shown below are the
convergence results of this test.
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Figure 1: Error for the Reproducing Problem with Data
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The data is successfully reproduced to within tolerance. As expected, mean error is the
smallest, while maximum error is the largest. Interestingly, higher derivatives show greater
errors, even increasing with smaller smoothing lengths, while the zeroth derivative estimate is
nearly constant for all smoothing lengths.

Testing Local Regression Capabilities - Reproducing Property with Constraints

As a second test, the estimate was constrained through the Poisson problem: Let Ω = (0,1)×
(0,1). Find u(x,y) ∈C2(Ω) such that for all (x,y) ∈Ω

∆u(x,y) = 12 (26)

with boundary conditions

u(x,0) = 4x2 + x (27)

u(x,1) = 4x2 +4x+3 (28)
ux(0,1) = 3y+1 (29)
ux(0,1) = 3y+9 (30)

The solution to this problem is given by Equation (25). The purpose of this test was to observe
whether the reproducing property could be recovered without prescribing data. Using the same
points and smoothing lengths as the previous test, the convergence results are shown following:
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Figure 2: Error for the Reproducing Problem with Constraints

The error in each derivative of the estimate is very small and close to machine precision.
Thus, as a mesh-free method, tuned regression is capable of achieving the reproducing prop-
erty! Again, the zeroth derivative estimate is nearly constant across smoothing lengths, while
higher derivatives exhibit larger errors.

Testing Local Regression Capabilities - Convergence Property Nh→ ∞

It was also investigated whether the code could recover the convergence rates for local regres-
sion. Convergence of the code was tested with the two-dimensional data

u(x,y) = sin(πx)sin(πy) (31)

prescribed at random points in the unit square Ω = [0,1]× [0,1]. The presence of sines in the
data ensures that the estimate does not benefit from the reproducing property of local regres-
sion.

In this example, the smoothing length was chosen as h ∼ N−1/2. This guarantees that the
number of neighbors is roughly constant as the number of points increases. From Equation
(12), the estimate is expected to get a convergence rate of hn−k+1. Linear, quadratic, and cubic
bases were used to study the convergence rates. Shown below are the convergence plots for a
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linear basis,
b = [1, x, y]T (32)
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Figure 3: Error for local regression with linear basis with Nh→ ∞

The convergence rates are summarized in the following table:

‖ · ‖∞ ‖ · ‖1 ‖ · ‖2

e 1.9 2.0 2.0
ex 0.7 1.1 1.0
ey 0.8 1.1 1.1

Table 1: Convergence rates for local regression with linear basis with Nh→ ∞

The expected convergence rates for the linear basis are [2, 1, 1], which is exactly what is
seen above. The error plots are shown below for a quadratic basis

b = [1, x, y, x2/2, xy, y2/2]T (33)
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Figure 4: Error for local regression with quadratic basis with Nh→ ∞

The convergence rates are summarized in the table below:

‖ · ‖∞ ‖ · ‖1 ‖ · ‖2

e 2.9 3.2 3.2
ex 2.0 2.0 2.0
ey 1.9 2.0 2.0
exx 1.0 1.3 1.3
exy 0.9 1.0 1.0
eyy 0.5 1.3 1.3

Table 2: Convergence rates for local regression with quadratic basis with Nh→ ∞

Expected convergence rates for the quadratic basis are [3, 2, 2, 1, 1, 1]. Similar rates are
seen for the mean and RMS norms, but there is a small deviation in the convergence rate for
‖eyy‖∞. Finally, results for the cubic basis

b = [1, x, y, x2/2, xy, y2/2, x3/6, x2y/2, xy2/2, y3/6]T (34)
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are shown below:
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Figure 5: Error for local regression with cubic basis with Nh→ ∞

Convergence rates are summarized below:

‖ · ‖∞ ‖ · ‖1 ‖ · ‖2

e 3.9 4.0 4.0
ex 2.8 3.3 3.2
ey 2.6 3.3 3.2
exx 1.9 2.1 2.1
exy 2.0 2.0 2.0
eyy 2.1 2.1 2.1
exxx 0.8 1.4 1.4
exxy 1.1 1.5 1.5
exyy 1.0 1.5 1.5
eyyy 1.2 1.4 1.4

Table 3: Convergence rates for local regression with cubic basis with Nh→ ∞
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For a cubic basis, the expected convergence rates are [4, 3, 3, 2, 2, 2, 1, 1, 1, 1], which is
exactly as observed. In all three cases, the optimal convergence rates for local regression with
Nh→ ∞ were verified.

Testing Local Regression Capabilities - Convergence Property Nh3→ ∞

In a final test of local regression, the smoothing length was chosen as h ∼ N−1/4. With this
choice of smoothing length, Nh3→ ∞. Because this condition is now satisfied, Equation (13)
predicts a convergence rate of hn−k+2 for n− k even. Below are results for the convergence of
the linear basis, Equation (32):
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Figure 6: Error for local regression with linear basis with Nh3→ ∞

The convergence rates are summarized in the following table:

‖ · ‖∞ ‖ · ‖1 ‖ · ‖2

e 2.1 1.9 1.9
ex 0.8 2.2 1.9
ey 0.7 2.2 2.0

Table 4: Convergence rates for local regression with linear basis with Nh3→ ∞

For first derivative estimates, (n− k = 0) is even, which means that a second order conver-
gence rate is expected. This is observed in the mean and RMS mean estimates. However, there
is still first order convergence in the maximum norm. Shown below are the convergence results
for the quadratic basis, Equation (33):
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Figure 7: Error for local regression with quadratic basis with Nh3→ ∞

The convergence rates are summarized in the table below:

‖ · ‖∞ ‖ · ‖1 ‖ · ‖2

e 3.8 4.0 3.9
ex 2.2 2.1 2.1
ey 2.3 2.1 2.1
exx 1.2 2.2 1.9
exy 2.0 2.3 2.2
eyy 1.7 2.3 2.0

Table 5: Convergence rates for local regression with quadratic basis with Nh3→ ∞

In the case of a quadratic basis, the zeroth derivative (n− k = 2) and second derivative
estimates (n− k = 0) should converge at fourth and second order rates, respectively. This is
observed for the zeroth order estimate. However, the maximum norm shows some suboptimal-
ity for the convergence rate of ‖exx‖∞. Finally, convergence results for a cubic basis, Equation
(34), are shown below:
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Figure 8: Error for local regression with cubic basis with Nh3→ ∞

Convergence rates are summarized below:

‖ · ‖∞ ‖ · ‖1 ‖ · ‖2

e 4.5 4.2 4.3
ex 3.3 4.2 3.9
ey 3.3 4.2 3.9
exx 2.3 2.6 2.5
exy 2.0 2.1 2.1
eyy 2.6 2.6 2.6
exxx 1.7 2.6 2.3
exxy 1.0 2.4 2.0
exyy 0.7 2.4 1.9
eyyy 1.4 2.6 2.4

Table 6: Convergence rates for local regression with cubic basis with Nh3→ ∞

For a cubic basis, first derivative (n−k = 2) and third derivative (n−k = 0) estimates should
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converge with fourth and second order rates, respectively. This is observed for the mean and
RMS norms, but not for the maximum norm, where ‖ex‖∞ and ‖ey‖∞ converge at closer to third
order while ‖exxy‖∞ and ‖exyy‖ converge at near first order. In general, however, the mean and
RMS error do exhibit the extra convergence rates for n− k even estimates.

A Model Problem - The Poisson Equation

It has been demonstrated that the method is capable of acting as a local regression estimator and
recovering the convergence rates detailed previously. With this in mind, the Poisson equation
was chosen as a model problem. It is a second-order partial differential equation, which allows
for the use of Neumann and Dirichlet boundary conditions. Furthermore, with manufactured
solutions, the analytical solution is easily obtained to compare against the method.

For the purposes of this paper, the following problem was considered. Let Ω = (0,1)×
(0,1). Find u(x,y) ∈C2(Ω) such that

∆u(x,y) =−2π
2 sin(πx)sin(πy) (35)

holds for all (x,y) ∈Ω and the following hold on the boundary:

u(x,0) = 0 (36)
u(x,1) = 0 (37)

ux(0,y) = π sin(πy) (38)
ux(1,y) = π sin(πy) (39)

This problem was chosen because it uses both Dirichlet and Neumann boundary conditions.
Furthermore, the solution

u(x,y) = sin(πx)sin(πy) (40)

involves sines, meaning that the solution will not be reproducible by local regression, as the
sine function cannot be expressed as a finite-length polynomial. Shown below is a scatter plot
of the solution with approximately 4000 data points. Tuned regression was performed with a
quadratic basis, Equation (33).
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Figure 9: (a) 3D plot of solution to model problem with 4000 points (black points) and analyt-
ical solution. (b) Solution to the model problem with 4000 points

There is good agreement between the analytical solution and the tuned regression solution.
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Of note is the discrepancy on the boundary x = 1. This corresponds to one of the Neumann
boundaries, where the function value itself is not constrained. Shown below are the conver-
gence results for the model problem, where the number of points and smoothing length are
chosen so that Nh3→ ∞.
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Figure 10: Error for the model problem with Nh3→ ∞

Shown below are the convergence rates for the model problem errors.

‖ · ‖∞ ‖ · ‖1 ‖ · ‖2

e 2.3 2.3 2.3
ex 1.9 1.7 1.8
ey 2.3 2.6 2.6
exx 1.3 2.4 2.1
exy 1.9 2.1 2.1
eyy 1.2 2.5 2.2

Table 7: Convergence rates for the model problem with Nh3→ ∞

The model problem shows convergence at nearly optimal rates for first derivatives. How-
ever, there is a lower convergence rate for the error in the zeroth derivative estimate. Further-
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more, there is some suboptimality in the convergence rates of ‖exx‖∞ and ‖eyy‖∞. This could
be due to the fact that the derivatives are constrained by the Poisson equation. It could also
result from the optimal data. Because the data which is being smoothed is not the true solu-
tion, but rather is a zeroth order smoothing of the estimate, there could be some discrepancies.
However, this requires further study.

Mechanics - Linear Elastostatic Beam Bending

To test the method on a more complex system, the problem of the elastostatic deformation
of a beam was chosen. The problem is to find a displacement field u(x,y) ∈ C2(Ω), where
Ω = (0,L)× (−a,a) which satisfies

σi j, j = 0 (41)

for all (x,y) ∈Ω, along with the boundary conditions

u(0,y) = 0 (42)
u(L,y) = [0, ū] (43)

σi j(x,a)n j = 0 (44)
σi j(x,−a)n j = 0 (45)

where σ is the Cauchy stress tensor and n is the outward unit normal. The beam was taken to
be linear elastic:

σi j = λεkkδi j +2µεi j (46)

where λ and µ are the Lamé parameters. For all simulations, the following parameters were
used:

L = 1.0
a = 0.1
λ = 1.0
µ = 1.0
ū = 0.01

although the vertical displacement was arbitrary as the solution for any displacement can be
found by scaling (the principle of superposition). Shown below is the deformed configuration
of the beam with 8000 points and the deformation scaled by a factor of 5.
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Figure 11: Deformed configuration of elastic beam

With tuned regression, the elastostatics problem was successfully solved. The displace-
ment field, and derivatives up to second order, were estimated. From these and Hooke’s Law,
Equation (46), the stress field was reconstructed, shown below:
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Figure 12: (Top) σxx, (Middle) σxy, (Bottom) σyy
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The Spherized Basis

The Problem

In hypervelocity hydrodynamic mechanics problems, radially symmetric functions play an im-
portant role, e.g. modeling rapid expansion or contraction of a material. Like other conserva-
tive properties, the associated numerical representation of these functions should preserve the
accuracy of its radial symmetry. Nevertheless, when using Euclidean coordinates this is not
necessarily the case; however, this is the default coordinate system for many particle methods.
Achieving such computation radial accuracy requires converting the model equations to spher-
ical or cylindrical coordinates and, in turn, adjusting code implementation of the method. In an
attempt to avoid conversion to a radially based coordinate system, it is surmised that an enrich-
ment of the standard Taylor series basis can simplify the route to the numerical conservation of
radial symmetry.

Non-Taylor Series Basis

It has already been shown that reproducing bases other than the Taylor series can be used with
LRE [5]. For example, using the standard jet, Equation (5), bases such as

[1,sin(x),cos(x)]T , [1,ex,e−x]T (47)

result in shifted bases 1
sin(yi− x)

1− cos(yi− x)

 ,

 1
1
2e−(yi−x)(−1+ e2(yi−x))
1
2e−(yi−x)(−1+ e(yi−x))2

 . (48)

However, r(x) =
√

∑
d
α xα

2 for x ∈ Rd is a function which is linearly independent of the Eu-
clidean coordinates. As such, the traditional Taylor series bases can simply be enriched by
appending r resulting in a spherized basis. In two dimensions, the linear basis is now given by

bsp(x) = [1,x1,x2,r]T . (49)

Note that theoretically the reproduction of r is now possible, helping to ensure accuracy of
spherically symmetric functions. As before, a nonsingular jet matrix Jbsp must be derived in
order to solve for a shifted basis. For Jbsp to be square, another linear operator applied to
the basis must be also be appended. While other functions are potentially viable options, the
spherized jet

Jbsp(x) =
[

b,
db
dx1

,
db
dx2

,∆b
]

(50)

provides a simple and effective choice. To not result in a degenerate jet, the additional operator
must be selected carefully, e.g. if db

dr or d2b
dx1x2

is chosen as the operator in the last column, Jbsp

will be singular or undefined on axes, respectively. The process is continued by expanding
Equation (50) and finding the jet inverse,

Jbsp(x) =


1 0 0 0
x1 1 0 0
x2 0 1 0
r x1

r
x2
r

1
r

 , Jbsp(x)
−1 =


1 0 0 0
−x1 1 0 0
−x2 0 1 0

0 −x1 −x2 r

 (51)
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and then solving
pi(x) = Jbsp(x)

−1bsp(yi), (52)

which gives the shifted basis

pi(x) = [1,y1i− x1,y2i− x2,−(x1y1i + x2y2i)+ r(x)r(yi)]T . (53)

Code Implementation

In order to test the reproduction and convergence implications of a spherized basis, an LRE
program was implemented in Python to both fully comprehend the process and subsequently
build upon that foundation. Using randomly generated two dimensional data and evaluation
points over the domain Ω = [0,1]2, circular neighborhood support, cubic spline weight func-
tion, Equation (1), and the previously described conditioning, the code can perform from zeroth
to fourth order Taylor series regressions, n ∈ [0,4], on a single field function u.

(a) Heat Map (b) 3D Map

Reproduction Test: Approximation of Field Function, û

Figure 13: Third order Taylor series basis reproduction test for function u(x) = x1 with Python
LRE implementation using 500 evaluation points, 100 data points, and 0.3 smoothing length,
(a) maps û to color and (b) 3D comparison of û and the continuous field curve. The `∞-error
= 6.22391027605e-13.

To demonstrate the effectiveness of the code, a reproduction test, Figure 13, shows that since
the field function u(x) is a linear combination of the Taylor series monomial basis functions,
machine precision accuracy is achieved. Next, a test for a non-reproducing function can be
observed in Figure 14. Using a third order two dimensional (n = 3, d = 2) approximation, a
fourth order convergence for the zeroth derivative agrees with the expected theoretical result
from Equation (12).
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(a) Heat Map (b) 3D Map

Non-Reproducing Test: Approximation of Field Function, û

Figure 14: Third order Taylor series basis test for function u(x) = e−2x with Python LRE
implementation using 500 evaluation points, 500 data points, and 0.3 smoothing length. The
`∞-error = 0.000376385078803.

The spherized basis demonstrates success over the Taylor series basis by reproducing u(x) = r.
In Figure 15, it is shown that the spherized basis achieves machine precision error while the
comparable first order Taylor series, without r appended, only achieves second order conver-
gence per the theoretical results.
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Error Comparison for Reproduction: Spherized vs Taylor Series Basis

Figure 15: Comparison of first order spherized and Taylor series basis `2-error for function
u(x) = r with Python LRE implementation over two decades of smoothing length over 250
random evaluation points shows reproduction for spherized.

Comparing the evaluation of a radial, non-reproducing function using both first order Taylor
series and spherized bases reveals that while both have order two convergence, the spherized
performs slightly better, Figure 16 and Figure 17.
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Error Comparison Non-Reproducing Radial Field #1: Exponential

Figure 16: First order spherized and Taylor series basis test for function u(x) = e−2r with
Python LRE implementation over two decades of smoothing length over 300 random evalu-
ation points. The convergence rates are nearly identical for both spherized and Taylor series
bases.

Error Comparison Non-Reproducing Radial Field #2: Bessel

Figure 17: First order spherized and Taylor series basis test for function u(x) = J0(−2ri) over
two decades of smoothing length over 300 random evaluation points. Spherized converges with
the same order but has smaller error.
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Overall, it can be seen that not only does the spherized basis work in its own right, it
has favorable performance attributes compared to the standard Taylor series basis for radially
symmetric functions.
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Conclusions and Future Work

Tuned Regression for the Solution of Differential Equations

Local regression offers great promise as the basis for a novel mesh-free solver of differential
equations. A working C++ implementation was created and has been shown to reproduce the
desirable properties of local regression and to solve several time-independent examples. Tuned
regression as a mesh-free method offers numerous benefits over existing mesh-free approaches
by including the direct incorporation of boundary conditions (which are automatically and
exactly satisfied at all points on the boundary) and the flexibility of LRE to handle non-Taylor
series approximations.

The use of tuned regression to solve differential equations is new. This means that there
is much analysis to be done and strengths and weaknesses to be discovered. The sub-optimal
convergence rates for certain derivatives in the model problem are troubling. It is uncertain
whether this is a shortcoming of the method or whether it is an issue with the implementation.
When solving for the minimizer with Lagrange multipliers, the resulting matrix system can
be poorly conditioned. Preconditioning the system helps, though it is possible that there are
numerical errors produced in the solution step.

An immediate extension of this work is to tackle time-dependent problems. The heat equa-
tion is a prototypical problem, though elastodynamics or Euler equations/Navier-Stokes appear
within reach. Time-dependent problems raise new issues, including appropriate time-step se-
lection and numerical stability. Furthermore, questions are raised about how to advect the
particles and update the smoothing lengths. For Navier-Stokes or the Euler equations, the
flexibility of LRE offers the possibility of using the method to capture shocks. However, this
requires alternate weight functions which may depend on the current state of the system.

Finally, as discussed previously, the method solves for optimal data u j. However, this
seems redundant, given that an estimate of the function values βe0 is one of the outputs of local
regression. The optimal solution to the minimization with respect to the data is a Nadaraya-
Watson estimate of the local regression estimate. However, it is possible that other a priori
guesses for the data may yield better results. For example, one could regress directly against
the local regression estimate βe0. It remains to be seen how the choice of u j affects the accuracy
or convergence rate of the solution.

Spherized Bases

Local regression estimation is a powerful tool within the process of using mesh-free methods
to solve mechanics problems. It is highly flexible, thus requiring its code execution to contain
many parameters and design choices. Within the Python implementation presented here there
is substantial room for imbuing more robustness in this regard. For example, in order to better
solve material fracture mechanics, where particles lose neighbors as the material is pulled apart,
a faceted/polygonal support shape can provide more information via its edges compared to a
simple circular or ellipsoid shape. Hence, adding other support shapes like faceted, rectilinear,
and ellipsoid is an important extension for solving more types of problems more accurately.
As a result, there would be an additional need of the associated routines for finding the neigh-
bors within each shape and the opportunity to optimize the neighbor searching algorithm for
computational time and space. Another place for improvement related to the support is dynam-
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ically encoding smoothing length for optimal number of neighbors. As this implementation is
intended only as an educational tool, it is worth noting that at some point the Python language
is not suitable or capable enough in comparison to other lower-level languages to support the
level of performance required for advanced research and scientific development. Further, while
it is evident that a spherized basis performs successfully and more accurately for radial func-
tions, only a cursory amount of investigation and analysis was conducted. More work is needed
to find the full potential of a spherized basis including higher order basis, testing other spher-
ized options, for instance with the inclusion of θ , more convergence analysis to discover the
underlying mathematical trends, and ultimately using the spherized basis in the mesh-free nu-
merical solution of differential equations. Finally, with the promise of a spherized basis, it is
also worth asking what other non-Taylor Series basis can be concocted to help advance the
applicability of mesh-free methods.
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Abstract

We have implemented a set of variable density turbulence equations using the BHR
model into the open source computational fluid dynamics code OpenFOAM. We have
compared the results from axisymmetric calculations with OpenFOAM to experimental
results from the Turbulent Mixing Tunnel and with OpenFOAM results using the k-ε tur-
bulence model. We find some qualitative agreement between these results but note that a
full study will be needed before

Final Reports: 2015 Computational Physics Student Summer Workshop Page 186



Turbulence Modeling with BHR in OpenFOAM

Introduction
In many contexts, modeling all the physical scales of a hydrodynamical problem remains im-
possible with present computers. In this light, algorithms for modeling turbulence in a com-
putationally efficient manner have arisen; however, these algorithms often must be tailored to
the problems of interest. Here, we focus on one model for incompressible systems with two
miscible components of different densities.

In geophysical and astrophysical systems, fluids with multiple components of different
densities can play substantial roles. Certainly, the effects of variable density turbulence are
critical to modeling the results of inertial confinement fusion, astrophysical jets, and fuel injec-
tion systems, to name a few. In order to attempt a Reynolds-Averaged Navier Stokes (RANS)
formulation of such problems, we need to include additional terms that arise due to these
density changes, even in a Boussinesq limit. The BHR equations were originally derived to
address these concerns.[2] These equations have undergone substantial changes over the past
two decades.[6–8]

In order to complete the closures introduced in the above citations, the models are calibrated
to fluid dynamics problems with known solutions. For example, it is common to calibrate
the parameters according to the Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz
problems.[1] Once the calbration is complete, we can validate the models against physical
experiments of variable density turbulence.

In this report, it is our goal to attempt to reproduce the experimental results of the turbulent
mixing tunnel experiments.[5] This experimental setup is that of a vertical subsonic wind tunnel
filled with air traveling downward into which a jet of heavier material (either air with acetone
or sulfur hexaflouride) is injected from the top. Simultaneous two-dimensional velocity and
density fields can be measured at four measurement windows along the jet, and it is with these
observations that we can compare the results of our turbulence models.

Governing Equations

Exact Equations

The governing equations for an incompressible, two-phase fluid are as follows:

∂ρ

∂ t
+

∂ρui

∂xi
= 0, (1)

∂ρui

∂ t
+

∂ρu jui

∂x j
=− ∂ p

∂xi
+ρgi +

∂τi j

∂x j
, (2)

∂ρci

∂ t
+

∂ρu jci

∂xi
=

∂

∂xi
ρD

∂ci

∂xi
, (3)

where ρ is the density, ui is the i-component of the velocity, p is the pressure, gi is the i-
component of the gravitational acceleration, τi j is the stress tensor, ci is the mass fraction
of the ith species, and D is the molecular diffusion coefficient. Einstein notation is used to
simplify the expression. For this system, we will assume that there are only two species, c1 and
c2 such that c1 +c2 = 1. Because each individual phase is itself incompressible, we associate a
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constant, uniform density with each phase, ρ1 and ρ2, and describe them jointly using Amagat’s
Law

1
ρ

=
c1

ρ1
+

c2

ρ2
= c1

(
1
ρ1
− 1

ρ2

)
+

1
ρ2

. (4)

We can define a volume fraction αi of the ith species as ρ c̃i = ρ1αi such that

ρ = ρ1α1 +ρ2α2. (5)

We will be evolving αi rather that ci for numerical convenience.
By combining Equation 4 with Equations 1 and 3, we arrive at a velocity constraint to

ensure that the flow remain incompressible:

∂ui

∂xi
=− ∂

∂xi

D
ρ

∂ρ

∂xi
. (6)

Turbulence Equations

To construct the turbulent form of the above equations, we decompose the equations into their
average and turbulent parts, using either a traditional average,

ρ = ρ +ρ
′, (7)

where ρ ′ = 0, or using a Favre average,

ui = ũi +u′′i , (8)

where ũi = ρui/ρ . Either decomposition is formally correct, but in variable density systems,
it is analytically convenient to write all decompositions save density and pressure in the Favre
sense.

A full derivation of the turbulent equations is beyond the scope of this report, so the authors
recommend the work of Besnard et al. (1992).[2] The exact form of Equations 1–3 are as
follows:

∂ρ

∂ t
+

∂ρ ũi

∂xi
= 0, (9)

∂ρ ũi

∂ t
+

∂ρ ũ jũi

∂x j
+

∂Ri j

∂x j
=− ∂ p

∂xi
+ρgi +

∂τi j

∂x j
, (10)

∂ρ c̃i

∂ t
+

∂ρ ũ jc̃i

∂x j
+

∂ρu′′j c′′i
∂x j

=
∂

∂xi
ρD

∂ c̃i

∂xi
+

∂

∂xi
Dρ

∂c′′i
∂xi

, (11)

where Ri j = ρu′′i u′′j is the Reynolds stress tensor. To evaluate this system, we will need to
develop closures for any averages of the turbulent terms that remain.

Noting that we can convert from ci to αi by setting ρ c̃i = ρ1αi, we can express the species
equation as

∂αi

∂ t
+

∂ ũ jαi

∂x j
+

1
ρ1

∂ρu′′j c′′i
∂x j

=
∂

∂xi
ρD

∂

∂xi

αi

ρ
+

1
ρ1

∂

∂xi
Dρ

∂c′′i
∂xi

(12)
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We can also derive a velocity constraint by the same method as above, assuming that Equa-
tion 4 holds for the averages:

∂ ũi

∂xi
=− ∂

∂xi

D
ρ

∂ρ

∂xi
−
(

1
ρ1
− 1

ρ2

)(
∂ρu′′i c′′i

∂xi
− ∂

∂xi
Dρ

∂c′′i
∂xi

)
. (13)

This equation replaces Equation 9, just like its counterpart from the exact equations; however,
this equation also requires closures for the turbulent averages

Reynolds Stress and Turbulent Species Diffusion

The Reynolds stress is modeled using a gradient diffusion approximation:

Ri j =−2
3

ρk +ρνt

(
∂ ũi

∂x j
+

∂ ũ j

∂xi
− 2

3
δi j

∂ ũk

∂xk

)
, (14)

where νt = S
√

k, S is the turbulent length scale, and k is the kinetic energy associated with the
turbulence. To truly calculate this quantity, we need to generate equations for S and k.

To close Equations 11 and 13, we let

∂

∂xi
Dρ

∂c′′i
∂xi
− ∂ρu′′j c′′i

∂x j
=

∂

∂xi
ρ

νt

σα

∂ c̃i

∂xi
= ρ1

∂

∂xi
ρ

νt

σα

∂

∂xi

αi

ρ
, (15)

where σα is a parameter of the models.[2] Thus, Equation 11 becomes (if we rewrite the mass
fraction in terms of the volume fraction)

∂αi

∂ t
+

∂ ũ jαi

∂x j
=

∂

∂xi
ρ

(
D+

νt

σα

)
∂

∂xi

αi

ρ
, (16)

and Equation 13 becomes
∂ ũi

∂xi
=− ∂

∂xi

(D+σανt)
ρ

∂ρ

∂xi
. (17)

Kinetic Energy Equation

The kinetic energy equation is derived by taking the second moment of Equation 10 and com-
bining it with Equation 2. Again, the derivation of the exact form has been done.[2] The
closures have also been supplied elsewhere.[1] Thus, we only provide the results here:

∂ρk
∂ t

+
∂ρ ũik

∂xi
= ai

∂ p
∂xi
− Ri j

ρ

∂ ũ j

∂xi
+

∂

∂xi
ρ

νt

σk

∂k
∂xi
−ρ

k
3
2

S
, (18)

where ai =−u′′i is the mass flux. To close this equation, we now need to add another equation
for ai.
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Turbulent Length Scale Equation

The turbulent length scale equation is derived by taking the form of Equation 18 and applying it
to the turbulent energy dissipation, ε . The turbulent length scale has been defined as S = k3/2/ε

and rework the turbulent energy dissipation equation into the following:

∂ρS
∂ t

+
∂ρ ũiS

∂xi
=

∂

∂xi
ρ

νt

σε

∂S
∂xi

+
S
k

[(
3
2
−C4

)
ai

∂ p
∂xi
−
(

3
2
−C1

)
Ri j

∂u j

∂xi

]
, (19)

where σε , C1, and C4 are parameters of the model.[1]

Mass Flux Equation

The exact equation for the turbulent mass flux is also derived by looking at second moments.[2]
We present their closed version here for completeness:

∂ρai

∂ t
+

∂ρ ũ jai

∂x j
= b

∂ p
∂xi
− Ri j

ρ

∂ρ

∂x j
+ρ

∂aia j

∂x j
−ρa j

∂ ũi

∂x j
+

∂

∂x j
ρ

νt

σa

∂ai

∂x j
−Ca,1ρ

√
k

S
ai, (20)

where b = ρ1/ρ − 1 is the correlation of the turbulent perturbations of density and specific
volume. A fourth closure equation can be derived for this correlation. Here, we choose to use
the algebraic model from Banerjee et al. (2010):[1]

b = Cb
α1 α2 (ρ1−ρ2)

2

ρ1ρ2
, (21)

where Cb is a parameter of the model, which we set to 0.1.
This completely closes the system.

Verification
With some effort, a self-similar solution to these equations can be derived. This form of ver-
ification has been used frequently in the field, for example, see the work of Bradbury et al.
(1965).[3] The goal of this form of analysis is to find a solution for which a change of de-
pendent variables produces a static solution. For simplicity, we will reduce the equations to a
one-dimensional system:

∂ρk
∂ t
− ∂

∂x1
ρ

νt

σk

∂

∂x1
k = ai

∂

∂x1
p−ρ

k
S

√
k (22)

∂ρS
∂ t
− ∂

∂x1

ρνt

σε

∂

∂x1
S =

S
k

(
3
2
−C4

)
a1

∂

∂x1
p−
(

3
2
−C2

)
ρ
√

k (23)

∂ρai

∂ t
− ∂

∂x1

ρνt

σa

∂

∂x1
ai = b

∂

∂x1
p−Ca,1ρ

√
k

S
ai (24)

∂ραi

∂ t
− ∂

∂x1
ρ

νt

σα

∂

∂x1

αi

ρ
= 0 (25)
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If we assume a self-similar solution for the quantities in the above equations as follows,

z = αηAt|g1|t2, (26)

k = k̂ (At|g1|t)2 (1−η
2) , (27)

S = Ŝ
(
At|g1|t2)√1−η2, (28)

a1 = âiAt|g1|t
(
1−η

2) , (29)

αi =
1
2

+ α̂iη , (30)

we find that we can achieve a self-similar solution if we match powers of η to ensure that the
solution holds for all space.

We assume the fluid is Boussinesq and hydrostatic, so ∂ p
∂x1

= ρgi and we divide each term
by ρ . The species equation becomes

α
2 =

Cµ Ŝ
√

k̂
σα

. (31)

The kinetic energy equation then becomes

2k̂
(
1+η

2)=− 2
σα

(
1−3η

2) k̂ +
â1g1

|g1|
(
1−η

2)− k̂
3
2

Ŝ
, (32)

from which we can conclude, by matching powers of η , that σα = 1 and â1 = 4k̂Ŝ+k̂
3
2

Sg1/|g1| .
With these substitutions, the S equation reduces to

−2Ŝ =
1

σε

(
1−2η

2)+C2

√
k̂
(
1−η

2)−C4

(
4Ŝ +

√
k̂
)(

1−η
2)+2Ŝ

(
1−3η

2) , (33)

by matching powers of η we conclude that σε = 1/2 and Ŝ =−(C4−C2)
√

k̂
2(2C4−1) .

The last equation then is just

k̂ =
(C2−C4)

2

2(2C2−1)(3C2 +4C4Ca,1−3C4−2Ca,1)
, (34)

as long as σa = 1.
These expressions can then be solved for the traditional values of the turbulence coeffi-

cients.[7] We find that the value of k̂, Ŝ, âi, and α must be 0.051, 0.941, -0.214, and 0.243,
respectively.

Testing OpenFOAM against the Analytic Solution
We have sought to compare our numerical results against this analytic solution for verification
purposes of our implementation of the BHR model. We have run this one-dimensional test with
time steps in factors of ten from 0.1 seconds to 10−4 seconds and with a number of gridpoints
across the 2.0 meter domain of 25 to 1600 in factors of two. We find that our results compare
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favorably with the analytical results as we converge in both time and space, as can be seen in
Figure 1, where we plot the L1 relative error. We have discovered a small issue with these in
that the centroid of the solutions, which should remain fixed in space, appears to shift slightly.
In the attached figure, we have corrected the centroid of the simulation results to match the
analytic centroid to illustrate that the shape of the solution is converging, even though this
need to correct the offset does concern us. As we converge in time and space, the offset itself
converges to a value of 10−3, which is smaller than any resolution we have run thus far.
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Figure 1: The L1 relative error of several Rayleigh-Taylor simulations, described in Section .
We find that the simulations do converge with increasing temporal (color) and spatial (abscissa)
resolution. In this figure, we have corrected the centroid of the simulations to match that of
the analytic solution in order to compare results. This offset is less than a grid cell, but we are
somewhat concerned about the need to correct this. The non-monotonicity of this plot is also
concerning.

Simulation Setup
We have attempted to reproduce the experiment tubulent mixing tunnel experiments by using
several different numerical configurations. We use a jet diameter of 1.0 centimeter in a chamber
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0.5 meters wide and 1.0 meter long.[5] The Atwood number matches that of the air-acetone
experiment (0.11), and we use the velocities they observe in their experiments (26 meters per
second in the jet and 1.4 meters per second in the freestream). We use near-zero values for the
turbulent quantities in the freestream and initialize the jet with 20.0 square meters per square
second and a turbulent length scale of 3.0 centimeters to try to match the experimental results
to some degree. We run this in two geometries with cell widths of 1.0 centimeter for a plane-
parallel setup and an axisymmetric setup.

We run the jet both with our implemented BHR equations and with the standard k-ε model
already present in OpenFOAM in an axisymmetric geometry. We are aware that a correction
should be applied to the turbulence parameters for the axisymmetric geometry to slow the rate
of spreading, but we have not yet added these, so we seek only a qualitative comparison.[4] We
adopt a set of turbulence parameters that have been gathered from comparison with self-similar
solutions.[1]

By analyzing the trends of the profiles along the centerline of the jet, we can see that
our implementation of the BHR equations appears to be more diffusive than the built-in k-ε
equations. In particular, this can be seen by looking at the velocity profile at the first grid
cell: both simulations have the same initial velocity, but we see that the BHR velocity decays
by almost a fifth of its initial value instantly. This is likely due in large part to the much
larger value of k near the jet inlet, but the exact reason for this initially large value of k is
still unknown. The later behavior does match our implementation better, but it’s unclear how
meaningful this is since the initial jet disagrees substantially with the experimental results. To
better match the inlet values will require much more simulations with initial conditions and
possibly additional calibrations of the BHR equation parameters to better reproduce cases for
which the density gradient is mostly perpendicular to the flow of gravity.
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Figure 2: We show here the profiles measured along the jet center of k, S, b, and u. The results
from the BHR equations are in blue, those from k-ε are in green, and the experimental values
are in red crosses. The jet progresses in the positive x direction.
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Simulation Results
In our comparison of OpenFOAM k-ε and BHR turbulence models to the experimental data
results, it is important to note that we are using the axi-symmetric case. Therefore, we expect
our results to be at least some degree close to the experimental outcomes.

X0/d0=1.5

K-Epsilon BHR

X0/d0=3.3

X0/d0=16.2

X0/d0=30.2

Figure 3: Velocity comparison of BHR and k-ε models in OpenFOAM to experimental results
from the TMT at 4 specified locations.
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Figure 3 shows the velocity output from OpenFOAM using the k-ε and BHR turbulence
models compared to experimental results from the TMT. At x0/d0=1.5, the differences in the
models versus the experiment are quite large, with the experimental values near zero and the
Models have a non-zero peak at x0/d0=0; however, the experimental jet profile appears some-
what artificially peaked. At x0/d0=3.3, the experiment and model results for both BHR and
k-ε are much closer; both the K-epsilon and BHR models capture the max velocity of the flow
well. Further downstream at x0/d0=16.2, small velocity differences between the turbulence
models begin to appear. The BHR turbulence module produces a wider velocity distribution
around the jet with smoother wings far from the jet’s center. The k-ε model, on the other hand,
has a narrower velocity distribution, which is closer to the experimental results.

In Figure 3, it is important to note that for BHR and the k-ε models, the spreading rate of
the velocity is too fast. The centerline velocity decay rate is too fast also for the two turbulence
models. For the BHR model, we hypothesize that this is from the additional production mech-
anism from the buoyancy term.
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X0/d0=30.2

Figure 4: Turbulent length scale (S) comparison of BHR and k-ε models in OpenFOAM to
experimental results from the TMT at 4 specified locations.

Figure 4 shows the turbulent length scale output from the OpenFOAM k-ε and BHR turbu-
lence models. At x0/d0=1.5, BHR performs much better than the k-ε model. The BHR output
peaks around the jet center, but is approximately a factor of 1.5 off from the experiment. On
the other hand, the k-ε model produces turbulent length scales that appear morphologically

Final Reports: 2015 Computational Physics Student Summer Workshop Page 197



Turbulence Modeling with BHR in OpenFOAM

different from the experimental values. At x0/d0=3.3, the result is similar; k-ε has off center
peaks that are an order of magnitude greater than the experimental data.

At x0/d0=16.2, k-ε performs better, producing output on the same order of magnitude as
the experimental turbulent length scales. However, the shape for the k-ε modeled S is not cor-
rect. BHR turbulence does a better job, but the model’s distribution is still too wide and flat.
Lastly, at x0/d0=30.2, the experimental data does not particularly match either of the turbulent
length scales produced by either model.

For S in Figure 4, the shape for both of the turbulence models is not quite right. The k-ε
and BHR models have too wide and flat of distributions compared to the experimental results.
In the k-ε model, the peaked wings are concerning at first appearance, but they are likely an ar-
tifact of the k-ε boundaries. Thus, for our analysis, they should be considered inconsequential
and not a cause for alarm.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 198



Turbulence Modeling with BHR in OpenFOAM

X0/d0=1.5

K-Epsilon BHR

X0/d0=3.3

X0/d0=16.2

X0/d0=30.2

Figure 5: Turbulent kinetic energy (k) comparison of BHR and k-ε models in OpenFOAM to
experimental results from the TMT at 4 specified locations.

Figure 5 displays the turbulent kinetic energy output from OpenFOAM with the k-ε model
and the BHR turbulence model. At x0/d0=1.5, k-ε and BHR are both approximately an order
of magnitude off in peak amplitude from the experimentally determined k. Both models ap-
pear qualitatively similar to the experimental results in shape except near the first two stations,
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where the profile has two peaks. This is likely because both models appear somewhat too
diffusive to reproduce these results. Overall, the BHR and k-ε distributions look reasonable
and we can assess that the models are doing a sufficient job of depicting behavior of turbulence
kinetic energy in the experiment. However, the spreading rate is too high for both of the models.
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X0/d0=1.5

K-Epsilon BHR

X0/d0=3.3

X0/d0=16.2

X0/d0=30.2

Figure 6: Degree of mixing of density (b) comparison of BHR and k-ε models in OpenFOAM
to experimental results from the TMT at 4 specified locations.

The comparison of k-ε and BHR OpenFOAM output to experimental data of the degree
of density mixing is shown in Figure 6. For this comparison, the primary things to note are
that once again, the spreading rate of both of the models is too fast. In the case of the k-ε , the
equations have no b explicitly, so we must derive b from an algebraic model as a function of
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the volume fraction, alpha. Therefore, we can assess that in the case of the k-ε model, alpha
is controlling the decay rate of b. The BHR b decays much faster than the k-ε’s b, which is
something we should take into consideration for future work.

0 5 10 15 20 25 30 35
10-1

100

101

102

K-ε

BHR

Experiment

Figure 7: k-ε and BHR maximum turbulent kinetic energy (k) compared to experimental k
maximums at x0/d0=1.5,3.3,16.2,30.2

Figure 7 shows the maximum turbulent kinetic energy at all four measurement locations
specified by the experiment. The maximum k value shows how the turbulent kinetic energy
evolves with time. In Figure 7, BHR and k-ε turbulence models produce k values that evolve
together at different distances from the jet base. At first, the k-ε model produces a maxi-
mum turbulent kinetic energy slightly higher than that of the BHR model. However, further
downstream from the jet, the k-ε model drops below that the BHR model. Both models un-
derestimate the experiment by approximately a factor of five or so past x0/d0=16.2. It is also
important to note that both models show a rapid decay in maximum turbulent kinetic energy
whereas the experimental results show a much more gradual decline. The nearest point be-
tween the k maximum of the model is x0/d0=3.3.
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Conclusions
For our project, we added BHR turbulence to OpenFOAM and compare the results with K-
Epsilon turbulence in OpenFOAM and experimental results from the Turbulent Mixing Tunnel
(TMT). Upon implementating the BHR model into OpenFOAM, we found that the analytical
results converged in both time and space as expected, with a minimum error of 10−4. Upon
comparing OpenFOAM BHR and K-Epsilon turbulence models to experimental results, we
found BHR generally performed better, particularly in modeling the turbulence kinetic energy
and of the flow velocity. However, the degree of mixing of density (b) was over two orders of
magnitude off due to the nature of using an analytic equation to solve for b instead of the full
transport equations.

Since this is the product of a short summer project, we have merely scratched the surface
of what still needs to be done with this work. Firstly, we should use the aforementioned full
transport equations to describe b instead of an analytic equation. Also, we need to perform
additional testing and verfication to ensure that the BHR turbulent model is behaving as it
should within OpenFOAM. Lastly, a more thorough in depth comparison of experimental and
simulated data should be run for completeness. After these tasks have been completed, using
OpenFOAM BHR turbulence as a test bed for larger turbulence models, such as FLAG at
LANL, may be an option.
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Abstract

Many phenomena can be described at different levels of detail by varying the choice
of physical model. High-fidelity microscopic models generally come with an increased
computational cost compared to low-fidelity macroscopic models. It is often the case
that we desire the detail of the microscopic model on macroscopic scales. The heteroge-
neous multiscale method (HMM) provides a computational and analytical link between
disparate physical models. It can be used to hybridize physical models in a way that
improves the accuracy of the macroscale model while avoiding much of the computa-
tional expense of the microscale model. Accurately modeling plasmas generally requires
expensive microscale models, so exploiting scale disparities has the potential to provide
significant computational benefits. Given an accurate relaxation parameter, the Bhatnagar-
Gross-Krook (BGK) approximation is an effective and efficient kinetic model for plasmas
that are near equilibrium. This parameter, however, is difficult to know a priori. Molecular
dynamics offers a fully detailed model for ionic motion, but is computationally intensive.
In this report, we present a proof of concept of HMM as a modeling method for plasmas.
Simulations using the hybrid kinetic-molecular dynamic model are both more accurate
than the kinetic model alone, and orders of magnitude more efficient than the molecular
dynamics model alone.
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Introduction

Multiscale modeling

Most mathematical and scientific problems contain phenomena with widely varying length
and time scales of interest. Multiscale modeling aims to take advantage of this disparity to
understand complex behavior at the necessary level of detail [11]. Multiphysics problems are
a prototypical example of problems that are well-addressed by a multiscale approach. There
is a hierarchy of physical models that allow systems to be modeled with varying degrees of
detail, illustrated in Figure 1. Quantum mechanics (QM) provides a complete description of
physical interactions, but is often computationally and analytically intractable for all but the
simplest systems. From quantum mechanics, one can derive laws of molecular dynamics (MD)
as a more tractable, but less detailed physical description than the wavefunctions of quantum
mechanics. These laws of motion are governed by interparticle potentials. From molecular
dynamics, kinetic theory (KT) can be derived as a statistical description of molecular motion.
Here, collisional cross-sections, an abstract quantity that averages away the behavior of individ-
ual particles, governs the evolution of the system. An even coarser model, hydrodynamics, can
be derived either directly from molecular dynamics or from kinetic theory. Here, equations of
state, which contain less detail than cross-sections, determine system behavior. With each step
up the hierarchy, physical detail is generally sacrificed for greater computational efficiency.

Figure 1: Multiscale model hierarchy [12]. As we progress up the hierarchy, the sizes of the
spatial and temporal domains we can compute reasonably with a model increase, but the level
of detail decreases. HMM seeks to construct a hybrid method that joins two models at different
levels in the hierarchy.

Heterogeneous multiscale method

Unlike many multiscale models that use macroscale models to accelerate fully microscale sim-
ulations, the heterogeneous multiscale method (HMM) takes a top-down approach to multi-
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physics modeling [12]. Multiple levels of detail are combined such that the models are math-
ematically consistent. HMM focuses on the coarsest (macroscale) model because it can be
efficiently computed over much larger time scales than the more detailed (microscale) model.
The goal is to minimize the computational time spent in the fine regime, using the microscale
model only when it is critical to the accuracy of the solution. The two regimes are connected by
a compression operator, which compresses the necessary information in the microscale system
into a consistent macroscopic description of the same system, and a reconstruction operator,
which generates a microscale system that matches the properties of the macroscale [12]. The
result is a hybrid simulation method that retains much of the computational speed of the coarse
model with much of the accuracy of the fine model. This is essential when facing problems that
have a large spatial or temporal region of interest, but which also include regions or aspects of
interest that require microscopic detail. A full microscopic simulation would be prohibitively
expensive, and a full macroscopic simulation would overlook crucial physical behavior in the
domain. HMM is ideally suited to these types of problems.

Most HMM problems belong to one of two categories, which are outlined in Figure 2. Type
A problems use the microscale model in isolated regions, such as material defects, interfaces,
or shocks, where the macroscale model is insufficient to model the system. Type B problems
exploit the microscale to provide an informed estimate of parameters that are necessary to
close the macroscale system. A range of example applications of Type A and Type B problems
is provided in [12]. See [6] for detailed solutions of Type A and Type B problems using a
combination of hydrodynamics and molecular dynamics. The problem we are solving is of
Type B; we use molecular dynamics simulations on the microscale to periodically provide an
estimate of the relaxation parameter in our macroscale kinetic theory model. This general
strategy is illustrated in Figure 3.

Figure 2: Let τ be some quantity, such as the stres tensor, that is required to compute fluxes. (a):
Type A problem. There is an isolated discontinuity, for example a shock, in some quantity U . In
the rest of the domain constitutive relations can be used to compute τ , but in the discontinuity
region, a microscale model is used since constitutive relations are insufficient. (b): Type B
problem. There is no sufficient constiutive model for τ , so τ is computed at all cell interfaces
using a constrained microscale model.
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Figure 3: Illustration of the computational time spent in different computational regimes during
an HMM simulation. In our system, the microscale is molecular dynamics simulation and
the macroscale is kinetic theory simulation. Lines moving vertically upward correspond to
the compression operator, lines moving vertically downward correspond to the reconstruction
operator.

Plasmas

Plasmas are electrically neutral systems of electrons and ions in which each ion interacts with
many neighbors, making collective effects critical [10]. Because opposite charges attract, each
positive ion tends to be surrounded by a cloud of negatively charged background electrons
which effectively “screen” the electrostatic field [2]. The length scale of this near-neighbor
interaction is represented by the Debye length λ . This causes the potential around ions to
fall rapidly, limiting the relevant interaction range between charged particles to a few Debye
lengths. Examples of plasmas include astrophysical phenomena, such as stars and the inter-
planetary medium, terrestrial phenomena, such as lightning and aurorae, and technological
constructs, such as plasma televisions and the materials used in fusion reactor research. Plas-
mas can exist at a wide range of temperatures and can exhibit a wide degree of coupling. We
focus on plasmas that are moderately coupled, between the fully kinetic and fully hydrody-
namic regimes.

Motivation

In this report we develop a hybrid multiphysics framework for modeling plasmas using the
heterogeneous multiscale method (HMM). To model our system we combine the Bhatnagar-
Gross-Krook (BGK) appoximation to the Boltzmann equation with molecular dynamics to
model the time-evolution of a plasma system. This proof-of-principle model is designed to
be as general and mathemetically rigorous as possible. Our goal is not to model any specific
system, but rather to develop the framework to model a class of problems involving weakly
to moderately coupled plamas. We choose this regime because very weakly coupled plasmas
can be better modeled as ideal gases and highly coupled plasmas can be better modeled using
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hydrodynamic relations. In the moderately-coupled regime, kinetic effects are significant. This
formulation is novel in two ways: to our knowledge this is the first HMM formulation to
combine molecular dynamics with kinetic theory, and also the first attempt to model plasmas
using HMM.

Model Formulation
Our model system is plasma in which the ions are confined to a two-dimensional plane on a
periodic domain, shown in Figure 4. Periodic boundary conditions effectively approximate
the behavior of a much larger domain, since ion interactions are screened by the background
electrons. We seek to demonstrate multiscale plasma modeling as a proof-of-principle. The
theoretical results are easily generalized to a three-dimensional system. However, the link
between the kinetic and MD models does not depend on the dimensionality of the system, so
we confine ourselves to a two-dimensional simulation for computational efficiency. We choose
a screened potential because this avoids the additional complexity and computational cost of
explicitly modeling electrons. This is a sufficient description of physical systems in which we
are only interested in ion behavior and where the time scale of plasma interactions is much
slower than the timescale of electron motion.

Figure 4: Ions are confined to a two-dimensional plane with periodic boundary conditions.
Electrons are only modeled implicitly through the screened potential. There may be multiple
ion species, denoted by the different colors.

There are physical examples of plasmas that are confined to a plane, such as dusty plasmas,
which consist of large (millimeter to nanometer), highly charged particles. They can be found
in the mesosphere of the earth, industrial processing, and laboratory experiments. In experi-
ments, they can be confined to a plane by a balance of gravitational force and vertical electric
force generated by the laboratory. Electrons, which weigh siginificantly less than the ions, are
free to move in three dimensions, but the motion of the ions is confined to a flat plane [8].
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To use HMM to simulate this system, we select the Bhatnagar-Gross-Krook (BGK) ap-
proximation of the Boltzmann equation as our coarse (macroscale) kinetic theory model and
molecular dynamics as our fine (microscale) model. An advantage of the BGK model is that
the quantities we must derive from the molecular dynamics simulations, the relaxation times
τkl , are low-dimensional, depending only on position. This is in contrast to the collisional
cross-sections needed to connect MD to a Boltzmann kinetic formulation or the two-particle
correlation functions fkl needed to connect MD to the BBGKY hierarchy, both of which are
significantly more difficult to compute from MD. The quantity of interest in the BGK model is
the distribution of each ion species. For ion species k, we represent this distribution by fk(r,v),
which gives the expected number of particles of species k at position r = (x,y) with velocity
v = (vx,vy). fk is normalized such that integrating fk over a region A in phase space gives the
expected number of particles in A at time t. The partial differential equation governing this
distribution is

∂ fk

∂ t
+v ·∇r fk +

Zke
mk

E(r, t) ·∇v fk = ∑
l

f eq
kl − fk

τkl

E(r, t) =−
∫ 1

4πε0
ρ(r′, t)∇r

(
e−|r−r′|/λ

|r− r′|

)
dr′

fk(r,v,0) = fk(r,v)
fk(r,v, t)|x=0 = fk(r,v, t)|x=Lx

, fk(r,v, t)|y=0 = fk(r,v, t)|y=Ly

(1)

Here, Zk is the charge of the ion and mk is its mass. E(r) is the electric field at position r due
to all the ions of all species in the system. e is the unit charge, ε0 is the vacuum permittivity, ρ

is the charge density due to every ion species, and λ is the Debye length describing the degree
of electron screening. f eq

kl is the equilibrium distribution of the mixture of ion species k and l,
and τkl is the time scale for relaxation towards this equilibrium distribution. f eq

kl is constructed
such that the conservation laws are satisfied. τkl is the required input quanitity from MD to the
BGK model.

In the MD model, we have N ions that are individually tracked according to the Hamiltonian
equations

∂ri

∂ t
=

1
mi

∇viH

∂vi

∂ t
=− 1

mi
∇riH

H({rk}N
k=1,{vk}N

k=1) = ∑
α

[
mα |vα |2

2
+ ∑

α< j
Uα j(rα ,r j)

]
.

(2)

Consider Ω different species with their own charges and masses. Here ri and vi are the position
and velocity of ion i. H is the Hamiltonian of the system, consisting of the sum of the kinetic
energy and the potential energy. Ions evolve according to these simple equations in a peri-
odic two-dimensional box. Note that, though motion is confined to this two dimensional box,
representing the interaction with a screened Yukawa potential requires the system to actually
be three-dimensional. Indeed, although not modeled explicitly, the electrons are able to move
freely in 3D space; only the ions are confined to 2D.
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The potential energy Ui j(ri,r j) represents the potential energy of particle i due to particle
j, screened by the electrons. It depends upon the identity of the two particles, as well as
their positions. Let the indices of the particles that are of species one be expressed as S1 =
{1, . . . ,N1} where N1 is the number of ions of species one. Similarly, the indices of species k
are Sk = {1+∑

k−1
l=1 Nl, . . . ,∑

k
l=1 Nl}. Interparticle potentials can thus be written as Ui j(ri,r j) =

U{kl}(ri,r j) where i ∈ Sk and j ∈ Sl . We leave this potential general when deriving the kinetic
equations, such that this derivation is generalizable to any desired potential. We only require
that the potential satisfy the constraint that ∑i ∑i< j Ui j(ri,r j) be fixed under a permutation of
particle indices. That is,

∑
i

∑
i< j

Ui j(ri,r j) = ∑
p(i)

∑
p(i)<p( j)

Up(i),p( j)(rp(i),rp( j))

for all permutations {1,2, . . .}→ {p(1), p(2), . . .}. This simply implies that the total potential
energy is independent of the choice of indices, which is a natural requirement.

Let ions of species k have mass mk and charge Zk. Using the Yukawa potential to simulate
electron screening, the potential energy between two ions at position r and r′ with charges Zk
and Zl respectively is

U{kl}(r,r′) =
ZkZle2

4πε0

e−|r−r′|/λ

|r− r′| . (3)

BGK and MD models have a vast history of analytical and computational investigation. The
HMM model requires us to connect them in a rigorous and explicit manner.

Multiscale derivation

Our system is described in full detail when we evolve every ion in the molecular dynamics sim-
ulation according to the Hamiltonian equations (2). We will derive, from this starting point, the
BGK kinetic theory formulation of the problem (1). We begin by constructing a Klimontovich
distribution [4] Nk for each species k that stores the location ri and velocity vi of every ion of
that species at a given time t:

Nk(r,v,{rα}N
α=1,{vα}N

α=1, t) = ∑
i∈Sk

δ (r− ri(t))δ (v−vi(t)) . (4)

δ (x) is the Dirac delta function. We are interested in the time evolution of the Klimontovich
distribution. Thus, an aside relating to distributions and their derivatives is warranted.

Distributional derivatives

Consider the set of test functions, D(R) that are infinitely differentiable and have compact
support. A distribution is a linear mapping T : D(R)→ R. By convention, the operation of a
distribution T on a target function f is written 〈T, f 〉, and is defined as the integral over R of the
product between T (x) and f (x). The Dirac delta “function” can thus be written 〈δ , f 〉= f (0).

The derivative of a distribution is defined as 〈T ′, f 〉 = −〈T, f ′〉. This is a consequence of
integration by parts:

〈T ′, f 〉=
∫

∞

−∞

δ
′(x) f (x) dx = [ f (x)δ (x)]∞−∞

−
∫

∞

−∞

δ (x) f ′(x) dx =−〈T, f ′〉.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 211



Plasma Modeling with the Heterogeneous Multiscale Method

We discount the first term in the integration by parts because our test functions are con-
sidered equal to zero outside of a bounded set. Though we will not explicitly compute the
derivative of δ (x), it suffices to show that it exists and is well-defined. The above definition
of the distributional derivative also allows for a seamless use of the product and chain rules
in their standard forms in the presence of distributions. Our problem utilizes two-dimensional
Dirac delta functions, defined as

δ (r) = δ (rx)δ (ry).

The gradient of this function similarly exists:

〈∇rδ (r), f 〉=−〈δ (r),∇r f 〉.

Gradients of two-dimensional delta functions are thus well defined.

Derivation of BGK from MD

Returning our attention to the time evolution of the indicator function, the Klimontovich dis-
tribution Nk, we have

∂Nk

∂ t
= ∑

i∈Sk

∂

∂ t
[δ (r− ri(t))δ (v−vi(t))]

= ∑
i∈Sk

δ (v−vi(t))
∂

∂ t
δ (r− ri(t))+δ (r− ri(t))

∂

∂ t
δ (v−vi(t))

= ∑
i∈Sk

{
δ (v−vi(t))

∂ (r− ri(t))
∂ t

·∇(r−ri)[δ (r− ri(t))]

+δ (r− ri(t))
∂ (v−vi(t))

∂ t
·∇(v−vi)[δ (v−vi(t))]

}
= ∑

i∈Sk

{
− ∂ri(t)

∂ t
δ (v−vi(t)) ·∇r[δ (r− ri(t))]

− ∂vi(t)
∂ t

δ (r− ri(t)) ·∇v[δ (v−vi(t))]
}

.

We now use the definition of the Hamiltonian. We focus our attention on particle i:

∂ri

∂ t
=

1
mi

∇viH =
1
mi

∇vi

(
∑
α

[
mα |vα |2

2
+ ∑

α< j
Uα j(rα ,r j)

])
= vi. (5)

In order to consider the potential, first we permute the indices such that particle i and particle

Final Reports: 2015 Computational Physics Student Summer Workshop Page 212



Plasma Modeling with the Heterogeneous Multiscale Method

1 switch places. That is, p(i) = 1. Furthermore, let particle i be a member of species k, so

∂vi

∂ t
=− 1

mi
∇riH =− 1

mi
∇ri

(
∑
α

[
mα |vα |2

2
+ ∑

α< j
Uα j(rα ,r j)

])

=− 1
mi

∇rp(i)

[
∑

p(α)
∑

p(α)<p( j)
Uα j(rα ,r j)

]

=− 1
mi

∇rp(i)

[
∑

p( j)6=1
Ui j(rp(i),rp( j))

]

=− 1
mi

∇rp(i)

[
∑

l
∑

p( j)∈Sl ,p( j)6=1
U{kl}(rp(i),rp( j))

]
.

(6)

Abusing notation, let us redefine the indices such that i = p(i). Using (5) and (6), we find

∂Nk

∂ t
= ∑

i∈Sk

[
−∂ri(t)

∂ t
δ (v−vi(t)) ·∇rδ (r− ri)− ∂vi(t)

∂ t
δ (r− ri(t)) ·∇v[δ (v−vi(t))]

]
= ∑

i∈Sk

[
−viδ (v−vi(t)) ·∇rδ (r− ri(t))

+
1
mi

δ (r− ri(t))∇ri

[
∑

l
∑

j∈Sl , j 6=1
U{kl}(ri,r j)

]
·∇vδ (v−vi(t))

]
= ∑

i∈Sk

[
−viδ (v−vi(t)) ·∇rδ (r− ri(t))

+
1

mk
δ (r− ri(t))∇ri

[
∑

l
∑

j∈Sl , j 6=1
U{kl}(ri,r j)

]
·∇vδ (v−vi(t))

]
.

Notice that viδ (v−vi(t)) is only nonzero when v = vi, such that

viδ (v−vi(t)) = vδ (v−vi(t)).

Similarly, ∇riU{kl}(ri,r j) depends on ri, so it is only nonzero when r = ri, at which point

∇riU{kl}(ri,r j)δ (r− ri(t)) =∇rU{kl}(r,r j)δ (r− ri(t)).
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Making these substitutions,

∂Nk

∂ t
= ∑

i∈Sk

[
−viδ (v−vi(t)) ·∇rδ (r− ri(t))

+
1

mk
δ (r− ri(t))∇ri

[
∑

l
∑

j∈Sl , j 6=1
U{kl}(ri,r j)

]
·∇vδ (v−vi(t))

]
=−v ·∇r ∑

i∈Sk

δ (r− ri(t))δ (v−vi(t))

+
1

mk
∇r

[
∑

l
∑
j∈Sl

U{kl}(r,r j)

]
·∇v ∑

i∈Sk

δ (r− ri(t))δ (v−vi(t))
]

=−v ·∇rNk +
1

mk
∇r ∑

l

[
∑
j∈Sl

U{kl}(r,r j)

]
·∇vNk.

We can think of the term ∑l
[
∑ j∈Sl

U{kl}(r,r j)
]

as the potential at the point r due to every
ion. We now take the ensemble average of both sides of this equation, defined as fk(r,v, t) =
E[Nk]. This ensemble average is taken with respect to all equivalent initial choices for ri(0)
and vi(0). Thus, this expected value only acts on ri and vi. Using this, we can show

E
[

∂Nk

∂ t

]
=E

[
−v ·∇rNk +

1
mk

∇r ∑
l

[
∑
j∈Sl

U{kl}(r,r j)

]
·∇vNk

]
∂E[Nk]

∂ t
=−E [v ·∇rNk]+

1
mk

E

[
∇r ∑

l

[
∑
j∈Sl

U{kl}(r,r j)

]
·∇vNk

]
∂ fk

∂ t
=−v ·∇rE[Nk]+

1
mk

E

[
∇r ∑

l

[
∑
j∈Sl

U{kl}(r,r j)

]
·∇vNk

]
∂ fk

∂ t
=−v ·∇r fk +

1
mk

E

[
∇r ∑

l

[
∑
j∈Sl

U{kl}(r,r j)

]
·∇vNk

]
.

Because v and the ∇r gradient do not depend on any of the ensemble variables, we can simplify
the first term. We cannot do the same with the second term because the potential field is heavily
dependent on the initial positions of the ions and their subsequent trajectories.

Consider multiplying the potential function by several delta functions and integrating:

∑
l

∑
j∈Sl

U{kl}(r,r j) =∑
l

∑
j∈Sl

∫∫
U{kl}(r,r′)δ (r′− r j)δ (v′−v j)dr′dv′

=∑
l

∫∫
U{kl}(r,r′) ∑

j∈Sl

δ (r′− r j)δ (v′−v j)dr′dv′

=∑
l

∫∫
U{kl}(r,r′)Nl(r′,v′, t)dr′dv′.
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Plugging this into our remaining expected value expression, we have

E

[
∇r ∑

l

[
∑
j∈Sl

U{kl}(r,r j)

]
·∇vNk

]
=E

[
∇r ∑

l

[∫∫
U{kl}(r,r′)Nl(r′,v′, t)dr′dv′

]
·∇vNk(r,v, t)

]

=E

[∫∫
∇r ∑

l

[
U{kl}(r,r′)Nl(r′,v′, t)

]
dr′dv′ ·∇vNk(r,v, t)

]

=E

[∫∫
∑

l

[
∇r
(
U{kl}(r,r′)

) ·∇vNl(r′,v′, t)Nk(r,v, t)
]

dr′dv′
]

=
∫∫

∑
l

[
∇r
(
U{kl}(r,r′)

) ·∇vE
[
Nk(r,v, t)Nl(r′,v′, t)

]]
dr′dv′.

We have once again simplified the expected value to contain only the terms that depend on
the ion positions and velocities. Let us consider this term more carefully:

Nk(r,v, t)Nl(r′,v′, t) =

(
∑
i∈Sk

δ (r− ri(t))δ (v−vi(t))

)(
∑
j∈Sl

δ (r′− r j(t))δ (v′−v j(t))

)
.

This expression is only nonzero when there is a particle of species k at (r,v) and a particle of
species l at (r′,v′). Thus, it can be expressed as

Nkl(r,v,r′,v′,{rk}n
k=1,{vk}n

k=1, t) = ∑
i∈Sk, j∈Sl

δ (r− ri(t))δ (v−vi(t))δ (r′− r j(t))δ (v′−v j(t)).

Nkl , which exists for every pair of species, is a generalization of Ni to two particles
that may be of different species. Its expected value is the two-particle correlation function
fkl(r,v,r′,v′, t). At this point, we have derived the BBGKY hierarchy. If fkl could be com-
puted in MD, we could couple these two models. One advantage of this would be that the
BBGKY hierarchy involves no assumptions and is an exact statistical description of the sys-
tem. However, fkl is high-dimensional and difficult to compute from MD. Therefore, we make
some simplifying assumptions. Because fkl is the two-particle correlation function, we write it
without loss of generality as

fkl(r,v,r′,v′, t) = fk(r,v, t) fl(r′,v′, t)+Ckl (7)

where Ckl is a complicated, unknown remainder function. Substituting this into our differential
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equation, we have

E
[

∇r ∑
l

[
∑
j∈Sl

U{kl}(r,r j)
]
·∇vNk

]
=
∫∫

∑
l

[
∇r
(
U{kl}(r,r′)

) ·∇v fkl(r,v,r′,v′, t)
]

dr′dv′

=
∫∫

∑
l

[
∇r
(
U{kl}(r,r′)

) ·∇v
[

fk(r,v, t) fl(r′,v′, t)+Ckl
]]

dr′dv′

= ∇r ∑
l

(∫∫
U{kl}(r,r′) fl(r′,v′, t)dr′dv′

)
·∇v fk +C′kl

= ∇r ∑
l

(∫
U{kl}(r,r′)

(∫
fk(r′,v′, t)dv′

)
dr′
)
·∇v fk +C′kl

= ∇r ∑
l

(∫
U{kl}(r,r′)nl(r′, t)dr′

)
·∇v fk +C′kl.

C′kl is an additional unknown function quantifying the collisional properties between species k
and species l. We here make use of the fact that the particle density of ion k, nk(r, t), is defined
as the velocity integral of fk.

Up until this point, we have left the potential function undefined. For different problems,
a different molecular dynamics potential function will lead to a different multiscale kinetic
theory formulation. We here use the Yukawa potential between ions (3), representing Coulomb
interactions screened by background electrons. Let Zke be the electric charge of ion species k,
and λ be the Debye length dictating the degree of electron screening. Then,

U{kl}(r,r′) =
ZkZle2

4πε0|r− r′|e
−|r−r′|/λ .

Plugging this in, we get

∇r ∑
l

(∫
U{kl}(r,r′)nl(r′, t)dr′

)
= ∇r ∑

l

(∫ ZkZle2

4πε0|r− r′|e
−|r−r′|/λ nl(r′, t)dr′

)
= Zke∇r

∫
ρ(r′, t)

4πε0|r− r′|e
−|r−r′|/λ dr′

= Zke
∫ 1

4πε0
ρ(r′, t)∇r

(
e−|r−r′|/λ

|r− r′|

)
dr′ (8)

=−ZkeE(r, t),

where we have defined the total charge density to be

ρ(r, t) = ∑
l

Zlnl(r, t). (9)

In three dimensions, the electric potential of a charge distribution governed by the Yukawa
potential satisfies the screened Poisson equation:

(4−λ
2)φ(r, t) =− 1

ε0
ρ(r, t) (10)
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and the electric field can be computed by

E(r, t) =−∇rφ(r, t). (11)

This is an efficient and computationally robust way to compute the electric field in three dimen-
sions. However, in two dimensions, there exists no such simple ordinary differential equation
for the electric potential, and we must compute the electric field directly by evaluating the in-
tegral (8), which is difficult to evaluate due to the short range of the Yukawa potential [1]. This
is a drawback only of the simplified two-dimensional model, and does not pose any issues in a
fully physical implementation.

Regardless, the partial differential equation governing the evolution of fk is

∂ fk

∂ t
+v ·∇r fk +

Zke
mk

E(r, t) ·∇v fk = ∑
l

C′kl.

Each species distribution evolves according to its respective PDE. Only the unknown C′kl terms
remain. They are exceptionally complicated functions relating to the ion correlations. They are
typically called the “collisional” terms since they describe particle-particle interactions beyond
the electric potential interaction. The Bhatnagar-Gross-Krook (BGK) approximation of these
terms is

C′kl =
f eq
kl (r,v, t)− fk(r,v, t)

τkl(r)
,

where f kl
eq is the known Maxwellian equilibrium distribution for the mixture of species k and l

and τkl(r) is a relaxation parameter. Calculation of τkl is typically handled in an ad hoc manner.
We instead derive a means of computing these parameters from an MD simulation. Thus, the
kinetic partial differential equation is

∂ fk

∂ t
+v ·∇r fk +

Zke
mk

E(r, t) ·∇v fk = ∑
l

f eq
kl − fk

τkl

E(r, t) =−
∫ 1

4πε0
ρ(r′, t)∇r

(
e−|r−r′|/λ

|r− r′|

)
dr′

fk(r,v,0) = fk(r,v)
fk(r,v, t)|x=0 = fk(r,v, t)|x=Lx

, fk(r,v, t)|y=0 = fk(r,v, t)|y=Ly

as described in (1). In the next section, we demonstrate how to derive the relaxation times τkl
from a molecular dynamics simulation.

Derivation of compression operator

The key steps of HMM are compression and reconstruction. The reconstruction operator is
discussed at length in the following section. Here we derive a complete compression operator
to instantiate a BGK simulation from the MD simulation with the proper parameters.

First, in order to initialize BGK from MD, we must construct an MD discretized version
of fk, which will serve as the initial condition in the BGK simulation. Let us call this function
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gk. Drawing from [7], consider the Klimontovich distribution Nk, and integrate it over a small
region in phase space:

gk(rn,vm, t) =
∫ rn+∆r

rn

∫ vm+∆v

vm

Nk(r,v,{rα}N
α=1,{vα}N

α=1, t)drdv

where gk(rn,vm, t) is the number of ions of species k that fall in the phase space region defined
by [rn,rn +∆r]× [vm,vm +∆v]. fk(r,v, t) is defined as the expected particle density of species
k at time t at position r with velocity v. Thus, if we take ∆r→ 0 and ∆v→ 0, E[g(rn,vm, t)]→
f (rn,vm, t) by definition. gk is therefore a discretized, approximate version of fk.

Now, in order to fully initialize BGK, we must develop a means of extracting an approxima-
tion of the parameters τkl from the MD simulation. We will assume τkl is spatially dependent,
but not velocity dependent. Critically, the relaxation times τkl have no formulae as a function
of {ri}N

i=1 and {vi}N
i=1. We must compute τkl through some auxiliary function or functions.

The BGK equation is constructed to inherit useful features of the Boltzmann equation. One
of the most important of these features is the existence of an H-theorem [9]. Namely, we can
define the quantity H as

H(t) =
∫∫

f (r,v, t) log( f (r,v, t))drdv, (12)

and this function will be monotonically decreasing. H is a critical quantity in statistical me-
chanics, and it is often compared to entropy. Consequently, we would like to select τkl such
that the derivative of H (i.e. the entropy production rate) in the BGK equation matches the
computed rates of change of H from the MD simulation. This rate can be decomposed into
contributions from all species pair interactions at all spatial coordinates, so we select each
τkl(r) such that the contribution to the entropy production rate from the {k, l} interaction at
that point is the same in MD and BGK.

Our computation of H in MD draws from [7]. Consider now the distribution of all species
together, f , which is approximated in MD by g:

∑
k

fk(r,v, t) = f (r,v, t)≈ E[g(r,v, t)] = ∑
k

gk(r,v, t) (13)

Let us discretize r with spacing ∆r and v with spacing ∆v in all directions. Then H can be
computed from our MD simulations by:

HMD =
∫∫

f (r,v, t) log( f (r,v, t))drdv

≈
∫∫

E[g(r,v, t)] log(E[g(r,v, t)])drdv

≈∑
n

∑
m

E[g(rn,vm, t)] log(E[g(rn,vm, t)])(∆r∆v)d

where d is the dimensionality of the problem and ∑n ∑m is interpreted as the sum over all
positions and velocities up to some cutoff velocity. For example, in three dimensions, this
would become a six-sum over the three spatial and velocity dimensions. We now decompose g
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into the different species components and consider the time derivative of HMD:

dHMD

dt
≈ ∂

∂ t

(
∑
n

∑
m

E[g(rn,vm, t)] log(E[g(rn,vm, t)])(∆r∆v)d
)

=∑
n

∑
m

(
∂E[g]

∂ t
(log(E[g])+1)

)
(∆r∆v)d

=∑
k

∑
n

(
∑
m

[
∂E[gk]

∂ t
(log(E[g])+1)

]
(∆r∆v)d

)
The quantity inside the parentheses can be computed from the molecular dynamics simulation,
with the ensemble averages being approximated as time averages. It has also been decomposed
into terms corresponding to the entropy production of each species k at each position rn.

Consider now the time derivative of the BGK form of H:

∂HBGK

∂ t
=

∂

∂ t

∫∫
f log( f )drdv

=
∫∫

∂ f
∂ t

(log( f )−1)drdv

=∑
k

∫∫
∂ fk

∂ t
(log( f )−1)drdv

=∑
k

∫∫
∑

l

f eq
kl − fk

τkl
(log( f )−1)drdv

−
∫∫

v ·∇r f (log( f )−1)drdv

−
∫∫ Zke

mk
E(r, t) ·∇v f (log( f )−1)drdv.

Consider the third integral. We use the divergence theorem and the fact that f vanishes at large
|v| to show∫∫ Zke

mk
E(r, t) ·∇v f (log( f )−1)drdv =

∫ Zke
mk

E(r, t) ·
∫

∇v( f log( f ))dvdr

=
∫ Zke

mk
E(r, t) ·

(∮
f log( f )dv

)
dr

= 0

Thus,

dHBGK

dt
= ∑

k

(
∑

l

∫∫ f eq
kl (r,v, t)− fk(r,v, t)

τkl(r)
(log( f )−1)drdv

−
∫∫

v ·∇r f (log( f )−1)drdv
)

.

Consider one part of the first integral:

−
∫ 1

τkl(r)

∫
f eq
kl − fk dvdr = 0.
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This is the case because the velocity integral of fk is the number density of ions k at r and the
equilibrium distribution f eq

kl is chosen in each case to conserve this quantity. Note also that if
we integrate over a small region in the spatial domain, the second integral becomes:

∫∫
v ·∇r f (log( f )−1)drdv =

∫
v ·
∫

∇r( f log( f ))drdv

=∑
k

∫∫
v ·Fk drdv

where Fk = ∇r( fk log( f )). In order to compute the predicted rate of change of H in BGK from
an MD simulation, consider discretizing phase space in the same manner as used for HMD:

dHBGK

dt
≈(∆r∆v)d

∑
k

∑
l

∑
n

1
τkl(rn)

(
∑
m

( f eq
kl (rn,vm, t)− fk(rn,vm, t)) log( f (rn,vm, t)

)
(∆r∆v)d

∑
k

∑
n

∑
m

Fk(rn,vm, t) ·vm

Now let us compare these entropy production rates and isolate the entropy production due
to species k at position rn:

dHMD

dt
=

dHBGK

dt

∑
k

∑
n

(
∑
m

[
∂E[gk]

∂ t
(log(E[g])+1)

])
=∑

k
∑

l
∑
n

1
τkl(rn)

(
∑
m

( f eq
kl (rn,vm, t)− fk(rn,vm, t)) log( f (rn,vm, t)

)
∑
k

∑
n

∑
m

Fk(rn,vm, t) ·vm

∑
m

[
∂E[gk]

∂ t
(log(E[g])+1)

]
=∑

l

1
τkl(rn)

∑
m

( f eq
kl −E[gk]) log(E[g])

+∑
m

Fk(rn,vm, t) ·vm.
(14)

The equilibrium distributions f eq
kl are derived analytically from moments of fk and fl , which can

be approximated from E[gk] and E[gl]. All other quantities can be computed as time averages
from an MD simulation.

Note that in the single species case, there is only a single τ , and this equation allows us
to solve for it explicitly at each position. In the case where there are Ω > 1 species, the
above formulation gives us Ω equations at each position, but we have Ω2 unknown quantities
τkl at each position. We need an additional Ω(Ω− 1) equations to compute every τkl in the
multispecies case.

A critical feature of the BGK model is conservation of kinetic energy over the whole do-
main. That is, in the MD and KT notations we have

∑
k

∑
i∈Sk

1
2

mk|vi|2 = constant

∑
k

∫∫ 1
2

mk|v|2 fk dvdr = constant
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where k denotes the particle species and i denotes an individual particle. The kinetic energy
density Kk of species k at any point r is defined

Kk =
∫ 1

2
mk|v|2 f dv. (15)

Although the overall kinetic energy is constant in the domain, kinetic energy is transported
throughout the domain and exchanged between particle species as the system moves towards
equilibrium. We close our system of equations for τkl by matching the rates of kinetic energy
transfer between different species in the BGK and MD formulations.

To compute the rate of change of Kk, we start by multiplying the BGK partial differential
equation (1) by 1

2mk|v|2 and integrating over v to get∫ 1
2

mk|v|2 ∂ fk

∂ t
dv+

∫ 1
2

mk|v|2v ·∇r fk dv+
∫ 1

2
mk|v|2 Zke

mk
E ·∇v fk dv

=
∫ 1

2
mk|v|2 ∑

l

f eq
kl − fk

τkl
dv.

If we rearrange terms within the integrals and note that

|v|2∇v fk = ∇v(|v|2 fk)−2v fk,

then we can rewrite this as

∂

∂ t

∫ 1
2

mk|v|2 fk dv+∇r ·
∫ 1

2
mk|v|2v fk dv+Zk eE ·

(∫
∇v

(
1
2
|v|2 fk

)
dv−

∫
v fk dv

)
= ∑

l

∫ 1
2mk|v|2 f eq

kl dv− ∫ 1
2mk|v|2 fk v

τkl
.

The term
∫

∇v
(1

2 |v|2 f
)

dv vanishes due to the divergence theorem provided fk decays
faster than |v|−2 as |v| → ∞. This is a reasonable assumption of any physical system. Not-
ing the momentum transport density of species k is

mknkuk =
∫

mkv fk dv

and the energy transport density Q of species k is defined

Qk =
∫ 1

2
mk|v|2v fk dv,

we find
∂Kk

∂ t
+∇r ·Qk−Zk eE ·nkuk = ∑

l

Keq
kl −Kk

τkl
(16)

where Keq
kl is the kinetic energy density from the equilibrium distribution.

We must decompose the the above equation into the contributions from each species. ∂Kl
k

∂ t
denotes the contribution to ∂Kk

∂ t due to particles of species l. Since the electric field is a result
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of a linear combination of contributions from each species, we can also define the contribution
to the electric field of species l as El .

We are interested in τkl for localized regions, so there may be a net flux of energy into any
given spatial region due to Qk. We argue that this contribution to dKk

dt only arises from ions
of species k. This is because this energy flux is due to ions of species k entering or leaving
a region carrying kinetic energy with them. That is, particles of species l 6= k entering and
exiting the region do not contribute to the kinetic energy density of species k in that region. We
also note that for k = l, we have Keq

kk = Kk by definition. Therefore, if we decompose (16) by
species and subtract out the intra-species l = k term, we find

∑
l 6=k

(
∂Kl

k
∂ t
−Zk eEl ·uk

)
= ∑

l 6=k

Keq
kl −Kk

τkl
(17)

for the cross-species contributions. In MD, the kinetic energy density of species k in a given
region A is given by

KMD
k =

1
(∆r)d ∑

i∈Sk,
ri∈A

1
2

mk|vi|2.

Taking the time derivative, we have

∂KMD
k

∂ t
=

1
(∆r)d ∑

i∈Sk,r∈A
mkvi · ∂vi

∂ t
=

1
(∆r)d ∑

i∈Sk,
ri∈A

vi · fi

where fi is the net force on particle i from all other particles. This force can be decomposed
into the contributions from each ion species. We again note that intra-species forces do not
change the total kinetic energy of a given species, so we can write

∂Kl
k

∂ t
=

1
(∆r)d ∑

j∈Sl

∑
i∈Sk,
ri∈A

vi · fi j (18)

for the cross-species terms. The electric field due to species l can be computed by solving the
screened Poisson equation with the charge density of species l:(

4− 1
λ 2

)
φl =− 1

ε0
ρl, El =−∇rφl

The quantity ρl =
∫

fk dv can be approximated in MD by using fk ≈ E[gk] as before. At a
given position rn, every term other than τkl in (17) can now be computed in MD. By pairing
like species terms at specific positions, we can solve for every interspecies τkl at every position:

τkl(rn) =
(
Keq

kl −Kk
)/ 1

(∆r)d ∑
j∈Sl

∑
i∈Sk

ri∈[rn+∆r]

(vi · fi j)−ZkeEl ·nkuk

 (19)
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Once these cross-species τkl are known, they can be plugged into (14), and we can solve
for the remaining τkk at each position:

τkk(rn) =
(

∑
m

( f eq
kk −E[gk]) log(E[g])

)
/(

∑
m

[
∂E[gk]

∂ t
(log(E[g])+1)−Fk ·vm−∑

k 6=l

1
τkl(rn)

∑
m

( f eq
kl −E[gk]) log(E[g])

])
.

(20)

Using (19) and (20), we can compute both the inter- and intraspecies τkl(rn) entirely in terms
of MD variables. Once this is completed, the fk can be used as initial conditions for a BGK
simulation with τkl supplied as spatially-dependent parameters in the evolution. Ideally, this
BGK simulation will be more accurate than one with τkl chosen in an ad hoc manner, and will
be much faster to evolve than the full MD simulation.

Symmetry simplification

We focus on plasma problems that contain an additional symmetry. Our problems are initial-
ized to be symmetric in y. In order to test the effectiveness of HMM, the fine model evolves
in full two-dimensional motion, but the coarse model only has one spatial dimension and two
velocity dimensions. In this way, the coarse model capitalizes on symmetry and is significantly
less detailed than the fine model. Agreement between the two is indicative of the effectiveness
of the approach. To this end, we assume the BGK model initial condition is independent of
y. In practice, this means averaging out any y dependence in the MD model when we wish to
compare the two.

We here demonstrate that an initial condition for every fk that is independent of y remains
independent of y for all time when evolved by the BGK model. We begin by explicitly writing
the x and y dependence of every term in the evolution equation:

∂ fk

∂ t
+ vx

∂ fk

∂x
+ vy

∂ fk

∂y
+

Zke
mk

Ex
∂ fk

∂vx
+

Zke
mk

Ey
∂ fk

∂vy
= ∑

l

f eq
kl − fk

τkl

where Ex and Ey are the x and y components of the electric field, respectively. Consider an
initial condition fi(x,y,vx,vy,0) = fi0(x,vx,vy) for all species i. The first time step of size h for
the distribution of species k is

fk(x,y,vx,vy,h) =−hvx
∂ fk0

∂x
− hZke

mk
Ex0

∂ fk0

∂vx
− hZke

mk
Ey0

∂ fk0

∂vy
+∑

l

h f eq
kl −h fk0

τkl
.

The derivative of fk0 with respect to y is zero by definition. We now consider the electric
potential. Note that, because the charge density ρ = ∑l

∫
Zle fl dv, if every fl is independent of

y, ρ will be as well. Thus, ρ(x,y,0) = ρ0(x). Let us look closely at the initial electric field and
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make the substitution r′′ = r− r′:

E0(x,y) =−
∫ 1

4πε0
ρ0(x) ·∇r

(
e−|r−r′|/λ

|r− r′|

)
dr′

=−
∫ 1

4πε0
ρ0(x− x′′) ·∇r′′

(
e|r′′|/λ

|r′′|

)
dr′′

From this, we clearly see that E0 does not depend on y. Looking at each component (and
abusing notation such that r′′ = r′ again):

Ex0(x) =− 1
4πε0

∫∫
ρ0(x− x′)

∂

∂x

(
e−|r′/λ

|r′|

)
dy′ dx′

=− 1
4πε0

∫
x′ρ0(x− x′)

∫ e−|r′|/λ

|r′|2
(

1
|r′| −

1
λ

)
dy′ dx′

Ey0(x) =− 1
4πε0

∫
ρ0(x− x′)

∫
∂

∂y

(
e−|r′|/λ

|r′|

)
dy′ dx′

=− 1
4πε0

∫
ρ0(x− x′)

 e−|r′|/λ

|r′|

∣∣∣∣∣
y′=∞

y′=−∞

 dx′

= 0.

We see that Ex0 is independent of y and Ey0 = 0. Therefore, the value of fk at t = h is given by

fk(x,y,vx,vy,h) =−hvx
∂ fk0

∂x
− hZke

mk
Ex0(x)

∂ fk0

∂vx
+∑

l

h f eq
kl −h fk0

τkl

Because all terms on the right hand side are independent of y, fk at time h is independent
of y. We can then take another time step, using the same arguments, to find that fk remains
independent of y as time evolves. By taking h→ 0, we show that an initial condition that is
independent of y will remain so provided fk is sufficiently well behaved. Because the system is
being continually driven towards a sum of Maxwellian distributions, the necessary regularity
conditions are forced upon the system by the collisional terms. Thus, the evolution equation
becomes:

∂ fk

∂ t
+ vx

∂ fk

∂x
+

Zke
mk

E(x)
∂ fk

∂vx
= ∑

l

f eq
kl − fk

τkl

E(x) =− 1
4πε0

∫
x′ρ(x− x′)

∫ e−|r′|/λ

|r′|2
(

1
|r′| −

1
λ

)
dy′ dx′

fk(x,v,0) = fk0(x,v), fk(0,v, t) = fk(Lx,v, t).

(21)
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Simulation Details

Kinetic simulation

The evolution equation for the kinetic regime is (21). In order to compute fk, we uniformly
discretize the x, vx, and vy domains with step sizes ∆x and ∆v. The velocity domain is doubly
infinite, so we must select a cutoff velocity Lv. This is reasonable in practice, as we observe
very few particles with extremely high velocities in the MD simulation.

We first calculate the moments of the distribution fk to express the number density nk, bulk
velocity uk, and temperature Tk of each species at a particular point x and time t:

nk(x, t) =
∫

fk(x,v, t)dv (22)

uk(x, t) =
1

nk(x, t)

∫
v fk(x,v, t)dv (23)

Tk(x, t) =
mk

2nk(x, t)

∫
|v−uk|2 fk(x,v, t)dv. (24)

We compute these integrals using the trapezoidal rule. We use the screened Poisson equation
to compute the electric potential. We use the standard, periodic, second order finite differ-
ence representation for the Poisson operator, then linearly solve for φ . The derivative of φ

is computed using a second order centered difference scheme. In two dimensions, this corre-
sponds to a pair potential that is Yukawa to first order. An exact solution requires us to develop
a methodology to compute the electric field integral accurately, or to simulate our system in
three dimensions, in which case the screened Poisson equation is exact.

The collisional term is calculated directly, using a mixed Maxwellian equilibrium distribu-
tion with the proper mixture temperature for every pair of species. We then advance f one time
step, using an operator splitting second order finite volume method with the minmod limiter
for the advection, electric, and collisional terms.

Molecular dynamics simulation

The molecular dynamics simulation is governed by simple Hamiltonian dynamics. We evolve
it using the symplectic velocity Verlet algorithm to guarantee energy conservation:

vi

(
t +

∆t
2

)
= vi(t)+

∆t
2

Fi(t)
mi

ri(t +∆t) = ri(t)+∆t vi

(
t +

∆t
2

)
vi(t +∆t) = vi

(
t +

∆t
2

)
+

∆t
2

Fi(t +∆t)
mi

where ri and vi are the two-dimensional position and velocity of particle i, and Fi is the force
exerted on particle i due to all other particles, using the Yukawa potential to simulate electron
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screening. The Yukawa potential and force of particle j on particle i are given by

Vi j =
ZiZ je2

4πε0|ri− r j|e
− |ri−r j |

λ

Fi j =−∇riVi j = Vi j

(
1

|ri− r j| +
1
λ

)
ri− r j

|ri− r j|
where Vi j is the electrostatic potential at the position of ion i due to ion j, and Fi j is the force
exerted on ion i by ion j.

The potential energy, kinetic energy, and total energy are computed by

PE = ∑
i

∑
i< j

Vi j =
1
2 ∑

i 6= j
Vi j

KE = ∑
i

1
2

mi|vi|2

TE = KE+PE.

The particle density, bulk velocity, and local temperature of species k in a region A are calcu-
lated by

nk =
Nk

A

uk =
1

Nk
∑
i∈Sk

vi

Tk =
1

NDoF
∑
i∈Sk

mk(vi−uk)2

where Nk is the number of particles of species k in region A and NDoF is the number of transla-
tional of degrees of freedom, which for a 2D system is

NDoF =

{
2Nk no bulk velocity prescribed,

2Nk−2 bulk velocity prescribed.

Our regions of interest are centered cells of width ∆x (the discretization of x in the kinetic
regime) stretching from 0 to Ly in the y direction.

When we place ions throughout the domain initially, particle correlations are unknown. As
the particles move to a natural correlation, the temperature of the system will change. In order
to counteract this effect, we use Langevin dynamics to drive the system towards a distribution
with the desired particle density and temperature properties [3]. The velocity Verlet equations
during this phase are modified, using the prescribed temperature, T :

vi

(
t +

∆t
2

)
= vi(t)+

∆t
2

Fi(t)
mi
− γi∆t

2
vi(t)+

∆t
2mi

σ η

ri(t +∆t) = ri(t)+∆tvi

(
t +

1
2

∆t
)

vi(t +∆t) =
(

1+
γi∆t

2

)−1(
vi

(
t +

∆t
2

)
+

∆t
2

Fi(t +∆t)
mi

+
∆t

2mi
σ η

)
.
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where γi is the friction coefficient for ion i, σ is the desired velocity variance, which is related
to the local temperature of the cell, and η a random variable drawn from the standard normal
distribution. The thermostat functions by balancing the frictional γi with the velocity variance.
The friction is connected to the variance through the fluctuation-dissipation relation [5], such
that the variance of the normal distribution is

σ
2 = 2γimiT δ (t− t ′).

The discretization of the delta function as 1/∆t. In our Verlet algorithm, the time step is ∆t/2,
so the discretized version becomes

∆t
2mi

ση =
∆t

2mi

√
2γimiT
∆t/2

η =
√

γi∆tT
mi

η .

Over several hundred time steps, the system finds proper interparticle correlations consistent
with the desired temperature.

Compression and reconstruction

Transitioning from the coarse to fine representations of the system and vice versa are nontrivial
tasks that comprise the core of the HMM philosophy. We must consistently transition between
regimes and compute τkl from the MD simulations.

Suppose at time t, we have a distribution fk(x,v, t) from the kinetic simulation. At this
time, we wish to update τkl , and so must sample this distribution to place ions in the two-
dimensional MD domain. However, this distribution contains no knowledge of the particle
correlations, complicating the task of placing particles in the MD domain. Naive particle
placement necessarily lead to temperature changes in the initial steps of the MD simulation
due to particles placed too near or far from one another, driving the distribution away from the
desired initialization.

We begin by initializing the MD distribution near the distribution fk. To do this, we com-
pute the spatially dependent density nk(x) and temperature Tk(x). Dividing the MD domain into
the same number of cells as x as grid points in the kinetic simulation, we place particles in each
cell to match the density in that cell. We initialize them using the Halton sequence, which yields
a more correlated distribution than pseudorandom selections, allowing faster equilibration. We
then run an equilibration phase, driving each cell toward the correct Tk(x) with Langevin dy-
namics. At the right and left side of each cell, we enforce reflective boundary conditions,
such that each ion must stay within the cell in which it was originally placed. The particles
do, however, electrostatically interact with the ions in other cells. This model configuration is
shown in Figure 5. The result is that the particles in each cell are correlated consistently with
the prescribed density and temperature. The inter-cell interactions should smooth the coarse
distribution into something consistent on the fine scale.

Once equilibrated, we throw away the velocities of each particle, and draw new velocities
for every particle in cell xi from the velocity distribution at xi, fk(xi,v, t). Because this distribu-
tion is very discrete in the kinetic formulation, we linearly interpolate it before sampling. This
method is able to accurately capture in MD at least the first four moments of the fk distribution
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Figure 5: Configuration of MD simulation during equilibration phase.

with sufficient particles. Once this is done, the particles have correlated spatially and are dis-
tributed according to the correct velocity distribution. This is considered the “initial condition”
for an MD simulation.

The MD simulation is run for a period of time, and the positions and velocities are recorded
for use in compression. Each fk is approximated by E[gk]. That is, we record the number of
ions of species k that have x positions in [x,x+∆x] with velocities in [v,v+∆v] at each timestep.
The average of this is E[gk], and E[g] = ∑k E[gk]. The moments of E[gk] can be computed and
used to define the f eq

kl Maxwellian distributions.
Using the time series for E[gk], we can compute ∂E[gk]

∂ t using a second order centered differ-
ence scheme averaged over many timesteps. The gradient Fk = ∇r( fk log( f )) can be computed
by using a centered difference spatial derivative on E[gk] log(E[g]). In the single species case,
we have now computed every quantity needed to calculate τ(rn) from (14).

In the multispecies case, we now use the E[gk] to compute ρk, and solve the Poisson equa-
tion using a linear solve with the standard centered difference Poisson operator to compute each
Ek. The densities and bulk velocities nk and uk can be computed from the moments of E[gk].
Finally, the expected interparticle forces fi j and kinetic energies Kk are computed each timestep
already, and so can be recorded. The equilibrium kinetic energies Keq

kl are again determined by
the equilibrium distributions.

From this, we can now compute every cross-species τkl using (19), and we then use these
in (20) to compute the intraspecies τkk. Note that the (∆r)d is actually equal to (∆x)Ly because
we are averaging out the y dimension. This is the case for every spatial integral.

The simulation is run for a period of time. Positions and velocities are recorded, and used
to compute the expected values needed to compute τkl(x) and fk(x,v, t). Once the statistics on
these quantities are sufficiently accurate, the MD simulation ends and the τkl(x) and fk(x,v, t)
are used to initialize another BGK simulation period.

We continue to compute dHBGK

dt during our BGK simulation. Once this changes sufficiently
from its initial value, we consider the τkl values “stale” and reinitialize an MD simulation to
update them.
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Parametrization

We wish to study plasmas that meet certain collisionality criteria, such that a kinetic perspective
is warranted. For this reason, it is useful to rewrite the governing equations in a parameterized,
dimensionless form. We first choose our length scale as the ion-circle radius a. We then
define a dimensionless coupling parameter Γ that describes the ratio of the potential energy
to the kinetic energy of the system, a dimensionless screening parameter κ that describes the
extent to which the background electrons screen the electrostatic field of the ions, and a plasma
frequency ωp that defines an important timescale. These parameters are defined as

a2 =
1

πn
(25)

Γ =
Z2e2

4πε0aT
(26)

κ =
a
λ

(27)

ω
2
p =

Z2e2n
2ε0am

. (28)

Since the properties of the system vary in space and time, it is convenient to define reference
parameters a0, ω0, and m0. We define a0 based on the average density navg, so that πa2

0navg = 1.
Therefore, on average there is a distance of a0 between neighboring ions. It is also helpful to
define ω0 with Z = 1 for notational simplicity. The reference mass m0 may be arbitrary. One
choice is to use the mass of the lightest particle species of interest. The fundamental scaled
variables, denoted by the tilde, are defined as:

Length: x̃ =
x
a0

Time: t̃ = ω0t

Mass: m̃ =
m
m0

.

From these we can construct the scaled versions of all derived quantities:

Velocity: ṽ =
v

a0ω0

Force: F̃ =
F

a0ω2
0 m0

Energy: Ũ =
U

a2
0ω2

0 m0

Distribution: f̃ =
f

a4
0ω2

0

Electric Potential: φ̃ =
φe

a2
0ω2

0 m0

Density: ñ = na2
0

Temperature: T̃ =
T

a2
0ω2

0 m0
.
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The coupling parameter and plasma frequency in any given region of the domain can then be
written in terms of the dimensionless parameters:

Γ =
Z2√π ñ

2T̃
(29)

ω
2
p =

Z2(π ñ)3/2

m̃
ω

2
0 . (30)

In the weakly to moderately coupled regime that we are studying, Γ should be approximately
O(0.1− 1). If the system is too weakly collisional, it will behave as an ideal gas, where
collisions are not significant. If the system is very strongly collisional, then collisional effects
dominate and the system is best be modeled with hydrodynamic equations. We wish to select a
regime in which the kinetic scale is the most relevant. This formulation also places a constraint
on the average dimensionless density of the system such that ñavg = 1

π
so that a0 corresponds

to the average ion-circle radius in the domain. For our computations, we use a screening
parameter κ = 1.

The dimensionless kinetic equations are nearly identical to the dimensional version, with
the exception of the Poisson equation. The dimensionless distribution function, f̃k, evolves
according to

∂ f̃k

∂ t̃
+ ṽx̃

∂ f̃k

∂ x̃
+

Z̃k

m̃k
Ẽ(x̃)

∂ f̃k

∂ ṽx̃
= ∑

l

f̃ eq
kl − f̃k

τ̃kl

Ẽ(x) =−1
2

∫
x̃′ρ̃(x̃− x̃′)

∫ e−κ|r̃′|

|r̃′|2
(

1
|r̃′| −κ

)
dỹ′ dx̃′

where ρ̃ = ∑l Zl ñl . The moments of the distribution function become

ñk =
∫

f̃k dṽ

ũk =
1
ñk

∫
ṽ f̃k dṽ

T̃k =
m̃k

2ñk

∫
|ṽ− ũk|2 f̃k dṽ.

As with the kinetic equations, the dimensionless MD equations are essentially unchanged.
Only the potential term differs. The velocity Verlet algorithm becomes:

ṽi

(
t̃ +

∆t̃
2

)
= ṽi(t̃)+

∆t̃
2

F̃i(t̃)
m̃i

r̃i(t̃ +∆t̃) = r̃i(t̃)+∆t̃ ṽi

(
t̃ +

∆t̃
2

)
ṽi(t̃ +∆t̃) = ṽi

(
t̃ +

∆t̃
2

)
+

∆t̃
2

F̃i(t̃ +∆t̃)
m̃i

.
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During the equilibration phase, the Langevin velocity Verlet algorithm becomes

ṽi

(
t̃ +

∆t̃
2

)
= ṽi (t̃)+

∆t̃
2

F̃i (t̃)
m̃i
− γ̃i∆t̃

2
(ṽi (t̃))+

√
γ̃i∆t̃ T̃

m̃i
η

r̃i (t̃ +∆t̃) = r̃i (t̃)+∆t̃ ṽi

(
t̃ +

∆t̃
2

)

ṽi (t̃ +∆t̃) =
(

1+
γ̃i∆t̃

2

)−1
ṽi

(
t̃ +

∆t̃
2

)
+

∆t̃
2

F̃i (t̃ +∆t̃)
m̃i

+

√
γ̃i∆t̃ T̃

m̃i
η

 .

The Yukawa potential and force equations become

Ṽi j =
Z̃iZ̃ j

2|r̃i− r̃ j|e
−κ|r̃i−r̃ j|

F̃i j = Ṽi j

(
1

|r̃i− r̃ j| +κ

)
r̃i− r̃ j

|r̃i− r̃ j| .

The dimensionless energies and moments are

P̃E =
1
2 ∑

i 6= j
Ṽi j

K̃E =
1
2 ∑

i
m̃i|ṽi|2

T̃E = P̃E+ K̃E

ñk =
Nk

Ã

ũk =
1

Nk
∑
i∈Sk

ṽi

T̃k =
1

NDoF
∑
i∈Sk

m̃k |ṽi− ũk|2 .

The moments are time-averaged quantities, since thermal noise affects each of them to some
degree.

Results and Discussion
We have the theoretical basis for linking the MD and BGK models into a consistent HMM
solver, but the programmatic link between the two was incomplete at the time of writing. To
provide an initial comparison, both moels were used to solve an identical interface problem. In
this problem of interest, a single ion species was initialized in an isothermal domain, with zero
bulk velocity, such that the center region has a density three times that of the outer region. The
simulation was then allowed to evolve for a time of 120ω

−1
0 . The simulation was stopped at this

end time due to time constraints on the MD. In the 1D-2V BGK solver, the spatial domain was
discretized into 32 cells. The model was then evolved assuming a screened Poisson equation
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for the electric field, and using a naive first-order estimate of the relaxation timescale, τ = ω
−1
0 .

The hydrodynamic moments in the corresponding spatial regions were tracked throughout the
2D-2V MD simulation, which used 32,000 particles, to facilitate comparison. The conditions
at the beginning and end of the simulation are shown in Figures 6 and 7 with axes labeled in
the nondimensional units.

From Figure 7, we observe that the MD and BGK simulations yield qualitatively and even
quantitatively similar results, even with a very naively calculated τ .The noise that appears in
the MD result is present mainly due to the small number of particles in each cell used to
compute moments and the fact that time-averaging was not performed. In practice, a moving
time averaging window would smooth the MD hydrodynamic moments. At the end time,
the high density region in the BGK has expanded further than the high density region in the
MD, suggesting the timescale associated with the BGK model is slightly faster than that for
the MD in these conditions. This demonstrates the advantages we will gain when the HMM
implementation allows us to inform τ through MD. The screened Poisson equation is not valid
in 2D and only useful as a first-order approximation. This may also have played a role in the
discrepancy.

The BGK simulation completed in under a minute, compared with over 24 hours for the
MD simulation. The large speedup gained from the BGK model compared with MD, combined
with the close results even with a first-order approximation to τ , suggests that very good results
might be obtained with a better estimate of the collisional relaxation timescale using the method
outlined above. We are optimistic that this implementation will provide stark benefits to plasma
modeling in the near future.

Figure 6: Initial conditions for the MD (top) and BGK (bottom) simulations. (a)-(c): zeroth
through second moments computed from MD. (d)-(f): zeroth through second moments com-
puted from BGK.
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Figure 7: State at t = 120ω
−1
0 for the MD (top) and BGK (bottom) simulations. (a)-(c): ze-

roth through second moments computed from MD. (d)-(f): zeroth through second moments
computed from BGK.

Conclusions
The heterogeneous multiscale method is an exceptionally powerful tool for solving problems
that contain multiple physical regimes. HMM provides a rigorous, well-defined means to build
hybrid models that combine the accuracy of a fine-grained model with the computational effi-
ciency of a coarse-grained model. This allows detailed and efficient exploration of multiscale
phenomena. These phenomena include mesoscale systems that concurrently display macro-
scopic and microscopic behavior and systems with defects such as cracks or shocks.

In this report, we have demonstrated its power in simulating plasma using kinetic theory and
molecular dynamics. Both models, given the same initial condition, evolve in nearly identical
manners. Only the time scale of the kinetic model is incorrect. Once the models are coupled
through τkl , the kinetic model will accurately capture the behavior of the full microscale model
with a computational speedup factor of hundreds to thousands, depending on the problem.

This proof-of-principle paves the way for additional improvements in the method. First
of all, the method is currently implemented in Matlab. Converting this to another language
would increase the efficiency even further and allow three-dimensional simulations. Second,
our method is eminently paralellizable. The τkl are computed as ensemble averages. The
accuracy of this could be improved by running many MD simulations in parallel, greatly de-
creasing statistical noise by making use of the Law of Large Numbers. One can also foresee
running MD simulations and BGK simulations concurrently, updating τkl continuously, rather
than periodically. The potential for additional speedups is significant and enticing.

Furthermore, in this report we have created a fully consistent multiscale connection be-
tween molecular dynamics and kinetic theory. This methodology can be adapted with no
change to the formulation to study systems with different potentials, systems that incorpo-
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rate electron motion, and systems of three dimensions. It allows for n species with different
charges and masses, and even interparticle potentials that differ more significantly than simply
being scaled by the charge. Finally, we can modify our assumptions to connect MD to other
kinetic models. For example, if we do not approximate fkl , but instead compute it from MD,
we can couple MD to the BBGKY hierarchy. We could also compute collisional cross-sections
in order to couple MD with the Boltzmann equation.

These results are significant, as to our knowledge there does not exist an HMM model
that couples molecular dynamics and kinetic theory. Our derivation here allows the coupling
of MD to any number of kinetic theory formulations. Additionally, HMM has not, to our
knowledge, been used to model plasmas. It is the opinion of the authors that HMM represents
an important part of the future of computational physics. The applications include plasma
modeling, mesoscale modeling, mathematical biology, high-accuracy hydrodynamic models,
and countless more. This report is a definitive proof-of-concept of the applicability of HMM
to plasma modeling, and further demonstrates the viability of HMM as a computational tool.
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Abstract

Accurately treating the coupled sub-cell thermodynamics of computational cells con-
taining multiple materials is an inevitable problem in hydrodynamics simulations, whether
due to initial configurations or evolutions of the materials and computational mesh. When
solving the hydrodynamics equations within a multi-material cell, we make the assump-
tion of a single velocity field for the entire computational domain, which necessitates the
addition of a closure model to attempt to resolve the behavior of the multi-material cells
constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a
variety of both the popular as well as more recently proposed multi-material closure mod-
els and survey their performances across a spectrum of examples. We consider standard
verification tests as well as practical examples using combinations of fluid, solid, and com-
posite constituents within multi-material mixtures. Our survey provides insights into the
advantages and disadvantages of various multi-material closure models in different prob-
lem configurations.
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Introduction
Mesh-based hydrodynamics simulation is traditionally divided into two schools of thought,
Lagrangian and Eulerian. Both approaches have a number of strengths as well as shortcomings
(see e.g. [6]), and both have found widespread use in hydrocodes over the past several decades
([5] gives a brief history and analysis). Arbitrary Lagrangian-Eulerian (ALE) schemes aim to
combine the benefits of these two methodologies, though they also are vulnerable to inheriting
the weaknesses of both schemes ([2] discusses Lagrangian, Eulerian, and ALE methods in
hydrocodes). Simulations involving multiple materials are commonly performed using any of
these three classes of methods.

Cells containing multiple materials may appear in Lagrangian, Eulerian, and ALE hydro-
dynamics simulations. In a Lagrangian simulation, one might imagine initializing a two-
dimensional fluid domain with a circular region of one material surrounded by a region of
another material. If using a Cartesian mesh, there are inevitably multi-material cells at the
interface of the two regions, regardless of the inclusion of techniques like adaptive mesh re-
finement (AMR). In an Eulerian simulation, the movement of fluids throughout the fixed com-
putational domain again makes it inevitable that multi-material cells will occur at some point
during the simulation. In ALE methods (as a trivial example, a Lagrange-plus-remap scheme),
a combination of the initial configuration and the evolution of the domain and materials will
lead to the presence multi-material cells. Regardless of the underlying scheme, there are cou-
pled interactions between the constituent materials of multi-material cells that are generally
ignored by hydrodynamics algorithms.

Resolving the dynamics of constituent materials within a multi-material cell is a topic of
practical import. In any simulation, the modeler makes a choice of the finest resolution to be
used in their simulation. Thus, even with AMR, there is some limit where physics cannot be
captured due to ignoring sub-cell dynamics. Models for sub-cell dynamics attempt to capture
all the coupled physics that occurs below the level of mesh resolution, thus providing more
accurate simulation results (especially along multi-material interfaces) at potentially coarser
mesh resolutions. However, sub-cell dynamics cannot be approximated for free.

In order to approximate the physics occurring below mesh resolution, additional variables
are introduced for multi-material cells. These variables may include the volume fractions of
the constituent materials (what fraction of the cell each constituent occupies) or the location of
the multi-material interface. We assume that a single velocity field is available for the computa-
tional domain, which is a common assumption for multi-material cell modeling. Due to these
considerations, when we solve the hydrodynamics equations governing the fluid simulation,
we are left with more unknowns than equations – an unclosed system.

Consider, for example, a one-dimensional simulation with a two-material cell. In the cell,
there are five hydrodynamics equations: there is a set of three conservation equations for each
material, with the two momentum conservation equations combining due to having a single
velocity field. There are two equations of state – one for each material – and finally, there is a
constraint on the volume fractions that they sum to 1 (we ignore tracking the interface location
for the time being). The variables in our system include pressure, density, specific internal
energy, and volume fraction for each material, as well as the single velocity vector. Adding
these numbers, we find we are left with eight equations for nine unknowns. To provide the
additional information needed to solve our system and to attempt to resolve the physics within
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multi-material cells, we use multi-material closure models.
Multi-material closure models are methods that close the hydrodynamics equations under

the addition of extra variables to track the physical quantities of interest within multi-material
cells. There is a wide variety of multi-material closure models that has burgeoned over the past
several decades (see [7, 11] for comparisons of several models). These models are based on
different assumptions about the underlying physics and configurations of multi-material cells.
Additionally, the models use different mathematical methods to approximate the evolution
of constituents in the multi-material cells. With the great diversity in multi-material closure
models, it remains an open question as to what is the most appropriate multi-material closure
model to employ in a given simulation.

In this work, we survey a number of multi-material closure models, from older methods that
have been used in production codes for decades to newer methods that may become prevalent
in next-generation codes. We implement a one-dimensional predictor-corrector staggered-grid
Lagrangian hydrodynamics code as the testbed for our computational experimentation. In con-
junction with this code, we implement an assortment of multi-material closure models from
the literature in an attempt to cover a broad swathe of theoretical approaches to multi-material
modeling. Using our closure-model–equipped hydrocode, we run a number of test cases using
combinations of gas, liquid, solid, and composite materials. After defining criteria for evalu-
ating them, we analyze how the considered multi-material models perform against this gamut
of problems (in addition to verifying that our implementations agree with expectations from
literature and mathematics). We conclude by offering general recommendations for which
multi-material closure models are most appropriate for which situations and by suggesting av-
enues for extension and use of our survey. Throughout, we offer insight into the assumptions
behind the multi-material closure models we consider (and, consequently, their expected or
surprising success and failure modes).

Governing Equations

The Conservation Laws

Also known as the Euler equations in differential form are

∂tρ +∇ ·ρu = 0 (1a)

∂tρu+∇ · (ρu⊗u)+∇p = 0 (1b)

∂tE +∇ · (u(E + p)) = 0 (1c)

where the total energy is defined as E = ρ(e+ 1
2u2).

Lagrangian Hydrodynamics Equations

Now we reformulate the conservation laws in Eulerian frame, Equation (1), to Lagrangian
frame.
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Conservation of Mass

∂tρ +∇ ·ρu = 0 (2a)

∂tρ +ρ∇ ·u+u ·∇ρ = 0 (2b)
Dρ

Dt
+ρ∇ ·u = 0 (2c)

Since ρ = M
V ,

D 1
V

Dt
+

1
V

∇ ·u = 0 (3)

Consider
DV 1

V
Dt

= 0 =
1
V

DV
Dt

+V
D 1

V
Dt
⇒ D 1

V
Dt

=− 1
V 2

DV
Dt

(4)

1
V

DV
Dt

= ∇ ·u (5)

This describes the fundamental Lagrangian representation of fluid flow. The discretized equa-
tion is

1
Vi

DVi

Dt
= (∇ ·u)i. (6)

It is utilized in two ways. First, given the velocity field ui in discretized space, the evolution
of volume Vi(t) can be obtained. Second, given a prescription of volume Vi(t) as a function of
some coordinate R j, so that Vi(t) = Vi(R1(t),R2(t), . . .), the divergence of the velocity field,
(∇ ·u)i, in discretized form is obtained.

Conservation of Momentum

∂tρu+∇ · (ρu⊗u)+∇p = 0 (7a)

u∂tρ +ρ∂tu+u(∇ ·ρu)+(ρu ·∇)u+∇p = 0 (7b)

Cancelling out continuity terms, we arrive at the momentum equation.

ρ
Du
Dt

=−∇p (8)

Specific Internal Energy

∂tE +∇ · (u(E + p)) = 0 (9a)

ρ∂t

(
e+

u2

2

)
+
(

e+
u2

2

)
∂tρ +

(
e+

u2

2

)
(∇ ·ρu)︸ ︷︷ ︸

(E/ρ)(∂tρ+∇·ρu)=0

+(ρu ·∇)
(

e+
u2

2

)
+∇ ·ρu = 0 (9b)

ρ

D
(

e+ u2

2

)
Dt

+∇ ·ρu = 0 (9c)
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Now subtracting the product of momentum equation and u, we have the specific internal energy
equation.

ρ
De
Dt

=−p∇ ·u (10)

Total Energy Equation

The total energy equation can be formulated by adding the product of momentum equation and
u and the specific internal energy equation, and integrating over domain D.∫

D

(
ρ

2
Du2

Dt
+ρ

De
Dt

)
dV =−

∫
D

(u ·∇p+ p∇ ·u)dV =−
∮

∂D
pu ·dS (11)

Compatibility - Semi-Discrete Form

When discretizing a continuum system of conservation laws of fluid dynamics, one should try
to incorporate as many mathematical properties of the continuum system on which it relies. The
numerical error observed in the total energy associated with the physical model results from
any inconsistencies that exist in discrete form of the continuum system. The mathematical
relations that must be obeyed to achieve this are the discrete analog of the vector identities that
involve the dependent variables of the physical system. Numerical algorithms constructed in
this manner are said to be compatible, meaning the forms of the discrete terms that compose
them are specified with the physics in mind [3].

Semi-discrete form of Lagrangian hydrodynamic equations

Consider the momentum equation Equation (8) and integrate it over a volume element Dp
defined at vertex point p.

mp
Dup

Dt
=−

∫
Dp

∇pdV =−
∮

∂Dp

pdS = ∑
z

fzp (12)

where z is the zone or cell index and fzp is the force vector, fzp = pz ·Dp, where Dp is the control
volume centered at point p. By definition, the force vectors point out of the control volume.

Define the total energy in zone z as

Ez = mzez +∑
p

mpzu2
p/2. (13)

Now, take the total derivative with respect to time and substitute the momentum equation from
Equation (12)

DEz

Dt
= mz

Dez

Dt
+∑

p

mpzup

mp
·

p

∑
z′

fz′p. (14)

Summing over all zones

D
Dt

(
∑
z

Ez

)
= ∑

z
mz

Dez

Dt
+∑

z
∑
p

mpzup

mp
·

p

∑
z′

fz′p. (15)
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The total mass is ∑z mpz = mp. Using this fact in Equation (13) and Equation (15) gives the
result for conservation of total energy over all zones as

D
Dt

(
∑
z

mzez +∑
p

mpzu2
p/2

)
= ∑

z
mz

Dez

Dt
+∑

p
∑
z

fzp ·up (16)

= ∑
z

(
mz

Dez

Dt
+∑

p
fpz ·up

)
+∑

i
fbd,i ·ubd,i. (17)

Now if the sum over zones in the second form of Equation (17) is set to zero for each zone z,
then

mz
Dez

Dt
=−∑

p
fpz ·up ≡−

∫
D

p∇ ·udV. (18)

Equation (18) is the integral form of the internal energy equation in Equation (10) with fpz,
pressure forces acting on points p in zone z. Therefore, compatibility is naturally obtained for
control volume differencing in Cartesian geometry for arbitrary number of dimensions.

The left hand side of Equation (17), the total energy over the entire domain at time t is
defined as

E(t) = ∑
z

mzez +∑
p

mpu2
p/2. (19)

The total energy integrated over time is

E(t) = E(0)+
n

∑
m=1

∆tm ∑
i

fbd,i ·um+1/2
bd,i . (20)

This is discrete analog of Equation (11) and implies that only work done by the external forces
at the boundary of the computational domain can increase or decrease the total energy of the
system.

Compatibility - Fully Discrete Form

The time variation of the total energy equation Equation (20) results

∑
z

mz∆ez +∑
p

mpun+1/2
p ·∆up = ∆t ∑

i
fσ
bd,i ·un+1/2

bd,i . (21)

The time centered velocity un+1/2
p ≡ (un+1

p + un
p)/2 follows directly from the time variation

of the kinetic energy defined at the points since un+1/2
p · ∆up = [(u2

p)
n+1− (u2

p)
n]/2 where

∆up ≡ un+1
p −un

p, ∆ez ≡ en+1
z − en

z and superscript σ is some intermediate time level.
The time discrete form of momentum equation, Equation (12), is

mp∆up = mp
un+1

p −un
p

∆t
= ∑

z
fσ
zp∆t (22)

where again superscript σ is some intermediate time level between n and n+1.
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Since both the internal energy and the kinetic energy must be defined at the same time level
so that the total energy is at a single time level, it follows that we must use and even time
integration scheme.

Substituting Equation (22) into Equation (21) gives

∑
z

mz∆ez +∑
p

un+1/2
p ·∑

z
fσ
zp∆t = ∆t ∑

i
fσ
bd,i ·un+1/2

bd,i . (23)

The crucial step is the interchange in the order of the double discrete summation on the left
hand side of this equation. It is equivalent to a discrete integration by parts. Regrouping

∑
z

[
mz∆ez +∑

p
un+1/2

p · fσ
pz∆t

]
= ∆t ∑

i
fσ
bd,i ·un+1/2

bd,i . (24)

The final step is to satisfy Equation (24) in the strong form by setting the quantity in brackets
zero for all z. This yields the same equation as Equation (18) but with additional conclusion
that up = un+1/2

p . Finally, the fully discrete specific internal evolution equation, Equation (18),
is

mz∆ez = mz
en+1

z − en
z

∆t
=−∑

p
fσ

pz ·un+1/2
p ∆t. (25)

where again superscript σ is some intermediate time level between n and n+1. Notice that the
half time step velocity, un+1/2

p , must be used for compatibility.
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Multi-Material Closure Models
In this section, the multi-material closure models considered in this research are investigated.

Staggered Grid Hydrodynamics Lagrangian Code

One dimensional staggered grid hydrodynamics (SGH) hydrocode was developed to investigate
various multi-material closure models. There are many variations of the SGH Lagrangian
hydrocodes available in various literatures. The one presented in this report is one variation of
the widely known predictor-corrector SGH code, [4].

In SGH codes, the thermodynamic quantities such as density, ρ , specific internal energy, e,
and pressure, p, are stored at the cell center. The vertices are initialized with the velocity u. A
generic algorithm for a SGH code is adopted from [4] and presented in the following section.

Algorithm

• The predictor step:

1. For each cell/zone, z:

(a) Compute divergence of velocity field: (∇ ·u)n =
un

p+1−un
p

xp+1−xp
.

(b) Compute volume ratio: dn+1/2 =
(
1+(∇ ·u)n ∆t

2

)
.

(c) Compute mid-time volume: V n+1/2 = V ndn+1/2.
(d) Compute artificial viscosity: qn.
(e) For all species, i, in z compute component properties. In case of pure material,

skip this.

(f) Compute common density: ρn+1/2 = ∑i α
n+1/2
i ρ

n+1/2
i

(g) Compute common internal energy: (ρe)n+1/2 = ∑i α
n+1/2
i ρ

n+1/2
i en+1/2

i .

(h) Compute common pressure: pn+1/2 = ∑i αi p
n+1/2
i .

• The corrector step:

1. For each vertex, p:

(a) Compute velocity: un+1 = un− ∇(pn+1/2+qn+1/2)∆t
ρn .

(b) Compute mid-time velocity: un+1/2 = un+1+un

2 . Implied conservation of en-
ergy.

2. For each zone, z:

(a) Compute divergence of velocity field: (∇ ·u)n+1/2 =
un+1/2

z+1 −un+1/2
z

xp+1−xp
.

(b) Compute volume ratio: dn+1 =
(

1+(∇ ·u)n+1/2∆t
)

.

(c) Compute mid-time volume: V n+1 = V ndn+1.
(d) Compute artificial viscosity: qn+1/2.
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(e) For all species, i, in z compute component properties. In case of pure material,
skip this.

(f) Compute common density: ρn+1 = ∑i α
n+1
i ρ

n+1
i .

(g) Compute common internal energy: (ρe)n+1 = ∑i α
n+1
i ρ

n+1
i en+1

i .

(h) Compute common pressure: pn+1 = ∑i αi pn+1
i .

Equal Compressibility Model

t = 0

t = ∆t

/

/

//

//

α1 α2

Figure 1: Equal compressibility model

The equal compressibility model is one of the simplest one-step multi-material closure models,
[4]. In Figure 1, an illustration of the equal compressibility model is shown. For simplicity,
we will only consider two material configurations. At time t = 0, the multi-material cell is
initialized with material volume fractions

α
n
1 =

V n
1

V n and (26)

α
n
2 =

V n
2

V n . (27)

The equal compressibility closure model assumes that the compressibility of each material
stays constant throughout the closure model procedure. For this reason, the volume fractions
of each material stay constant by maintaining the ratio of component volumes the same before
and after the closure model procedure.

α
n+1
1 =

V n+1
1

V n+1 and (28)

α
n+1
2 =

V n+1
2

V n+1 . (29)

Corrector Stage

The algorithm for the equal compressibility model for the corrector stage is described. The pre-
dictor stage is analogous to the corrector stage. We take the volume fractions of each material,
i,

α
n+1
i = α

n
i . (30)
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Then, the density and the specific internal energy values of the multi-material components can
be computed

V n+1
i = V n+1

α
n+1
i (31)

ρ
n+1
i = mn+1

i /V n+1
i (32)

en+1
i = en

i −
[

pn+1/2
i +qn+1/2

i
ρn

i

]
(∇ ·u)n+1/2

∆t. (33)

where (∇ ·u)n+1/2 is the divergence of velocity at time step n + 1/2. Lastly, the pressures of
components can be computed from the equations of state

pn+1
i = Pi

(
ρ

n+1
i ,en+1

i
)
. (34)

Equal Velocity Increment Model

t = 0

t = ∆t

/

/

//

//

∆u1 ∆u2

Figure 2: Equal velocity increment model

The equal velocity increment model shares the same philosophy as the equal compressibility
model. The velocity increments of individual material in the multi-material cell are approxi-
mated then kept constant throughout the model procedure, [11]. In Figure 2, a simple illustra-
tion of the equal compressibility model is shown. For simplicity, we will only consider two
material configurations.

Corrector Stage

The algorithm for the corrector stage is shown here. The predictor stage is analogous to the cor-
rector stage. In the acoustic approximation for plane waves, for each material i the divergence
of velocity field is approximated as,

∇ ·ui =− δρi

ρi∆t
=− δui

ci∆t
(35)

The above approximation along with the volume additivity requirement, we have for corrector
stage

(∇ ·ui)n+1/2 =
c
ci

(∇ ·u)n+1/2 (36)
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where the common speed of sound is defined as c = 1
∑i αi/ci

. Then, the density and the specific
internal energy values of the multi-material components can be computed

V n+1 = V n
i

(
1+(∇ ·ui)n+1/2

∆t
)

(37)

ρ
n+1
i = mn+1

i /V n+1
i (38)

en+1
i = en

i −
[

pn+1/2
i +qn+1/2

i
ρn

i

]
(∇ ·ui)n+1/2

∆t. (39)

Lastly, the pressure values of individual components can be computed from the equations of
state

pn+1
i = Pi

(
ρ

n+1
i ,en+1

i
)
. (40)

Tipton’s Pressure Relaxation Model
R

el
ax

in
t

p1 p2

p̄
∆φ1 ∆φ2

Figure 3: Tipton’s pressure relaxation model

In Figure 3, an illustration of Tipton’s pressure relaxation model is shown. The goal of Tipton’s
pressure relaxation closure model is to find volume changes for each material such that they
sum to the total volume change of the multi-material cell and to find a common pressure which
will be used in the momentum and material internal energy equations, as described in [1].
Tipton’s pressure relaxation closure model consists of predictor and corrector stages.

Predictor Stage

In the predictor stage, Tipton’s pressure relaxation closure model aims to relax pressures to the
common pressure.

pn+1/2
z = pn+1/2

z,i +Rn+1/2
z,i (41)

where z index is the cell/zone index and i is the material in the cell/zone. The relaxation term,
Rn+1/2

z,i , emulates bulk viscosity, and is

Rn+1/2
z,i =−Ln

z ρ
n
z,ic

n
z,i

1
V n

z,i

∆V n+1/2
z,i

∆t/2
. (42)

Assuming the pressure change in ∆t/2 is isentropic (dSz,i
dt = 0), the pressure is

pn+1/2
z = pn

z,i− ρ
n
z,i(c

n
z,i)

2
∆V n+1/2

z,i /V n
z,i︸ ︷︷ ︸

≈d pn
z,i=

d pz,i
dρz,i
|Sz,idρz,i+

d pz,i
dSz,i
|ρz,idSz,i

. (43)
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Both terms in the right hand side of Equation (41) are linear functions of ∆V n+1/2
z,i . Relating

the above to the total volume change of the cell, we arrive at the explicit solution.

∆V n+1/2
z,i =

(
αn

z,i

Bn
z,i

B̄n
z

)
∆V n+1/2

z +
V n

z,i

Bn
z,i

(pn
z,i− p̄n

z ) (44)

pn+1/2
z = p̄n

z − B̄n
z ∆V n+1/2

z /V n
z (45)

where

Bn
z,i = ρ

n
z,i(c

n
z,i)

2 [1+Ln
z/(cn

z,i∆t/2)
]

(46)

B̄n
z = 1/( ∑

i∈M(z)

αn
z,i

Bn
z,i

) (47)

p̄n
z = ∑

i∈M(z)

(
αn

z,i

Bn
z,i

pn
z,i

)
/

(
∑

i∈M(z)

αn
z,i

Bn
z,i

)
. (48)

Instead of working with the changes in material volumes, the approximate equations in
terms of changes of volume fraction is used; definition of volume fraction and Equation (44)
are used. Then, the preliminary change in volume fraction

∆α
n+1/2
z,i = α

n+1/2
z,i −α

n
z,i (49)

can be limited with respect to the current volume fraction.

∆̃α
n+1/2
z,i = sign(∆α

n+1/2
z,i )min(|∆α

n+1/2
z,i |,ψα

n
z,i), ψ = 1/4. (50)

Renormalization is required if ∑i∈M(z) ∆̃α
n+1/2
z,i 6= 0 in order to make sure the renormalized

volume fraction changes sum to 0. Skipping some details regarding limiting (for more details
see [1]), the limited volume fraction changes are calculated as shown.

If ∆̃α
−
z > ∆̃α

+
z ,

˜̃
∆α

n+1/2

z,i =


∆α+

z
∆α
−
z

∆̃α
n+1/2
z,i if ∆̃α

n+1/2
z,i < 0,

∆̃α
n+1/2
z,i if ∆̃α

n+1/2
z,i > 0

(51)

If ∆̃α
−
z < ∆̃α

+
z ,

˜̃
∆α

n+1/2

z,i =


∆α−z
∆α

+
z

∆̃α
n+1/2
z,i if ∆̃α

n+1/2
z,i > 0,

∆̃α
n+1/2
z,i if ∆̃α

n+1/2
z,i < 0

(52)

∆̃α
+/−
z are absolute values of the sums of total change in volume fraction of the same sign

(+/−).
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Corrector Stage

The common pressure we obtained from the predictor stage is used in the momentum equation.

mp
un+1−un

∆t
= ∑

z∈Z(p)
fpn+1/2

zp = ∑
z∈Z(p)

pn+1/2
z Spz (53)

The node positions and volumes are updated in the usual way. The volume fraction to be used
to model multi-material properties is extrapolated to full time step.

∆α
n+1
z,i = 2 ˜̃∆α

n+1/2

z,i (54)

and
α

n+1
z,i = α

n
z,i +∆α

n+1
z,i . (55)

From this, the new material quantities are calculated.

V n+1
z,i = α

n+1
z,i V n+1

z (56)

∆V n+1
z,i = V n+1

z,i −V n
z,i (57)

ρ
n+1
z,i = mn+1

z,i /V n+1
z,i . (58)

The compatible internal energy update is

mn+1
z,i

en+1
z,i −n

z,i

∆t
=−

α
n+1
z ∑

p∈P(z)
fpn+1/2

zp ·un+1/2
p︸ ︷︷ ︸

pdV compatible with momentum

+pn+1/2
z

∆α
n+1
z,i

∆t
(V n+1

z +V n
z )/2

 . (59)

Linearized Riemann Problem (LRP) Pressure Relaxation Model

R
el

ax
in

t

uifc
p1 p2

p̄
∆V1 ∆V2

Figure 4: Riemann problem based model

In Figure 4, an illustration of general pressure relaxation model using Riemann problem solver
is shown. In Linearized Riemann Problem pressure relaxation closure model, the linearized
Riemann solver is utilized to initialize the volume fraction changes. This approach enforces
that each material component satisfies its own pdV equation, therefore, the energy discrepancy
must be redistributed by assuming that the corresponding pressure change in each component
is equal. The details of this work is shown in [8].
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Predictor Stage

For simplicity, we only consider two material configurations. The changes of material volumes
are

δV1 = (uint f c−u1)δ t, δV2 = (u2−uint f c)δ t (60)

where uint f c is the velocity of the interface between materials approximated by the lineaized
Riemann solver. Assuming that the velocity in the multi-material cell varies linearly, we obtain
the following expression for the interface velocity

uint f c = α2u1 +α1u2 +
p1− p2

ρ1c1 +ρ2c2
. (61)

With above definition of uint f c, we have

δV n+1/2
1 = α1δV n+1/2 +

∆p1,2

2κ̄

δ t
2

, (62)

and

δV n+1/2
2 = α2δV n+1/2 +

∆p1,2

2κ̄

δ t
2

. (63)

where ∆p1,2 = p1− p2, κ̄ = 0.5(κ1 +κ2), κi = ρici. The volumes of materials are

V n+1/2
i = V n

i +δV n+1/2
i for i = 1,2. (64)

The pressures of materials are

pn+1/2
i = pn

i −
(
(cn

i )
2
ρ

n
i
)(

δV n+1/2
i /V n

i

)
, (65)

and the common pressure is
pn+1/2 = ∑

i
α

n+1/2
i pn+1/2

i . (66)

Corrector Stage

The corrector stage volumes are calculated similar to Equation (64) but with predictor val-
ues. The corrector specific internal energy update is divided into two parts: provisional and
correction parts. The provisional specific internal energy update does not satisfy the total con-
servation of energy. The provisional specific internal energy is updated as follows

en+1,∗
1 = en

1−α
n+1/2
i

(
pn+1/2

1 +qn
)

dV n+1
1 /m1− pn+1/2

1
∆pn+1/2

1

2κ̄
n+1/2
1

δ t
m1

(67)

en+1,∗
2 = en

2−α
n+1/2
i

(
pn+1/2

2 +qn
)

dV n+1
2 /m2 + pn+1/2

1
∆pn+1/2

2

2κ̄
n+1/2
2

δ t
m2

. (68)

To enforce the conservation of energy, we determine the internal energy discrepancy

δE n+1/2 = ∑
i

midẽn+1/2
i =

(
pn+1/2

1 − pn+1/2
2

)2

κ
n+1/2
1 +κ

n+1/2
2

δ t (69)
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where dẽn+1/2
i is the additional specific internal energy increment in material i to ensure the

conservation of energy. To compute the value of the correction in the specific internal energy,
dẽi, we make use the following relations

d p̃ = (∂ p1/∂e1)ρ1dẽn+1
1 , (70)

d p̃ = (∂ p2/∂e2)ρ2dẽn+1
2 . (71)

Equations (69), (70) and (71) can be solved and rearranged as follows

d p̃n+1 =
δE n+1/2[

m1/(∂ p1/∂e1)n+1
ρ1

]
+
[
m2/(∂ p2/∂e2)n+1

ρ2

] (72)

From Equations (72), (70) and (71), the correction values to the specific internal energy, dẽn+1
i ,

can be evaluated. Finally, the consistent specific internal energy values are

en+1
i = en+1,∗

i +dẽn+1
i , (73)

and the pressure in each material is

pn+1
i = Pi(ρn+1

i ,en+1
i ). (74)

Interface-Aware Sub-Scale Dyanmics (IASSD)

Another instance of a Riemann-problem–based pressure relaxation model is the Interface-
Aware Sub-Scale Dynamics (IASSD) method proposed in [1]. This model is based on the
idea of using interface location (obtained via an interface reconstruction algorithm) to solve a
Riemann problem to compute velocities of constituent materials in a multi-material cell. Like
the LRP model in the previous section, IASSD is described by Figure 4.

In a similar vein as flux-corrected transport (FCT), the authors of [1] then use a linear-
inequality–constrained quadratic optimization problem to compute the volume changes of the
constituents. The general idea of the IASSD optimization is to determine a set of flux limiters
that are as close to unity as possible while still respecting a set of physical constraints.

Constrained Optimization Framework

The objective function for computing the IASSD limiters Ψi,k is

min
Ψi,k

{
∑

i

[
∑

k∈M(i)

(
1−Ψi,k

)2

]}
(75)

There are several constraints placed on this objective in order to maintain certain desirable
(physical) properties. Each material i is subject to constraints:

1. To keep material volumes positive but less than the bulk volume:

V n+1,bulk
i + ∑

k∈M(i)
Ψi,kδV max

i,k ≥ κbotV
n+1,bulk
i (76)

where 0 < κbot ≤ 1 is a constant that keeps material volumes bounded away from zero.
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2. To maintain positivity of internal energy:(
miEn

i − pn
i ∆V n+1,bulk

i +Qn
i

)
≥ ∑

k∈M(i)
Ψi,k p∗i,k∆V max

i,k (77)

where ∆V max
i,k is simply the largest computed ∆Vi,k over i and k.

3. To control the relaxation of pressures:

κiV n
i

ρn
i
(
cn

i
)2

(
p̃n+1,bulk

i − p̄
)
≥ ∑

k∈M(i)
Ψi,kδV max

i,k ≥ 0, if p̃n+1,bulk
i ≥ p̄ (78)

κiV n
i

ρn
i
(
cn

i
)2

(
p̃n+1,bulk

i − p̄
)
≤ ∑

k∈M(i)
Ψi,kδV max

i,k ≤ 0, if p̃n+1,bulk
i ≤ p̄ (79)

where κi is a constant chosen to control the rate of pressure equilibration.

We note that the authors in [1] simply choose constant values for κbot and κi. Additionally,
they use a single κi for all i. The choice of these constants has direct impact on the IASSD
algorithm; thus, we propose the theory behind the choice of these constants as a topic of highly
relevant future research. One may hypothesize that using per–time-step and per-material values
for these two constants may allow for improved results.

In the case of only two materials—such as the examples we consider in this paper—the
IASSD optimization problem has an explicit solution:

Ψi,k = min
{

Ψ
V
i,k,Ψ

E
i,k,Ψ

p
i,k,1

}
, (80)

Ψ
V
i,k =


(1−κbot)V

n+1,bulk
2

δV max if δV max > 0
(1−κbot)V

n+1,bulk
1

|δV max| if δV max < 0
(81)

Ψ
E
i,k =


Ebulk

1
p∗δV max if p∗δV max > 0

Ebulk
2

|p∗δV max| if p∗δV max < 0
(82)

Ψ
P
i,k =



0


if pn+1,bulk

1 > pn+1,bulk
2 and δV max < 0

or
if pn+1,bulk

1 < pn+1,bulk
2 and δV max > 0

1 if δV max = 0

min

{
κ1V n

1

ρn
1(cn

1)
2

∣∣∣p̄−p̃n+1,bulk
1

∣∣∣
|δV max| ,

κ2V n
2

ρn
2(cn

2)
2

∣∣∣p̃n+1,bulk
2 −p̄

∣∣∣
|δV max|

}
otherwise

(83)

Predictor Stage

Like the other models considered in this paper, IASSD is based on a predictor-corrector ap-
proach. During the predictor and corrector phases, the host hydrocode is used to update the
node locations and cell volumes of the domain. Beyond that, the predictor and corrector phases
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of the IASSD algorithm are explicitly below. In the algorithm, Si,k refers to the interfacial area
between materials i and k, which is identically 1 in 1D. Additionally, we note that in both the
predictor and corrector steps, the old volume fractions αn

i are used (rather than, for example,
time (n + 1,pr) volume fractions) in order to enforce equal volumetric compressibility of the
constituent materials. Finally, we note that ~nn

i,k refers to the normal vector between the two
materials i and k. In 1D, with two materials indexed 0 and 1, we note that~nn

i,k = k− i.

p̃n
z = ∑

i∈M(z)
α

n
z,i p

n
z,i (84)

∆V n+1,pr
z = V n+1,pr

z −V n
z (85)

δV max,n
i,k =

pn
i − pn

k
ρn

i cn
i +ρn

k cn
k

Sn
i,k∆t (86)

p∗,ni,k = P∗ (ρn,cn, pn,~un) =

(
ρn

k cn
k

)
pn

i +(ρn
i cn

i ) pn
k−
(
ρn

k cn
k

)
(ρn

i cn
i )
(
~un

k−~un
i
) ·~nn

i,k

ρn
k cn

k +ρn
i cn

i
(87)

Ψi,k = CON OPT
(

∆V n+1,pr
z ,δV max,n

i,k , p∗,ni,k ,κbot,κi

)
(88)

V n+1,pr
z,i = α

n
z,iV

n+1,pr
z + ∑

k∈Mz(i)
Ψi,kδV max,n

i,k (89)

ρ
n+1,pr
z,i = mz,i/V n+1,pr

z,i (90)

En+1,pr
z,i = En

z,i−
1

mz,i

(
α

n
z,i p

n
z,idiv~un+1,prV n

z,i∆t (91)

+ ∑
k∈Mz(i)

Ψi,k p∗,ni,k δV max,n
i,k ∆t +Qn

z,i∆t
)

(92)

pn+1,pr
z,i = EOS

(
ρ

n+1,pr
z,i ,En+1,pr

z,i

)
(93)

Figure 5: The predictor stage of IASSD
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Corrector Stage

p̃n+1
z = ∑

i∈M(z)
α

n
z,i p

n+1,pr
z,i

(94)

∆V n+1,pr
z = V n+1

z −V n
z
(95)

δV max,n+1
i,k =

pn+1/2,pr
i − pn+1/2,pr

k

ρ
n+1/2,pr
i cn+1/2,pr

i +ρ
n+1,pr
k cn+1/2,pr

k

Sn+1
i,k ∆t

(96)

p∗,n+1
i,k = P∗

(
ρ

n+1/2,pr,cn+1/2,pr, pn+1/2,pr,~un+1/2,pr
)
(97)

=

(
ρ

n+1/2,pr
k cn+1/2,pr

k

)
pn+1/2,pr

i +
(

ρ
n+1/2,pr
i cn+1/2,pr

i

)
pn+1/2,pr

k

ρ
n+1/2,pr
k cn+1/2,pr

k +ρ
n+1/2,pr
i cn+1/2,pr

i
(98)

−
(

ρ
n+1/2,pr
k cn+1/2,pr

k

)(
ρ

n+1/2,pr
i cn+1/2,pr

i

)(
~un+1/2,pr

k −~un+1/2,pr
i

)
·~nn+1/2,pr

i,k

ρ
n+1/2,pr
k cn+1/2,pr

k +ρ
n+1/2,pr
i cn+1/2,pr

i
(99)

Ψi,k = CON OPT
(

∆V n+1
z ,δV max,n+1

i,k , p∗,n+1
i,k ,κbot,κi

)
(100)

V n+1
z,i = α

n
z,iV

n+1
z + ∑

k∈Mz(i)
Ψi,kδV max,n+1

i,k

(101)

ρ
n+1
z,i = mz,i/V n+1

z,i
(102)

En+1
z,i = En

z,i−
1

mz,i

(
α

n
z,i p

n+1
z,i div~un+1V n+1

z,i ∆t

(103)

+ ∑
k∈Mz(i)

Ψi,k p∗,n+1
i,k δV max,n+1

i,k ∆t +Qn+1/2
z,i ∆t

)
(104)

pn+1
z,i = EOS

(
ρ

n+1
z,i ,En+1

z,i

)
(105)

α
n+1
z,i = V n+1

z,i /V n+1
z

(106)

Figure 6: The corrector stage of IASSD
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CON OPT refers to the solution of the optimization problem Equations (75) to (78); for
example, in 1D with two materials, it refers to applying the solution given in Equations (80)
to (83). It is important to note that the variables at time (n+1/2,pr) are computed by using
the relevant equations from the predictor stage with a time step of ∆t/2, as opposed to some
procedure like averaging the time n and time (n+1,pr) variables.

Technical Approach
Various technical approaches used in this report are discussed.

Multi-Material Configurations

In this section, a detailed explanation of how different multi-material closure models are com-
pared against a range of realizable pure cell configuration results.

Figure 7: Sample multi-material configurations for αi = 0.5

Most multi-material closure models do not make explicit assumption about the configura-
tions of the materials within the multi-material cell. This means that the sample multi-material
configurations shown in Figure 7 for volume fraction of 0.5 are nearly indistinguishable for
most multi-material closure models. A multi-material configuration where one material oc-
cupying left half and another material occupying the rest of the cell (bottom configuration) is
exactly the same as any alternating configuration, or a composite configuration (top config-
uration), as long as the volume fractions of each material in the multi-material cell satisfies
αi = 0.5.
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Pure Cell Realizations

Figure 8: Realizable pure material configurations for αi = 0.5

In Figure 8, sample realizable pure material configurations for the volume fraction of 0.5 are
shown. These pure material realizations of the multi-material configurations suggest some
standards to compare the multi-material closure model results. And these pure material real-
izations make up of the range of plausibility for the multi-material closure model results, as
will be shown in sanity check, modified shock tube and water air shock tube test problems.

Artificial Viscosity

The use of artificial viscosity for compressible flow simulations dates back to 1950. The form
of artificial viscosity discovered by von Neumann and Richtmyer [10] augmented the pressure
where compression was detected. The expression used to describe the nonlinear mechanism to
suppress numerical oscillations near sharp discontinuities and compression shock waves is the
following

q = c2ρ(∆u)2. (107)

where c2 is a constant of unity.
The artificial viscosity used throughout this project is a modified version of the von Neu-

mann and Richtmyer’s original artificial viscosity, [7]. It is given by the addition of a linear
term

q =
{

0 if ∆u≥ 0,
−c1ρc|∆u|+ c2ρ(∆u)2 if otherwise.

(108)

where c1 = 1 and c2 = 0.1 are constants. c is the speed of sound in cell.

Boundary Conditions

The boundary condition used in this project is a transmissive boundary condition from which
the immediate neighbors’ boundary values are transmitted. Since SGH hydrocode locate the
velocities at the vertex and all other variables in the centroid, one only needs to apply boundary
conditions on the outer-most vertex points.
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Results

The Sod Shock Tube Problem: Sanity Check

In the sanity check problem, multi-material closure model results are compared to the pure
Lagrangian hydrodynamics results. The sanity check is a variation of simple one dimensional
Sod shock tube problem with one pseudo multi-material cell at the center of the domain. The
initial conditions for this problem are

(γ,ρ,e, p,u) =
{

(1.4,1,2.5,1,0) if 0≤ x < 0.5
(1.4,0.125,2,0.1,0) if 0.5≤ x < 1.0.

(109)

The parameters for this problem are

• x ∈ [0,1]

• Ncells = 99

• tfinal = 0.2

• CFL = 0.1

• One multi-material cell located at x = 0.5

• Multi-material sub-cells initialized with the volume fraction of αi = 0.5

All results shown are at the final time. The black solid lines indicate the exact solutions. The
symbols J and I indicate left and right component values in multi-material cell.
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Figure 9: Pure Lagrangian solution
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Figure 10: Equal compressibility model
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Figure 11: Equal velocity increment model
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Figure 12: Tipton’s pressure relaxation model
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Figure 13: Linearized Riemann Problem pressure relaxation model
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Figure 14: IASSD pressure relaxation model

In the Sod shock tube problem, the main purpose of this problem was to verify that all
multi-material closure models behave in the correct manner. For instance, the pure Lagrangian
results, which does not have any multi-material cell, follow the exact Sod shock tube result
very closely in Figure 9. The equal compressibility and equal velocity increment model results
exhibit the pressure non-equilibration for multi-material components in the multi-material cell
in Figures 10 and 11. The density and the specific internal energy values also show varying
results from the equilibrium values.

The pressure relaxation model results such as Tipton’s pressure relaxation model, Lin-
earized Riemann Problem model and IASSD model, do obtain the correct equilibrium pressure
results. However, the density and the specific internal energy values do not reach the same
equilibrated values as shown in Figures 12, 13 and 14. The pressure relaxation closure models
are designed to obtain the same pressures of the components in the multi-material cells, not
the density or the specific internal energy values. We can also notice that the density and the
specific internal energy values are closely related to the pressure in the equation of state of
materials. Any change in the specific internal energy must be accompanied by corresponding
change in density to obtain the same pressure value. This is obvious from the equation of state,
p = P(ρ,e), since pressure is a function of both density and specific internal energy. In Figure
13, one can notice that the large difference in the specific internal energy values give rise to
large difference in the density values of two components, or vice versa.
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Figure 15: Time history of multi-material cell components for various closure models
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In Figure 15, the multi-material closure model results are compared against a range of
possible realizations of multiple material configurations in the multi-material cell. The time
history of pressure, density and specific internal energies of left and right components are
plotted along with the gray bands. The gray bands represent possible realizations of multiple
material configurations in the multi-material cell.

The pressure relaxation closure models obtain the desired equilibrium pressures. However,
the one-step closure models such as the equal compressibility and equal velocity increment
model do not. Even within the list of the pressure relaxation closure models, one can find
various relaxation times. The Riemann problem based relaxation models converge faster to the
equilibrium values in general. The density and the specific internal energy values, however, are
not well predicted by any of the closure models.

This test problem addresses the characteristics of individual closure models at the most
basic level. Since the multi-material cell only consists of two pseudo materials, in other words
the same material, it is a good test to check whether the closure models behave as expected or
not.
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The Modified Shock Tube Problem

The modified shock tube problem consists of two distinct gamma gases. The multi-material
cell is initialized with a mixture of the two distinct gases. The initial conditions for this problem
are

(γ,ρ,e, p,u) =
{

(2.0,1,2,2,0) if 0≤ x < 0.5
(1.4,0.125,2,0.1,0) if 0.5≤ x < 1.0.

(110)

The parameters for this problem are

• x ∈ [0,1]

• Ncells = 99

• tfinal = 0.2

• CFL = 0.1

• One multi-material cell located at x = 0.5

• Multi-material sub-cells initialized with the volume fraction of φi = 0.5

All results shown are at the final time. The black solid lines indicate the exact solutions. The
symbols J and I indicate left and right component values in multi-material cell.
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Figure 16: Pure Lagrangian solution
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Figure 17: Equal compressibility model
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Figure 18: Equal velocity increment model
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Figure 19: Tipton’s pressure relaxation model
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Figure 20: Linearized Riemann Problem pressure relaxation model
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Figure 21: IASSD pressure relaxation model

In the modified shock tube problem, the main purpose is to show the multi-material closure
model performances for slightly different gamma gases. The pure Lagrangian results, which
does not have any multi-material cell, show very good agreement with the exact solution as
shown in Figure 16. The equal compressibility and equal velocity increment model results, as
expected, do not reach the equilibration values for the pressures for multi-material components
in the multi-material cell as shown in Figures 10 and 11. The density and the specific internal
energy values also show varying results from the equilibrium values.

The pressure relaxation model results shown in Figures 12, 13 and 14 have similar results
as the sanity test Sod shock problem.
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Figure 22: Time history of multi-material cell components for various closure models
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In Figure 22, the multi-material closure model results are compared against a range of
possible realizations of multiple material configurations in the multi-material cell. The time
history of pressure, density and the specific internal energy of left and right components are
plotted along with the gray bands. The gray bands represent possible realizations of multiple
material configurations in the multi-material cell.

The pressure relaxation closure models obtain the desired equilibrium pressures. However,
the one-step closure models such as the equal compressibility and equal velocity increment
model do not. Even within the list of pressure relaxation closure models one can find various
relaxation times. The Riemann problem based relaxation models converge faster to the equi-
librium values in general. The density and the specific internal energy values, however, are
not well predicted by any of the closure models. Overall, the modified shock tube results are
quite similar to those of the standard Sod shock tube. This is expected since both of the test
problems consists only of gamma gases with little difference in the gas constants.

It is conceivable that the pressure relaxation closure models are favored in this test problem
due to the superior pressure equilibrium property. The one-step closure models will not be a
good closure model choice if component pressures in the multi-material cell are to be utilized.
Linearized Riemann Problem pressure relaxation model seems to show the best performance
in all variables, compared to the plausible range of multi-material configurations, as shown in
Figure 22. However, other pressure relaxation models also show acceptable results.
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The Water Air Shock Tube Problem

The water air shock tube problem consists of two distinct phases of materials. Water behaves
like a stiffened gas, therefore, requires a stiffened-gas equation of state. The initial conditions
for this problem are

(γ,ρ,e, p,u) =
{

(4.4,103,1.07×106,109,0) if 0≤ x < 0.7
(1.4,50,5×104,106,0) if 0.7≤ x < 1.0.

(111)

The parameters for this problem are

• x ∈ [0,1]

• Ncells = 249

• tfinal = 2.2×10−4

• CFL = 0.1

• The equation of state for water (stiffened-gas EOS): (γ−1)ρe−γ p∞ where p∞ = 6×108

• One multi-material cell located at x = 0.7

• Multi-material sub-cells initialized with the volume fraction of φi = 0.5

All results shown are at the final time. The symbols J and I indicate left and right component
values in multi-material cell.
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Figure 23: Pure Lagrangian solution
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Figure 24: Equal compressibility model

0.0 0.2 0.4 0.6 0.8 1.0
x

105

106

107

108

109

p

(a) Pressure, p

0.0 0.2 0.4 0.6 0.8 1.0
x

0

200

400

600

800

1000

ρ

(b) Density, ρ

0.0 0.2 0.4 0.6 0.8 1.0
x

0

200000

400000

600000

800000

1000000

1200000

e

(c) Specific internal energy, e

0.0 0.2 0.4 0.6 0.8 1.0
x

0

100

200

300

400

500

u

(d) Velocity, u
Figure 25: Equal velocity increment model
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Figure 26: Tipton’s pressure relaxation model
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Figure 27: Linearized Riemann Problem pressure relaxation model
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Figure 28: IASSD pressure relaxation model

The water air shock tube problem shows more interesting results. Two materials used
in this test problem have different material properties and this gives rise to large jumps in
pressure, density and specific internal energy values in the multi-material cell. Pressure values
are scaled logarithmically in order to properly visualize. Both the pure Lagrangian and the
equal compressibility show large drop in pressure at the beginning of the expansion wave,
around x = 0.4. In fact, some of the pressure values are negative, hence not shown in the
logarithmic scale, see Figure 24. Interestingly, the equal velocity increment model does not
exhibit the non-physical negative pressure at the beginning of the expansion wave. Instead, a
slight over-prediction of pressure at the beginning of the expansion wave is observed, Figure
25.

The pressure relaxation closure models all exhibit very similar pressure results. The major
differences between different pressure relaxation closure models can be noticed in density and
specific internal energy results. Tipton’s model tends to more accurately model density and
specific internal energy values of individual components with respect to the neighboring quan-
tities, see Figure 26. Linearized Riemann Problem model results do not show any resemblance
of the immediate neighboring properties, see Figure 27. However, IASSD model shows similar
component density values but not specific internal energy values, as shown in Figure 28. In
this test problem, Tipton’s pressure relaxation closure model converges the fastest and IASSD
model converges the slowest.
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Figure 29: Time history of multi-material cell components for various closure models

Final Reports: 2015 Computational Physics Student Summer Workshop Page 272



Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

In Figure 29, the multi-material closure model results are compared against a range of
possible realizations of multiple material configurations in the multi-material cell. Time history
of pressure, density and specific internal energy values of left and right components are plotted
along with the gray bands. The gray bands represent possible realizations of multiple material
configurations in the multi-material cell. The pressures of equal compressibility and equal
velocity increment closure models do not even come close to the accepted range.

Among all pressure relaxation models, IASSD closure model shows interesting density
convergence. The right component of density steadily increases above the value of left compo-
nent. This suggests that the density of air, located right, exceeds that of water, located left.
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The Water-Air Shock Tube Problem – Bubbly interface

In this problem, several bubbly interfaces are initialized between two materials. The bubbly
interface is realized by series of alternating water and air initial conditions. This problem shows
how multi-material closure models perform when multiple multi-material cells exist in a series.
The initial conditions for this problem are

(γ,ρ,e, p,u) =
{

(4.4,103,1.07×106,109,0) if 0≤ x < 0.7−2∆x
(1.4,50,5×104,106,0) if 0.7+2∆x≤ x < 1.0

(112)

The parameters for this problem are

• x ∈ [0,1]

• Ncells = 253

• tfinal = 2.2×10−4

• CFL = 0.1

• The equation of state for water (stiffened-gas EOS): (γ−1)ρe−γ p∞ where p∞ = 6×108

• Four multi-material cells located at x = 0.7,0.7+∆x,0.7+2∆x,0.7+3∆x

– The material configurations within all multi-material cells is water and air, from
left to right.

• Multi-material sub-cells initialized with the volume fraction of φi = 0.5

All results shown are at the final time. The symbols J and I indicate left and right component
values in multi-material cell.
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Figure 30: Equal compressibility model
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Figure 31: Equal velocity increment model
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Figure 32: Tipton’s pressure relaxation model
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Figure 33: Linearized Riemann Problem pressure relaxation model
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Figure 34: IASSD pressure relaxation model

This test problem approximately models water and air separated by a finite thickness water
air bubble interface. It can be recalled that most multi-material closure models do not make
assumptions about the multi-material configuration within the cell. Some exceptions are the
Riemann Problem based closure models such as Linearized Riemann Problem and IASSD
models which require the interface as well as material orientation within the multi-material cell.
The one-step closure model results vary greatly from one model to another. The differences
are quite noticeable in pressure and velocity profiles.

The pressure relaxation closure model results do not show much variations in pressure value
profiles. However, the density and the specific internal energy values are evaluated differently.
Tipton’s pressure relaxation closure model results scatters the density and specific internal
energy values in the multi-material cells. On the other hand, IASSD model show somewhat
congregated results for the density and specific internal energy values. It is interesting to note
that almost all of the right values gather around other right values, and left values gather around
other left values. Linearized Riemann Problem model shows intermediate results of Tipton’s
and IASSD results.
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The Vacuum Problem

The vacuum problem consists only of air, a gamma gas. The multi-material cell undergoes
a rapid expansion caused by the vertex velocities imposed on it. This problem tests how the
multi-material closure model behaves under rapid expansion of velocity field. The initial con-
ditions for this problem are

(γ,ρ,e, p,u) =
{

(1.4,1,1,0.4,−2) if 0≤ x < 0.5
(1.4,1,1,0.4,2) if 0.5≤ x < 1.0 (113)

The parameters for this problem are

• x ∈ [0,1]

• Ncells = 200

• tfinal = 0.15

• CFL = 0.1

• One multi-material cell located at x = 0.5

• Multi-material sub-cells initialized with the volume fraction of φi = 0.5

All results shown are at the final time. The black solid lines indicate the exact solutions. The
symbols J and I indicate left and right component values in multi-material cell.
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Figure 35: Pure Lagrangian solution
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Figure 36: Equal compressibility model
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Figure 37: Equal velocity increment model
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Figure 38: Tipton’s pressure relaxation model
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Figure 39: Linearized Riemann Problem pressure relaxation model
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Figure 40: IASSD pressure relaxation model

One special observation for this test problem is that all one-step closure model results con-
verge to the exact solutions. One possible explanation for this behavior is the initial condition.
Unlike previous shock tube problems where left and right components of the multi-material cell
did not have the same initial conditions, the vacuum problem has symmetric initial conditions
for the left and right components.

On the other hand, some pressure relaxation closure models do not converge to the exact
solutions, especially in specific internal energy and density values. Tipton’s closure model,
Figure 38, seems to show the largest variation from the exact solution. This peculiar results are
probably owing to the pressure relaxation mechanisms since non-pressure relaxation models
did not show the similar results.
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Figure 41: Time history of multi-material cell components for various closure models
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In Figure 41, the multi-material closure model results are compared against the pure La-
grangian results in the multi-material cell. Time history of pressure, density and specific in-
ternal energy values of left and right components are plotted. The pure Lagrangian results are
not visible since they lie behind the equal compressibility and equal velocity increment model
results.

The vacuum problem where a multi-material cell goes through rapid expansion reveals
different characteristics of closure models. We discovered that simple one-step models perform
better than more sophisticated pressure relaxation models. Tipton’s pressure relaxation closure
model showed the worst convergence history for all variables.
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The Shock Contact Problem – Gas-Gas Interaction

The shock contact problem tests the transmission and reflection of Mach 2 shock through an
initially stationary contact surface located in the multi-material cell. The multi-material cell
consists of two different gamma gases. The shock wave arrives at the interface at t .= 0.172.
High precision initial condition data is given in [9]. The initial conditions for this problem are

(γ,ρ,e, p,u) =


(1.35,2.76,4.60,4.45,1.48) if −0.37≤ x < 0.1
(1.35,1.0,2.86,1.0,0) if 0.1≤ x < 0.5
(5.0,1.9,0.132,1.0,0) if 0.5≤ x < 1.0.

(114)

The parameters for this problem are

• x ∈ [−0.37,1]

• Ncells = 274

• tfinal = 0.25

• CFL = 0.1

• One multi-material cell located at x = 0.5

• Multi-material sub-cells initialized with the volume fraction of φi = 0.5

All results shown are at the final time.The symbols J and I indicate left and right component
values in multi-material cell.
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Figure 42: Pure Lagrangian solution
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Figure 43: Equal compressibility model
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Figure 44: Equal velocity increment model
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Figure 45: Tipton’s pressure relaxation model
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Figure 46: Linearized Riemann Problem pressure relaxation model

Final Reports: 2015 Computational Physics Student Summer Workshop Page 286



Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

7

8

p

(a) Pressure, p

0.0 0.2 0.4 0.6 0.8 1.0
x

1

2

3

4

5

6

ρ

(b) Density, ρ

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

e

(c) Specific internal energy, e

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

u

(d) Velocity, u
Figure 47: IASSD pressure relaxation model

At the final time t = 0.25, the results indicate that the multi-material cell has been influ-
enced by an incoming shock at Mach 2.0 then again a transmitted and a reflected shock. More
information about the problem can be found in [9]. All models succeed in capturing the trans-
mission as well as the reflection of shock wave after the interaction at the contact surface. The
equal compressibility and equal velocity increment models certainly lack in giving physical
component pressures.

All pressure relaxation models correctly evaluate the component pressures. The difference,
as we have observed over and over, comes down to how accurately one model computes the
specific internal energy or the density of the components. All pressure relaxation closure mod-
els have over or undershoots in either the density or the specific internal energy values.
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Figure 48: Time history of multi-material cell components for various closure models
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In Figure 48, the multi-material closure model results are compared to the pure Lagrangian
results in the multi-material cell. It is easy to visualize that the pressure relaxation closure
models have good agreements in the pressure of components, however, not in other variables.
It is also easy to visualize the relaxation times compared to the pure Lagrangian results. IASSD
model follows the pure Lagrangian component pressure results very closely.
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The Shock Contact Problem – Gas-Solid Interaction

This problem is a variation of the shock contact problem involving two different phases of ma-
terials. The material located on the right side of the contact surface is a solid aluminium 2024
(AL 2024). The left material is still a gamma gas. Mach 2 shock initialized in the gas reaches
the contact surface where two materials are mixed. This problem shows the transmission and
reflection of shock waves in two different phases of materials. The shock wave arrives at the
interface at t .= 0.172. This problem is a difficult one to model because not only there are two
very different materials but also there is no strength model available for aluminium. The initial
conditions for this problem are

(γ,ρ,e, p,u) =


(1.35,2.76,4.60,4.45,1.48) if −0.37≤ x < 0.1
(1.35,1.0,2.86,1.0,0) if 0.1≤ x < 0.5
(5.0,2.78×103,1.799×10−4,1.0,0) if 0.5≤ x < 1.0.

(115)

The parameters for this problem are

• x ∈ [−0.37,1]

• Ncells = 274

• tfinal = 0.25

• CFL = 0.1

• Aluminium 2024 equation of state: p = 0.7906X + 1.3250X2 + 2.130X3 + 2.00(ρe)
where X =

(
1− ρ0

ρ

)
• One multi-material cell located at x = 0.5

• Multi-material sub-cells initialized with the volume fraction of φi = 0.5

All results shown are at the final time. The symbols J and I indicate left and right component
values in the multi-material cell.
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Figure 49: Pure Lagrangian solution
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Figure 50: Equal compressibility model
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Figure 51: Equal velocity increment model
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Figure 52: Tipton’s pressure relaxation model

Final Reports: 2015 Computational Physics Student Summer Workshop Page 292



Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

0

2

4

6

8

10

12

14

16

p

(a) Pressure, p

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

100

101

102

103

104

ρ

(b) Density, ρ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

10-4

10-3

10-2

10-1

100

101

e

(c) Specific internal energy, e

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

u

(d) Velocity, u
Figure 53: Linearized Riemann Problem pressure relaxation model
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Figure 54: IASSD pressure relaxation model
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Despite the lack of strength model needed to accurately model aluminium, the results sug-
gest convincing outcome. Initially right-going Mach 2 shock wave collides with the multi-
material cell. Then, some of the shock wave is transmitted into aluminium and the rest is
reflected. It is difficult to exactly find what happened due to lack of the exact solution. How-
ever, this problem reaffirms our understandings of the types of closure models considered in
this report.

The results shown are at t = 2.5. By this time, the reflected shock is located at x≈ 0.25. The
transmitted shock into aluminium is located at x≈ 0.52. The contact surface of two materials is
also displaced slightly, now located at x ≈ 0.505. This observation gives perspectives into the
strength of reflected and transmitted shocks in different materials. In comparison, the contact
surface location in the shock contact problem for gas-gas interaction is located at x ≈ 0.58 at
time t = 0.25. Noticeable change in the location of contact surface was observed after a long
simulation run time.
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Figure 55: Time history of multi-material cell components for various closure models
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In Figure 55, the multi-material closure model results are compared against the pure La-
grangian results in the multi-material cell. There is a large amount of oscillations in all prop-
erties in the multi-material cell. From this illustration, we can compare how the relaxation
procedure varies from one model to another. IASSD model very quickly detects pressure vari-
ation, however, comes with very large oscillations. On the other extreme, the Linearized Rie-
mann Problem closure model is slowest to detect the pressure variation, however, has the least
amount of oscillations. Tipton’s closure model lies somewhere in between. All these results
seems to indicate the common fact that strength model for solids are required to counteract the
oscillations produced by the closure models.
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Compression Test—Sanity Check

Figure 56: A cartoon illustration of a compression (shock unloading) test. Two materials
occupy a domain with a multi-material cell (indicated by red lines) in the middle. The whole
domain is initially compressed and is then allowed to release. (In the tests considered here, we
use just one, multi-material cell as our domain.)

We are also interested in compression (shock unloading) tests, where a domain is compressed
via a shock (instantaneously) to some higher pressure state and then allowed to release. When
multi-material cells are present in the domain, the constituent materials interact with each other
during the unloading process; therefore, the choice of closure model should affect the overall
release path of the mixture. We show a cartoon of a compression problem in Figure 56.

To verify that our code and equations of state work for this type of example, we first run
a “sanity check” with a pseudo–multi-material cell. Our example consists of a computational
domain with a single cell. At rest, the cell is composed of two components of the same material,
2024 aluminum. The rest density of Al is taken to be 2.78g/cm3, and the rest pressure is
zero. The rest volume of the computational cell is 1.0. Finally, we use a relative measure of
specific internal energy for this test, where 0 indicates ambient conditions; hence, at rest, each
component of Al has 0 specific internal energy.

We note that the equation of state used for aluminum is the same as for the gas-solid shock
contact problem:

P = 0.7906X +1.3250X2 +2.1300X3 +2.00(ρe) (116)

where 2.00 is the Grüneisen parameter Γ for the material and where X = 1−ρ0/ρ (ρ0 is the
initial compressed density of the material).

We initialize the aluminum to a shocked state, and then track the release path of of the pres-
sure as a function of relative volume for the constituent materials. The cell is shocked so that
both components of Al have a pressure of 0.185Mbar. The density of each component there-
fore becomes 2.78/.8475≈ 3.28g/cm3, and the specific internal energy of each component is
approximately 3.97×10−3Mbar cm3/g.

We note that in this test, we use zero artificial viscosity. As discussed earlier in the paper,
for boundary conditions, we fix the left endpoint of the domain and place a ghost cell to the
right of our computational cell. The ghost cell is constantly at the (uncompressed) rest state of
the aluminum.
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Figure 57: Results for the sanity check compression test. Shown is the average pressure in the
cell (the mixture pressure) vs. the relative volume of the mixture (which should equilibrate
to 1.0). Experimental data for different volume fractions of the two aluminum components
are compared with the analytical isentrope for aluminum (given the initial conditions of our
test). Our data match to the analytical solution to within 10× 10−12. The differences in the
various volume fraction results are roughly on the order of machine precision (approximately
10× 10−15). The same results were obtained, up to roughly machine precision, regardless of
the closure model used.

In Figure 57, we show our results for a variety of pseudo–multi-material cell configurations.
For the two components of aluminum, we let them have volume fractions (.5, .5), (.6, .4),
(.7, .3), (.8, .2), (.9, .1), and (1.0,0). We compare these results to an analytical isentrope based
on our initial conditions. We find essentially exact agreement between the theoretical values
and our experimental results. The figure shows results for the equal compressibility model;
however, all results were the same (within tolerance) regardless of which closure model we
selected. There is no preferred closure model for this test; however, this test is intended as a
validation of our code rather than as a comparison of closure models. As such, the results of
this test are evidence that our host hydrocode, closure models, equations of state, and initial
conditions are implemented correctly. A more practical compression test is discussed below.
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Compression Test—Glass-Epoxy Shock Unloading

In this example, we compress a single-cell computational domain from volume 1 to volume .6
(see Figure 56 for a cartoon depiction of the compression problem). The cell, at its initial rest
state, is composed of 40% glass and 60% 828 epoxy, whose equations of state are taken to be,
respectively:

P = 0.8859X +2.6040X2 +6.1980X3 +0.75(ρe) (117)

P = 0.0861X +0.2114X2 +0.4421X3 +1.19(ρe) (118)

where 0.75 and 1.19 are the Grüneisen parameters Γ for the materials and where X = 1−ρ0/ρ

(ρ0 are the initial compressed densities of the materials).
The rest densities of the glass and epoxy are 3.79g/cm3 and 1.19g/cm3, respectively.

However, since glass and epoxy have different volumetric compressibilities, their densities,
volume fractions, and other variables change disproportionately when the domain is com-
pressed. In the compressed state (the initial conditions used for the simulation), glass and
epoxy have volume fractions 0.56 and 0.44, densities 4.51g/cm3 and 2.70g/cm3, pres-
sures 0.31Mbar and 0.31Mbar, and specific internal energies ≈ 2.25× 10−2Mbar cm3/g and
≈ 3.86×10−2Mbar cm3/g, respectively.

The same types of artificial viscosity and boundary conditions are used as in the sanity
check compression test above: namely, there is zero artificial viscosity, the left endpoint of the
cell is fixed, and there is a ghost cell to the right of the domain that is constantly maintained to
be the uncompressed rest state of the mixture.
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Figure 58: Results for the glass-epoxy shock unloading test. The pressure for the mixture in
the multi-material cell (a 60-40 combination of epoxy and glass) is plotted against the relative
volume of the computational cell. The red and green curves indicate the unloading curves if
the cell only contained glass or epoxy; our results, using a combination of glass and epoxy, fall
between these two curves. The simulation stops printing results when one of the constituent
pressures becomes negative. In the figure, the results for Tipton’s model are obscured directly
behind the LRP model results.

Figure 58 shows the results of the test for various multi-material closure models. The pres-
sure of the mixture is plotted against the relative volume of the mixture (the rest state of the
mixture is at the point (1,0)). We expect that the pressures of each constituent should mono-
tonically decrease from 0.31 to 0; therefore, we stop the simulation if either of the constituent
material pressures becomes negative (hence, some of the result curves are longer than others).
The red and green lines in the graph show, respectively, the isentropic unloading curves for an
equivalent cell made of just the epoxy or just the glass material. We expect that since our cell
contains a mixture of glass and epoxy, any plausible results for our mixture must fall between
the red and green curves. Indeed, this is what we observe, except for the tail end of the results
for the equal compressibility model.

The various closure models we tested demonstrate interesting behavior for this test prob-
lem. For the equal compressibility model, the constituent pressures monotonically decrease to

Final Reports: 2015 Computational Physics Student Summer Workshop Page 300



Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

0 as expected, but the mixture equilibrates at a relative volume of less than 1. For the other clo-
sure models, either the glass or epoxy component attains negative pressure before the mixture
as a whole equilibrates to zero pressure, which is an unexpected result, although a negative
pressure by itself is not necessarily nonphysical. We note that the equal velocity increment
model stops quickly relative to the other models, and as such, it is not a particularly appro-
priate model for this test. The LRP model, Tipton’s model (almost exactly matching the LRP
results), and IASSD all perform similarly. Even though these models achieve a negative pres-
sure for a component earlier than equal compressibility, it appears that these models are on
a closer trajectory for the mixture to reach (1,0) than equal compressibility. Since this test
problem is very sensitive to pressure, it makes sense that these three pressure-relaxation–based
models all outperform the one-step models when it comes to better capturing the mixture pres-
sure; however, further investigation is warranted into the trade-off between accurate mixture
pressure and accurate component pressure that is exhibited by the varying model results.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 301



Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

Moving Plate Problem

Figure 59: The setup for the moving plate test problem. Multi-material cells are indicated by
red lines.

Another test we consider involves a solid plate flying through the computational domain. We
initialize a domain with a solid plate surrounded on either side by a gas. The plate has a
positive velocity relative to the velocity of the gas. There is a multi-material cell at each solid-
gas interface. A cartoon of the setup for this problem is shown in Figure 59.

The test is run with 100 grid cells, a CFL number of 0.1, and a final time of 0.5. In both
multi-material cells, the volume fractions are all 0.5. The metal plate is made out of 2024
aluminum, using the same cubic EOS seen earlier in the results (Equation (116)).

The initial thermodynamic state of the problem is:

(γ,ρ,e, p,u) =


(1.35,1.0, 2.86,1.0,0.095) if 0≤ x≤ 0.3
(N/A,2.78×103, 1.80×10−4,1.0,0.1) if 0.3+∆x≤ x≤ 0.7
(1.35,1.0, 2.86,1.0,0.095) if 0.7+∆x≤ x≤ 1.0.

(119)

Note that the density used for aluminum is in kg/m3 as opposed to g/cm3 (the density units
used in the compression tests).

The initial configuration of the problem is shown in Figure 60. Figures 61 to 65 show the
results of the simulation for the various closure models we considered. All results shown are
at the final time. The black solid lines indicate the pure Lagrangian solutions. The symbols J
and I indicate left and right component values in multi-material cell.
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Figure 60: The initial state of the moving plate problem

Figure 61: The final state of the moving plate problem for equal compressibility model
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Figure 62: The final state of the moving plate problem for equal velocity increment model

Figure 63: The final state of the moving plate problem for Tipton’s model
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Figure 64: The final state of the moving plate problem for LRP model

Figure 65: The final state of the moving plate problem for IASSD model

We make several observations about the results. The plate begins to move faster than the
surrounding gas. This velocity differential between the plate and surrounding gas allows for
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the creation of right-going waves at the tip of the plate and left-going waves at the trailing edge
of the plate. The presence of the waves are reflected on the velocity profiles at the final time
step.

The one-step closure model results, especially in velocity, deviate from the pure Lagrangian
results. However, pressure, density and specific internal energy values are well predicted as
compared to the pure Lagrangian results.

The pressure relaxation model velocity profiles are well predicted. Tipton’s closure model
and Linearized Riemann Problem model results are very similar for all variables. The only
difference was noticed in IASSD model where the leading edge pressure and velocity profiles
are greatly mishandled. However, the trailing edge quantities are evaluated quite well.
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Summary
The one-step closure models such as the equal compressibility model and the equal veloc-
ity increment model are very easy models to implement due to the simple assumptions made
throughout the closure model procedure. As we have observed in many test problems, however,
the one-step closure models do not give very reliable results of the multi-material component
properties. As a result, they may not be the most attractive closure models to use in practical
situations where certain physical properties must be considered. For instance, the equal com-
pressibility assumption is not favorable when the compressibility properties of components
differ significantly. The linearly varying velocity assumption made in the equal velocity in-
crement model is simple, yet, may not provide accurate enough representation of the physical
problem. Despite the inadequate results produced by the one-step closure models, these closure
models theoretical basis and understanding for building future multi-material closure models.

Tipton’s pressure relaxation closure model is one of the widely used multi-material clo-
sure models in production hydrocodes such as FLAG production code in Los Alamos National
Laboratory. It is a pressure relaxation closure model which doesn’t require the material inter-
face location or the orientation. For this reason, it is a relatively simple method and can be
extended to multiple material configurations with relative ease. Linearized Riemann Problem
pressure relaxation model and IASSD model, on the other hand, require explicit information of
the interface location as well as the material orientation. This is achieved by a more physically
and mathematically sound concept of the Riemann problem. Solving the Riemann problem
accurately represents the physical process of transport and evaluation of the material specific
thermodynamic quantities. However, these sophisticated methods that require additional in-
formation to accurately determine thermodynamic quantities come with an increased compu-
tational cost. As observed in many results, the Riemann problem based pressure relaxation
models are not considered superior to Tipton’s closure model.

Some Recommendations of Multi-Material Closure Models

For many practical situations, the one-step closure models are not wise choices due to their
unreliable performances. All pressure relaxation closure models, however, are better suited for
more complex problems as shown in various test problems considered in this project.

Although Tipton’s pressure relaxation closure model has been proven to be useful in var-
ious production hydrocode and hydrodynamics community, it lacks some sophistication that
the modern multi-material closures are equipped with. However, Tipton’s pressure relaxation
closure model is versatile. It does not require the interface reconstruction step, which would
normally be needed in the Riemann problem based closure models. This eliminates the need for
an extra routine in the hydrocode if one were to develop a hydrocode from scratch. As problems
get more complex, there is an essential need for implementing a more accurate multi-material
closure models. It would be a great investment to utilize the modern multi-material closure
models because they provide insights that are based on more accurate physics.
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Conclusion and Future Work
Numerous test problems reveal advantages and disadvantages of each closure model choice in
different circumstances. It is a daunting task to catalogue as many test problems as we have
considered in this report. However, it becomes obvious that there are countless list of problems
to be considered in order to even come close to understanding a real world problem. The aim
was not set to understand the entire physics, but rather have some educated understanding of
the closure models and their designs with respect to the physical problems they are being tested
on. We provided various array of test problems which range from simple sanity test to more
complex multi-phase flows.

This research was also meant for the pilot study for the future development in the multi-
material closure models. The SGH hydrocode developed and used in this project was only
limited to one dimensional problems in order to maximize time spent on investigating various
multi-material closure models. However, this limitation of the project has only a slight impact
on the final outcome given the fact that it is meant to give insights into the field of multi-material
closure modelling.

There are still some work needed to make the project more complete. First, a strength
mode needs to be implemented for proper modelling of solid materials. Even though the pre-
liminary results indicate the solid material can be simulated without the strength model, one
must consider more complete representation of solid materials.

Second, there are only limited number of exact solutions shown in the results. For some
of the problems, the multi-material closure model results were only compared with the pure
Lagrangian results. In order to properly assess the closure model results, the exact solutions
must be included.

Third, higher-dimensional hydrodynamics code must be considered. One dimensional hy-
drodynamics code is a useful tool in development of the closure models. One dimensional
mathematical formulations lead to the simplest proving ground for any theoretical develop-
ment. There is, however, a large gap between theory and practice. Often times one dimen-
sional theories are difficult to put into practice for higher-dimensional problems because of the
inherent differences in physics and mathematics.

Lastly, as it was obvious in multiple test problems considered in this project, most of the
pressure relaxation multi-material closure models show promising performance in computing
the correct common pressures. However, the specific internal energy and density values were
often times not well approximated, or even fall within the bounds of the immediate neighboring
values. This is understandable since all the multi-material closure models considered in this
project are independent of the neighboring material property. More importantly, none of the
multi-material closure models disallow the conservation laws of the fluid dynamics. It seems,
however, unsatisfactory for any multi-material closure models to have varying opinions on the
specific internal energy and density computation values. Especially, this would mean inaccu-
rate computation of component material properties which may be essential to capturing the
inter-material dynamics. Future development of new class of closure models should consider
the possibility of possessing some suggestions regarding more realistic and bounded material
properties in the multi-material cell for more realistic physics.
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Abstract

Orbital-free molecular dynamics is used to perform calculations for aluminum in the
warm dense matter regime. The dynamic structure factor obtained from the orbital-free
calculations are compared with the dynamic structure factor obtained from pseudo-atom
molecular dynamics calculations. These comparisons are made at 5, 20, and 50 eV for
wavenumbers that span the single particle, generalized hydrodynamic, and hydrodynamic
regimes. While the dynamic structure factors for warm dense aluminum from the pseudo-
atom molecular dynamics framework have previously been compared with those from the
orbital-free framework, these comparisons could only be performed up to 5 eV due to
limitations in the pseudopotential used in the orbital free calculations. The orbital-free
calculations performed in this project, however, self consistently calculate the pseudopo-
tential and are valid at the higher temperatures of 20 and 50 eV. Good agreement is found
between the pseudo-atom molecular dynamics and orbital-free dynamic structure factors
in the single particle regime at all three temperatures. In the generalized hydrodynamic
and hydrodynamic regimes the ion-acoustic resonance for the orbital-free calculation is
slightly higher and appears at a lower energy than that of the pseudo-atom molecular dy-
namics calculations, but the shape of the curves matches well.
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Introduction
In this paper we will be modeling warm dense matter using orbital-free density functional
theory. Warm dense matter is an intermediate state of matter between a solid and a plasma.
It exists in the lower-temperature portion of the high energy density regime, under conditions
where the assumptions of both condensed matter theory and ideal-plasma theory break down,
and where quantum mechanics, particle correlations, and electric forces are all important [2].
Warm dense matter occurs in many instances including in the core of Jovian planets, in inertial
confinement fusion, and in nuclear explosions.

There are several methods by which to model warm dense matter computationally. Born-
Oppenheimer molecular dynamics is a computationally efficient way to model WDM. Born-
Oppenheimer molecular dynamics uses classical mechanics to propagate ion trajectories and
quantum mechanics to model the electrons. The two main methods which use the Born-
Oppenheimer molecular dynamics are an orbital method called Kohn-Sham density functional
theory and orbital free density functional theory. Kohn-Sham density functional theory is very
accurate, but is computationally expensive. Since the number of orbitals grows with tempera-
ture, high temperature Kohn-Sham calculations are not computationally feasible. Orbital free
methods, on the other hand, are still accurate, but not as computationally expensive and scale
well with temperature.

Recently, another molecular dynamics framework called pseudo-atom molecular dynamics,
was developed and described in [3]. Pseudo-atom molecular dynamics is classical molecular
dynamics with a pairwise potential and is thus extremely fast and scaleable to higher temper-
atures. The accuracy of the model was assessed in [3] by comparing the dynamic structure
factor, a parameter that describes the temporal and spatial correlations in a system, obtained
from pseudo-atom molecular dynamics calculations with the dynamic structure factor obtained
from the orbital free calculations in [8]. However, these comparisons could only be made up
to 5 eV because the pseudo-potential used in the orbital free calculations in [8] was only good
up to about 5 eV. Since our orbital free code uses a pseudopotential that is good to higher tem-
peratures, we take advantage of the good temperature scaling of orbital free methods in order
to compute the dynamic structure factor at 5, 20, and 50 eV and compare these results to those
of the pseudo-atom molecular dynamics calculations.

In this report, we first describe orbital free density functional theory in more detail. We
then present our convergence studies and results.

Orbital Free Density Functional Theory
The orbital-free electronic free energy, Fe, in the WDM is given by

Fe[ne] = T [ne]+Uen[ne]+Uee[ne]+Fxc[ne] (1)

where T [ne] is the kinetic energy, Uen[ne] is the electron-nuclei energy, Uee[ne] is the Hartree
electron-electron energy, and Fxc[ne] is the exchange-correlation energy. Each of these four
terms are functionals of the electron density ne. We will want to solve (1) for ne by minimizing
the orbital-free electronic free energy functional. Throught this paper we will be using Hartree
atomic units which sets the numerical value of the electron mass, me, the elementary charge, e,
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the reduced Planck’s constant, h̄, and Coulomb’s constant, ke, equal to unity. Each of the terms
in (1) is discussed individually below.

Kinetic Energy

The orbital-free approximation to the kinetic energy functional is given by

Te[ne] = Echem− 2
3

Ekin (2)

where Echem denotes the chemical energy and Ekin is the Thomas-Fermi-Dirac kinetic energy.
From [1] and [6] we can express the the Thomas-Fermi-Dirac kinetic energy of the electrons
at finite temperature as

Ekin =
1

2π2

∫
Ω

∞∫
0

p4

eβ (E−µ) +1
dpdx (3)

where µ is the chemical potential, p is the electron momentum, β = (kBT )−1 where kB is
Boltzmann’s constant and T is the absolute temperature. Making the change of variables u = p2

2
gives

Ekin =
√

2
π2

∫
Ω

∞∫
0

u
3
2

eβ (E−µ) +1
dudx . (4)

Lastly, using the fact that E = p2

2 +V (x) and making another change of variables y = βu gives

Ekin =
√

2

π2β
5
2

∫
Ω

I3
2
(η(x))dx (5)

where η(x) = β (µ−V (x)) and

Iα(z) =
∞∫

0

tα

et−z +1
dt (6)

is called the Fermi-Dirac integral of order α . Now, with the Fermi-Dirac integral defined we
can express Echem as

Echem =
√

2

π2β
5
2

∫
Ω

I1
2
(η(x))η(x)dx. (7)

Lastly, we can use equations (5) and (7) to write the final expression for the kinetic energy as

Te[ne] =
1
β

∫
Ω

ne(x) f (y(x))dx (8)

where y(x) = π2√
2

β
3
2 ne(x) and f(y) is a special function of one variable composed of a Fermi-

Dirac integral of order 3
2 and its inverse of order 1

2 :

f (y) = I−1
1
2

(y)− 2
3y

I3
2

(
I−1

1
2

(y)
)
. (9)
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Electron-Nuclei Energy

The electron-nuclei energy functional is given by

Uen[ne] =
∫∫ ne(x)nn(x′)

|x−x′| dxdx′

=
∫
Ω

ne(x)Ven(x)dx
(10)

where

Ven(x) =
∫
Ω

nn(x′)
|x−x′| dx′ (11)

is the potential energy which describes the Coulomb interaction between an electron and the
collection of atomic nuclei in the WDM. In equations (10) and (11) nn(x) is the nuclear charge
density.

In order to evaluate the electron-nuclei energy functional (10) we need to know the Coulomb
potential for the interaction between the electron and nuclei Ven. We can express (11) in another
way by taking the laplacian of both sides of (11) and using the relations

∇
2

(
1

|x−x′|

)
=−4πδ (x−x′)

nn(x) =
∫
Ω

nn(x′)δ (x−x′)dx′,

where δ represents the Dirac delta function, to get the Poisson equation

∇
2Ven =−4πnn. (12)

Thus, in order to evaluate (10) we will first need to solve (12) for Ven.

Hartree Energy

The Hartree energy functional, which describes the Coulomb interaction between electrons, is
given by

Uee[n] =
1
2

∫∫ ne(x)ne(x′)
|x−x′| dxdx′

=
1
2

∫
Ω

ne(x)Vee(x)dx
(13)

where

Vee(x) =
∫
Ω

ne(x′)
|x−x′| dx′ (14)

is the Hartree potential. This potential describes the Coulomb repulsion between an electron
and the total electron density defined by all electrons in the WDM. In a similar manner to the
previous section we can take the laplacian of both sides of (14) to get the Poisson equation

∇
2Vee =−4πne. (15)

Thus, in order to evaluate (13) we first need to solve (15) for Vee.
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Exchange-Correlation Energy

The exact expression for Fxc is currently unknown. This term is defined to include all the
quantum mechanical effects that are not included in the previously defined functionals. In
this paper we will use the Perdew-Zunger local density approximation (LDA) to estimate the
exchange-correlation energy. The Perdew-Zunger LDA is given by

Fxc[ne] =
∫
Ω

ne(x)εLD
xc (ne)dx (16)

where εLD
xc (ne) is the energy density of a homogenous electron gas. We then decompose the

energy density into two components

ε
LD
xc (ne) = ε

LD
x (ne)+ ε

LD
c (ne). (17)

where εLD
x (ne) represents the electron gas exchange energy density and εLD

c (ne) represents
the electron gas correlation energy density. The electron gas exchange energy density can be
computed exactly and is given by

ε
LD
x (ne) =−3

4

(
3
π

ne

) 1
3

. (18)

However, an exact expression for the electron gas correlation energy density does not exist.
But, an accurate fit was obtained by Vosko, Wilk, and Nusair in [7] and is given by

ε
LD
c (ne) =

A
2

[
log
(

y2

Y (y)

)
+

2b
Q

arctan
(

Q
2y+b

)

− byo

Y (yo)

(
log
(

(y− yo)2

Y (y)

)
+

2(b+2yo)
Q

arctan
(

Q
2y+b

))] (19)

where y =
√

rs , Y (y) = y2 +by+c, Q =
√

4c−b2 , yo =−0.10498, b = 3.72744, c = 12.9352,
A = 0.0621814, and rs is the mean distance between electrons

rs =
( 3

4πne

)1/3
.

Free Energy Minimization
In this section, we discuss the theory of minimizing the free energy functional. We will mini-
mize the free energy in order to obtain the true ground state electron density guaranteed by the
second Hohenberg-Kohn theorem. In this section we will adopt the notation n(x)≡ ne(x).
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Calculus of Variations

We solve for the electron density, n, by minimize the free energy functional (1) subject to the
constraint of electron conservation. The electron conservation constraint is given by

N =
∫
Ω

n(x)dx

where N is the total number of electrons. Define the functional

G[n] =
∫
Ω

n(x)dx−N = 0 (20)

to be the constraint for our minimization problem. Therefore, we want to minimize (1) subject
to the constraint (20). This constrained optimization problem can be done by the method of
Lagrange multipliers which gives

δF [n]
δn

= ε
δG[n]

δn
(21)

where ε is the Lagrange multiplier. Using the fact that the functional derivative of G[n] is one,
equation (21) becomes

δF [n]
δn

= ε. (22)

By solving the functional (22) we will recover the true electron density guaranteed by the sec-
ond Hohenberg-Kohn Theorem. Using the expression for the orbital-free electron free energy
given in (1) we need

δT [n]
δn

+
δUen[n]

δn
+

δUee[n]
δn

+
δFxc[n]

δn
= ε (23)

The functional derivatives of the four terms on the left hand side of (23) are given by

δT [n]
δn

=
1
β

(
f (y)+

π2
√

2
β

3
2 f ′(y)n(x)

)
δUen[n]

δn
= Ven

δUee[n]
δn

= Vee

δFxc[n]
δn

= ε
LD
xc (n)+n(x)

dεLD
xc (n)
dn

.

(24)

Setting δFxc[n]
δn = Vxc and defining

H[n] =
1
β

(
f (y)+

π2
√

2
β

3
2

)
+Vee +Ven +Vxc (25)

the goal becomes to solve (25) subject to the constraint (20). It can be shown that this is
equivalent to minimizing the functional

W [n] = Fe[n]− εG[n] (26)

which we will accomplish in the next section via a conjugate gradient algorithm.
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Conjugate Gradient Method

We will use the conjugate gradient method outlined in [5] in order to minimize the functional
defined in (26). But, instead of minimizing the energy with respect to the electron density we
will introduce a quantity, ψ(x), given by

n(x) = ψ(x)2 (27)

which can be regarded as an artificial orbital. The reason for introducing the artificial orbital is
that the requirement that n(x) be positive can be onerous in numerical implementations, but is
trivial in the case of this new formulation. We will use tildes henceforth to denote dependence
on ψ , e.g. W [n] = W [ψ2] = W̃ [ψ]. Now, we will describe the method used to minimize W̃ [ψ]
iteratively.

As is typical in the nonlinear conjugate gradient method we first want to calculate the
steepest descent vector. If we were minimizing a typical function f (x), the direction of steepest
descent would be given by −∇ f (x). But, since we are minimizing a functional, the steepest
descent vector is given by −δW̃

δψ
. This is calculated to be

−δW̃
δψ

= 2(ε− H̃[ψ])ψ (28)

So, if we define χ
k

to be the steepest descent vector at iteration k we have

χ
k
= 2(ε− H̃[ψk])ψk. (29)

Note that we need to have an initial guess for ψ before beginning this method. Next, the
conjugate gradient vector, ϕk, is calculated as

ϕ
k
= χ

k
+
〈χ

k , χ
k
〉

〈χ
k−1 , χ

k−1
〉ϕk−1

(30)

where 〈·, ·〉 denotes the standard inner product on L2(Ω). Then, to satisfy the normalization
constraint (20), the conjugate gradient function is further orthogonalized to ψk and normalized
to N by setting

ϕ
′
k
=
(

1− 1
N2 ψ

2
k

)
ϕ

k

ϕ
′′
k

=

√
N

〈ϕ ′
k ,ϕ ′k〉

ϕ
′
k .

(31)

This is done so that 〈ϕ ′′
k ,ψk〉= 0 and 〈ϕ ′′

k ,ϕ
′′
k
〉= N. Lastly, ψ is updated as

ψk+1 = ψk cos(θk)+ϕ
′′
k

sin(θk) (32)

where θk is determined by minimizing the free energy F̃e[ψk+1] as a function of θk.
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Dynamic Structure Factor
The main parameter which we are calculating is the dynamic structure factor. The dynamic
structure factor is the main parameter of interest because it contains information about both the
temporal and spatial correlations in the system, making it a very sensitive test of a model. From
the dynamic structure factor, we can extract parameters like the sound speed, that are important
inputs to plasma simulations. Additionally, the dynamic structure factor is experimentally
accessible. Given that there are not many parameters that can be experimentally measured
at the high temperatures and pressures of warm dense matter, coupled with the fact that the
dynamic structure factor really probes the microphysics of the system, means that as more
experiments come out this parameter will be an excellent test of warm dense matter models.
We now discuss both the experimental and theoretical methods of computing the dynamic
structure factor.

Experimental Method

Through inelastic neutron scattering we can experimentally measure the double differential
cross section, d2σ

dΩdω
, which tells us the number of neutrons that will be scattered at a given

incident angle, Ω, at a given energy, ω . Then, the dynamic structure factor, S(k,ω), can be
determined from the double differential cross section through the relation

d2σ

dΩdω
= a2

(
E f

Eo

)1/2

S(k,ω) (33)

where a is the scattering length, and Eo and E f are the initial and final energies of the scattered
neutron respectively.

Theoretical Method

The theory of calculating the dynamic structure factor from [4] begins with the van-Hove func-
tion G(r, t), which for a system of N particles with positions rk(t) for k = 1 . . .N is defined
as

G(r, t) =
1
N

〈∫ N

∑
i=1

N

∑
j=1

δ [r− r j(t)+ ri(0)]
〉

(34)

which can be rewritten successively as

G(r, t) =
1
N

〈∫ N

∑
i=1

N

∑
j=1

δ [r′+ r− r j(t)]δ [r′− ri(0)]dr′
〉

=
1
N

〈∫
ρ(r′+ r, t)ρ(r′,0)dr′

〉
=

1
N

〈
ρ(r, t)ρ(0,0)

〉
(35)

The van Hove function therefore has the meaning of a density-density time correlation function.
The physical interpretation of the the van Hove function is that G(r, t)dr is the number of
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particles j in a region dr around a point r at time t given that there was a particle i at the origin
at time t = 0.

Rather than considering the density-density correlation in real space it is often more con-
venient to focus attention on the correlation function of the Fourier components ρk:

F(k, t) =
1
N

〈
ρk(t)ρ−k(0)

〉
(36)

The function F(k, t) is called the intermediate scattering function and is closely related to the
cross-section measured in inelastic scattering experiment. It can be shown that F(k, t) is the
spatial Fourier transform of the van Hove function, i.e.

F(k, t) =
∫

G(r, t)exp(−ik · r)dr (37)

Finally, the dynamic structure factor is arrived at by taking the temporal Fourier transform of
the intermediate scattering function F(k, t), i.e.

S(k,ω) =
1

2π

∞∫
−∞

F(k, t)exp(iωt)dt (38)

Now, with the background theory defined, we present our convergence studies and results.
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Convergence Studies
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Figure 1: (Top left panel) FFT convergence plot for a system of 60 atoms at 5 eV. (Bottom
left panel) Time step convergence plot for a system of 161 atoms at 5 eV. (Bottom right panel)
Simulation length convergence plot for a system of 161 atoms at 5 eV. (Top right panel) Number
of atoms convergence plot for k = 0.51a−1

B at 5 eV.

In order to produce reliable results with the code, the calculations had to be converged with re-
spect to the number of FFT’s used to solve the Poisson equation, the time step, the simulation
length, and the number of atoms. We checked for convergence with respect to the number of
FFT’s by studying how using more FFT’s reduced the error in the average pressure. As can
be seen in the top left panel of Fig. 1, using more FFT’s significantly reduces the error up
until a certain point, after which the error versus number of FFT’s curve flattens out. Conver-
gence with respect to the time step size was tested by running the same system with different
time steps and plotting the pressure versus time as in the bottom left panel of Fig. 1 to ensure
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that, even with larger time step sizes, there were still enough points to accurately resolve the
pressure curve fluctuations. We checked for convergence with respect to the simulation length
by running a long simulation and comparing the dynamic structure factor obtained when cal-
culated with subsets of the long simulation, as in the bottom right panel Fig. 1. Finally, we
checked for convergence with respect to the number of particles, top right panel of Fig. 1, by
running different size systems, computing the dynamic structure factor, and comparing to the
orbital free study results in [8].

Results
We now present the results of our orbital free warm dense aluminum calculations. The calcu-
lations were done with aluminum at a density of 2.7 g/cm3 and at temperatures of 5, 20, and
50 eV. We begin with comparisons between the dynamic structure factor from our orbital free
calculuations and the dynamic structure factor from pseudo-atom molecular dynamics calcula-
tions. Then, we present our dispersion relation and sound speed calculations at 5, 20, and 50
eV.

Dynamic Structure Factor Results

Recently, the dynamic structure factor for warm dense aluminum calculated using pseudo-atom
molecular dynamics in [3] was compared with the dynamic structure factor calculated in the
orbital free study in [3] and discrepancies were found at 5 eV. Comparisons at temperatures
higher than 5 eV were not possible because the pseudopotential used in [8] was only good up
to 5 eV. Our orbital free code, however, computes the pseudopotential self-consistently using
Thomas-Fermi-Dirac functional. This means it can run higher temperature calculations and,
because it is orbital free, it can do so without incurring much additional computational cost.
Below, we present comparisons between the dynamic structure factor from our orbital free
calculations with the dynamic structure factor from the pseudo-atom molecular dynamics cal-
culations at 5, 20, and 50 eV for three wavenumbers spanning the single particle, generalized
hydrodynamic, and hydrodynamic regimes. These dynamic structure factor curves, particu-
larly for the wavenumbers in the generalized hydrodynamic and hydrodynamic regimes, are a
very sensitive test of agreement between models because the dynamic structure factor contains
information about both the temporal and spatial correlations in the system.
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Single Particle Regime (k = 2a−1
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Figure 2: k = 2a−1
B dynamic structure factor for warm dense aluminum at 5 eV (top left panel),

20 eV (top right panel), and 50 eV (bottom panel).

We use a system of 60 atoms with 128 FFT’s to compute the dynamic structure factor for
k = 2a−1

B , which falls in the single particle regime. In the single particle regime, microscopic
interactions are important while macroscopic interactions matter far less. Since particles be-
have as though they are free and non-interacting, all models are expected to converge to a free
electron gas result. Thus, we should see good agreement between our orbital free calculation
results and the PAMD calculation results. Indeed, as expected, our results agree well with the
PAMD calculation results at 5 eV, with better agreement at 20 eV, and the best agreement at 50
eV. As temperature increases, the dynamic structure factor curve gets lower and flatter. This is
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expected because at higher temperatures, the system becomes less ordered and there are fewer
correlations in the ionic positions.

Generalized Hydrodynamic Regime (k = 0.51a−1
B )
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Figure 3: k = 0.51a−1
B dynamic structure factor for warm dense aluminum at 5 eV (top left

panel), 20 eV (top right panel), and 50 eV (bottom panel).

We use a system of 246 atoms with 256 FFT’s to compute the dynamic structure factor for
k = 0.51a−1

B , which falls in the generalized hydrodynamic regime. In the generalized hydro-
dynamic regime, both microscopic and macroscopic interactions become important. Here, the
model matters more than it did in the single particle regime and differences between the models
should start to manifest. At 5 eV, there is quite good agreement in the position and height of
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the ion-acoustic resonance for our orbital free calculation with 246 atoms and White’s orbital
free calculation with 864 atoms. The ion-acoustic resonance for the orbital free calculations is
higher and to the left of the ion-acoustic resonance for the PAMD calculations and the lower
energy portions of the curves do not have good agreement.The higher energy portions of the
dynamic structure factor curves, however, have quite good agreement.
At 20 eV, there is a similar trend where the ion-acoustic resonance for our orbital free cal-
culation is higher and to the left of the ion-acoustic resonance for the PAMD calculations.
Again, while there is disagreement in the lower energy portion of the curve, the higher energy
portion sees much better agreement. Our orbital free calculations used a Thomas-Fermi-Dirac
functional. When comparing our results to the PAMD calculations done using a Thomas-Fermi
functional with only exchange and to the PAMD calculations done using a Thomas-Fermi func-
tional with both exchange and correlation, which is the same thing as a Thomas-Fermi-Dirac
potential, we find better agreement with the Thomas-Fermi PAMD calculation with both ex-
change and correlation.
Finally, at 50 eV, we once again find that the position of the ion-acoustic resonance for our
orbital free calculations is shifted to the left of the ion-acoustic resonance for the PAMD cal-
culations. There is still better agreement in the higher energy portion of the dynamic structure
factor curve than in the lower energy portion. The Thomas-Fermi PAMD calculation with only
exchange has a higher ion-acoustic resonance peak than that of the orbital free calculation and
has a more pointed shape. The Thomas-Fermi PAMD calculation with both exchange and cor-
relation, however, has a shape that better matches the orbital free calculation and is consistent
with the trend we saw at lower temperatures where the ion-acoustic resonance peak is lower
than that of the orbital free calculation. We see the best agreement in ion-acoustic peak height
and position between the orbital free calculations and the PAMD calculations at 50 eV.
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Hydrodynamic Regime (k = 0.24a−1
B )
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Figure 4: k = 0.24a−1
B dynamic structure factor for warm dense aluminum at 5 eV (top left

panel), 20 eV (top right panel), and 50 eV (bottom panel).

We use a system of 161 atoms with 256 FFT’s to compute the dynamic structure factor for
k = 0.24a−1

B , which falls in the hydrodynamic regime. In the hydrodynamic regime, the macro-
scopic interactions become far more important than the microscopic interactions. Here, at these
small k values, the model is extremely important and comparisons between the dynamic struc-
ture factor curves are thus a very sensitive test of the differences between the models. At 5 eV,
we see fairly good agreement between White’s orbital free calculation with 864 atoms and our
orbital free calculation with 161 atoms. The height of our calculation’s ion-acoustic resonance
is slightly lower than that of White’s but there is good agreement on either side of the peak
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and we expect that if we run with more atoms, this slight discrepancy will be resolved. We
again see that the orbital free calculation ion-acoustic resonance position is shifted slightly to
the left of the PAMD calculation ion-acoustic resonance. Unlike the results in the generalized
hydrodynamic regime, we do not see good agreement between the orbital free dynamic struc-
ture factor and the PAMD dynamic structure factor in any part of the curve.
At both 20 and 50 eV, the orbital free calculation result’s ion-acoustic resonance is again to the
left and higher than that of the PAMD calculations. Unlike the results in the generalized hy-
drodynamic regime, the Thomas-Fermi PAMD calculation with both exchange and correlation
does not agree as well with our orbital free calculation as the Thomas-Fermi PAMD calculation
with only exchange at both 20 and 50 eV.
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Sound Speed Calculations
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Figure 5: Dispersion relation for warm dense aluminum at 5 eV (top left panel), 20 eV (middle
left panel), and 50 eV (bottom left panel). Sound speed plots for warm dense aluminum at 5
eV (top right panel), 20 eV (middle right panel), and 50 eV (bottom right panel).
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We present the dispersion relation, which is the position of the ion-acoustic resonance as
a function of wavenumber, for our 5 eV, 20 eV, and 50 eV orbital free calculations. From the
dispersion relation, we are able to calculate the sound speed by extrapolating the curve given
by Cs = ω/k versus k to k = 0. At 5 eV, we compare the sound speed obtained from our orbital
free calculation to the sound speeds obtained from White’s orbital free calculation and the
PAMD calculation. We find much better agreement with White’s orbital free calculation, with
the PAMD calculation giving a higher sound speed. The 20 and 50 eV sound speeds from our
orbital free calculations increase significantly as temperature increases, which is to be expected
because particles already move quickly in high temperature systems and thus sound is able to
propagate faster.

Future Work
In the future, more work must be done with regards to convergence studies, particularly with
respect to the number of atoms. Convergence studies have been somewhat limited due to the
high computational cost of running large systems. A significant amount of this computational
cost comes from the process of minimizing the free energy. The current code uses nonlinear
conjugate gradients where the initial guess is the density calculated in the previous iteration.
It generally takes about 7 conjugate gradient iterations for each time step of the simulation.
We have begun attempting to speed up this process by implementing an extended lagrangian
technique in which an auxilliary density is propagated independent of the rest of the simulation
according to equation (39).

ni+1 = 2ni−ni−1 +κ(qi−ni)+α

K

∑
k=0

ckni−k. (39)

This auxiliary density is then used as the initial guess for the conjugate gradient method. Using
this density provides a better guess and keeps the free energy from drifting even when the
convergence tolerance is loosened. With this method, we are able to relax the convergence
tolerance so this technique can greatly reduce the number of conjugate gradient iterations that
must be done thereby giving a huge speed up in the rest of the code.

Finally, we are currently running more calculations at 100 eV and 500 eV to reach the linear
response regime in which the PAMD and orbital free frameworks should produce exactly the
same results. Then, we will go down in temperature to determine where the two models begin
diverging.

Conclusions
We were able to run 5 eV, 20 eV and 50 eV orbital free molecular dynamics calculations
for warm dense aluminum at 2.7 g/cm3. At 5 eV, we have found good agreement between
our orbital free warm dense aluminum calculations and those performed by White et al in
2013. In the single particle regime, (k = 2a−1

B ), we find good agreement between our orbital
free calculations and PAMD results as expected. In both the hydrodynamic and generalized
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hydrodynamic regimes, we have found that the ion-acoustic resonance for our orbital free cal-
culations is slightly higher and shifted to the left of the ion-acoustic resonance for the PAMD
calculations. In all regimes, the agreement between the dynamic structure factor appears to get
slightly better as the temperature increases.
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Abstract

The Warm Dense matter regime has provided an excellent challenge to physical scien-
tists due to its high temperatures and pressures. These conspire to make models of such
systems computationally expensive and scientifically complex. Hydrocodes, which are
used to model experiments at these conditions, rely on bulk properties like conductivity
and resistivity to more accurately describe the physics occuring. In this paper, we utilize
the Ziman-Evans formula to calculate the conductivity/resistivity of warm dense plasmas
made of aluminum, hydrogen, beryllium, and mixtures.
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Introduction
Most systems that feature physics of more than one type are difficult to model. In the case
of warm dense matter (WDM), a state of matter which shares characteristics with both solids
and plasmas, high temperatures and pressures conspire to elevate both quantum and classical
effects to equivalent significances. High temperatures cause the Fermi-Dirac function to smear
out, and this leads to partial occupation of the orbitals. Additionally, high pressures increase
the amount of interaction ions and electrons experience, which further complicates modeling.

To capture this physics, quantum molecular dynamics (QMD) calculations can be used, but
are computationally expensive. Further, there are issues with convergence for certain systems,
particularly at high temperatures. In spite of these issues, QMD data is considered the gold
standard when experimental data is not available. The ultimate use of this QMD data is in
hydrocodes, where computationalists use tables of bulk properties as input. These bulk prop-
erties are vital for understanding and accurately simulating many systems which pass through
the WDM regime, such as holoraums in inertial confinement fusion (ICF) experiments, inner-
planetary cores, the earth’s dynamo, and many others.

Since these properties need to be known at a large number of temperatures and densities,
a cheaper method of calculating them is very attractive. Plasmas and solids have both been
modeled successfully using density functional theory (DFT). Once the density is solved for,
one may use it to generate a potential, which can then be used in a molecular dynamics (MD)
simulation.

These two methods in tandem with one another have been used successfully in the past to
simulate WDM. In this report, we will use DFT-MD to simulate warm dense systems and use
the output of these simulations to calculate bulk properties.

Theory
Simulations within WDM systems have moved into the realm of combining density functional
theory (DFT) with molecular dynamics (MD) in an effort to couple short calculation times
with decent agreement to experiment. Properties calculated using these approaches depend
heavily on the potentials used to model the ions within the systems due of DFT’s reliance on
external (ionic) potentials to generate orbitals. The two major types of models are the screened
potentials which utilize pseudopotentials and the average atom (AA) model which describes
ions within a set radius within a background of free electrons. Addtionally, the pseudoatom
(PA) model is a more recent design [1–3] which builds off of the AA model but includes ion-ion
correlations more effectively.

Such potentials form the basis of the theory of calculating bulk properties such as the struc-
ture factor [1, 2, 4–9], opacity [10, 11], thermal conductivity [12–16] and electrical resistivity
[9,11–23] within WDM. This report focusses on calculating the resistivity using the PA model
within the framework of the Ziman-Evans formula. The use of the various potentials in deriv-
ing this formula is presented along with considerations of the ion-ion correlations contatined
within the structure factor as well as the level of approximation to describe the scattering inter-
action. Following the derivation of the Ziman-Evans formula for mixtures, a discussion of the
various potential models is presented.
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Ziman-Evans Formula

In the mid-twentieth century growing interest in calculating the conductivities in solid met-
als prompted many investigations into the theory behind the role of electron scattering within
ordered materials. However, the problem proved to be intractable at the time due to the un-
known nature of the ion-electron interactions. Ziman’s 1961 paper [24] offered an approach
to the problem by considering the properties of liquid metals. In these systems the ion-ion
correlations could be determined from experiment by measuring the structure factor while the
ion-electron interations were known for a number of simple systems. He demonstrated that by
calculating the resistivities in liquid metals, band gaps could be estimated for the solid phase.

Ziman’s approach focussed on calculating the resistivity directly by considering weakly
interacting pseudopotenials to govern ion-electron interactions where the Born approximation
could be applied to simplify scattering processes. His derivation proceeds from calculating the
conductivity within a gas where ordering of the ions is a minimum as shown in Eq. 1,

σ =
ne2Λ

mvF
(1)

where n is the electron density, e is the electron charge, m is the electron mass, vF is the Fermi
velocity, and Λ is the mean free path. The scattering cross section, F , is used to describe the
mean free path of a scattering eletron as shown in Eq. 2,

1
Λ

= 2π ∑
i

Ni

V

∫ 2π

0
Fi(θ)sinθdθ (2)

where Ni
V is the ion density per unit volume and θ is the scattering angle. Note that the sum over

i accounts for all ion types in the system making this a general formula applicable to mixtures.
At this point, the choice of a weakly interacting pseudopotential is utilized by applying the
Born approximation as shown in Eq. 3,

F (θ) =
1

6h̄vF

n
EF

∣∣∣∣UK

N

∣∣∣∣2 (3)

where EF is the Fermi energy and UK is the potential in k-space. Eqs. 1-3 give the full
description of the conductivity of a gas provided information about the Fermi energy, electron
and ion densities, and potential are known. When compared to experimental values, Ziman
found that the mean free paths calculated using this derivation agreed with experimental value
qualitatively (quatitatively, some values differed from experiment by an order of magnitude).
However, considering that creating the gasseous phase of most metals is a formidable problem
experimentally, liquid or molten systems must be considered. While not perfectly ordered, the
liquid phase of metals exhibits ion-ion correlation which, as stated previously, can be measured
from the structure factor.

Ziman proposed that the structure factor, a(K), enters the calculation through the potential
and ultimately changes the mean free path as shown in Eq. 4,

Λliq =
2
√

2
3π

E 3/2

〈a〉 |U |2 (4)
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where he included the definition,

〈a〉 |U |2 =
1

4k4
F

∫ 2k f

0
|U |2 a(K)K3dK (5)

Here we see that the mean free path is inversely related to the structure factor. For a completely
disordered system (i.e. gas) the structure factor would be equal to one while order introduces
an average value that is lower than one. In effect, ion-ion correlations within a system increase
the mean free path of a scattering electron. The strength of this approach lies in the definition
of the potential created by the ions. By assuming a weak scattering potential a number of small
elements can be approximated which give qualitative agreement to experiment.

The significance of the choice of potential was further examined by Ashcroft and Lekner
[9] where Ziman’s formula for conductivity was utilized to calculate the resistivities of a series
of liquid metals. Their approach focussed on determining the structure factor from a given
model potential as well as testing a number of proposed potentials to determine which qual-
ities are necessary to reproduce experimental values. They showed that potentials which ac-
count for screening and possess a more physical multi-well pseudopotential acheive qualitative
agreement for a number of elements. However, since their analysis relied on Ziman’s use of
the Born approximation, it is difficult to tell whether the structure factor, potential, or Born
approximation are the culprit where agreement is not found.

By 1973 Evans, Gyorffy, Szabo, and Ziman had proposed a solution to creating better
potentials as well as disregarding the Born approximation in favor of a full scattering method
known as the T-matrix [25]. Gyorffy and Szabo formulated the resisitivity within a material in
terms of the average over the force operator as shown in Eq. 6,

R =
−2π h̄

3e2

(
Ω

Ne

)2

lim
Ω→∞

1
Ω

∫
dE f ′(E)〈Tr{Fδ (E−H)Fδ (E−H)}〉 (6)

where Ω is the real space volume in question, f ′(E) is the derivative of the Fermi-Dirac distri-
bution, and F is the force operator. In this case, the force operator is defined by the relation to
the model potential, V ,

FFF =−∑
i

∇V (rrr−RRRi) (7)

From this, Evans was able to recover a version of Ziman’s formula but with a general scattering
term. Two major assumptions in the Evans model allowed for significant simplifications. The
first is that the potential was described by a finite range, spherical, muffin-tin model about each
atom. The second is that none of the potentials overlapped such that the interstitial region
could be approximated as a screening background. This resulted in the Ziman-Evans formula
as shown in Eq. 8,

R =
48π3h̄
e2k2

F

1
Ω0

∫ 1

0
d
(

q
2kF

)(
q

2kF

)3 ∣∣∣tkkk,kkk′′′∣∣∣2 S(q) (8)

where Ω0 is the atomic volume defined by muffin-tin radius, q is the scattering momentum
given by qqq = |kkk− kkk′|, S(q) is the structure factor (note the change in notation) evaluted at the
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scattered momentum, and tkkk,kkk′ is the T-matrix describing the full electron-ion scattering inter-
action. Note that this formula is only valid when the derivative of the Fermi-Dirac function
approximates a delta function. In the context of WDM, this corresponds to very low tempera-
ture systems.

To capture the electron-ion interaction within the T-matrix approach, consideration must be
given to what scattering takes place. From scattering theory we know that a scattering event
depends on both the scattered particle as well as the potential that it is scattered from. However,
rather than explicitly account for both of these in a formula, only the effect of scattering can
be examined to describe the interaction. That is, if we look at the phase shift generated by the
scattering potential as compared to the unscattered wave, we know an equivalent amount of
information about the scattering process. The T-matrix expression is shown in Eq. 9,

tkkk,kkk′(E) =
−1√

E ∑
l
(2l +1)exp iηl sinηlPl(cosθkkk,kkk′) (9)

where η is the phase shift and Pl are Legendre polynomials. Note that this expression is similar
to the standard expression for the scattering differential cross section.

Converted into atomic units, Perrot and Dharma-Wardana present the form of the Ziman-
Evans formula used in this paper. Eq. 10 shows the formulation which differs from Eq. 8
in two ways. First, the energy integral is recovered through not applying the approximation
on the derivative of the Fermi-Dirac function, and secondly the scattering interaction is now
encapsulated within the scattering cross section, σ(ε), rather than explicitly through a T-matrix
term. In the notation used here n0

I is the ion density and n0
e is the average electron density.

R =− n0
I

3π
(
n0

e
)2

∫
∞

0
dεσ(ε)

∂ f
∂ε

(10)

where the scattering cross section is given as,

σ(ε) =
∫ 2p

0
q3 ∂σ(ε,θ)

∂θ
SII(q)dq (11)

where q is the momentum transferred in the scattering process and SII is the structure factor of
atomic species I . And finally, the differential cross section is the T-matrix expression,

∂σ(ε,θ)
∂θ

=
1
p2

∣∣∣∣∣ ∞

∑
l=0

(2l +1)sinηl exp iηlPl(cosθ)

∣∣∣∣∣
2

(12)

Eqs. 10-12 are expressions only valid for systems with only one ionic species. An extension
for multiple species is required to compute the resistivity within mixtures. The differential
cross section is altered, as shown in Eq. 13, to accomodate a structure factor matrix, Smn and
the relative concentrations of each species, xm.

∂σ(ε,θ)
∂θ

SII(q) =
Ns

∑
m,n

√
xmxn Smn(q)Fm(ε,θ)F ∗

n (ε,θ) (13)

The equivalent T-matrix term occurs within the scattering amplitude, F , and is given by the
expression,
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Fm(ε,θ) =
1
p

∞

∑
l=0

(2l +1)sinηlm exp iηlmPl(cosθ) (14)

where we see that phase shifts are calculated from scattering due to each species’ ionic poten-
tial. In the Born approximation Eq. 14 simplifies to,

Fm(ε,θ) =
Vm(q)

2π
(15)

Potentials

Fundamental to any scattering problem is the scattering potential. As was seen in the previous
section, the resistivity of any material is directly related to the scattering cross section of its
ions. These scattering cross sections are determined through understanding the interactions
between the scattered particle and the scattering center. In the case of resistivity we assume
that the scattered particles are comprised of electrons in a continuum state while ions for the
scattering centers. In the case of WDM we find that potentials often used in condensed matter
physics no longer suffice due to the disordered nature of the system as well as the strong
ionization due to high temperatures.

Several models exist to describe the interactions between ions and electrons with extensions
to account for more realistic physics. In this report we will focus on several models: the
historically used Average Atom approach and the Pseudoatom potential [1–3]. Additionally,
one of the first potentials, the screened potential will be discussed in the context of Ziman’s
formulation [24]. These models will be utilized in the Results section where clear differences
emerge which can be explained though the approximations used within each potential.

Average Atom
The Average Atom (AA) model is built on the idea of an averaged ‘jellium’ surrounding a fixed
radius atom. Within the atom a nucleus of charge Z is surrounded by an electron density, ne (rrr),
which neutralizes the charge of the atom. Interactions between ions are not taken into account
explicitly, but rather through the potential of the external medium.

Each atom is composed of a predefined sphere of radius R which is defined as the Wigner-
Seitz radius calculated from the element type and mass density. The boundary at R marks the
point at which the atom ends and the surrounding medium begins. In practice, the atomic po-
tential acting on the electrons vanishes at this surface. Additionally, since ion-ion interactions
are taken into account in an averaged fashion, the pair distribution function is a step funciton
at this boundary as shown in Eq. 16

g(r) = H(r−R) (16)

where H denotes the Heaviside function and r is a radial distance from the center of the atom.
To understand the electron distribution within the AA model we start with the Schödinger

equation subject to an effective potential due to the nucleus and electron-electron interactions.[
∇

2 +V e f f
]

ψi = εiψi (17)
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where ∇2 is the kinetic energy operator, ψi are single particle wavefunctions, and εi are the
corresponding eigenvalues. The V e f f term may be split into two parts,

V e f f =−Z
r

+V ee (18)

where the first term on the right defines the ion-electron interaction and the second corresponds
to electron-electron interaction

Due to the high temperatures of WDM systems special consideration must be applied to
V ee in Eq. 18. First, partial ionization of the atoms is accounted for by splitting the potential
into bound and continuum state contributions. Then, the quantum effects are incorportated
through an exchange-correlation term. This is shown in Eq. 19

V ee = V bound +V continuum +V xc (19)

where Poisson’s equation can be applied to determine the potentials due to the bound and
continuum contributions,

∇
2V (rrr) =−4πn(rrr) (20)

where n(rrr) is the electron density. To determine n(rrr) we must turn to the solutions of Eq. 17.
The eigenfunctions are expanded in a spherical basis [11],

ψi (rrr) = ∑
α

αi
Pi(r)

r
Ylimi (rrr)χσ i (21)

where P(r) is the radial component of the wave function, Ylm are the spherical harmonics, and
χσ represents the spin of the particle. Then, the densities can be expressed as,

nb (rrr) =
1

2πr2 ∑
nl

(2l +1) fnlP2
nl (rrr) (22)

nc (rrr) =
1

2πr2 ∑
l

∫
dε(2l +1) fεlP2

εl (rrr) (23)

where fnl is the Fermi-Dirac function representing the occupation of a given state nl.
Eqs. 17-22 represent a set of equations which can be solved self-consistently for the elec-

tron density (or, wave functions) within the AA model. The downside of this model is readily
apparent in the way it accounts for ion-ion correlation. For transport properties in particular
this correlation represents an important portion of the solution as the resistance term depends
directly on it. Therefore, other models which take into account a more physical description of
the correlation must be formulated.

Pseudoatom

The pseudoatom aproach builds on the formalism of AA but with two major differences.
While the AA potential has been shown to agree with QMD in a number of cases, an improve-
ment to the potential can be made by creating a better description of the interactions within
WDM systems which can be accomplished with a pseudoatom.
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A pseudoatom is generated first by considering the electron density from an AA potential.
The heaviside pair distribution function remains in place as it was shown that including struc-
ture effects had little effect on the electron density generated. This potential is then modified by
subtracting the resultant electron density from interactions within the system minus the nulcear
interaction. That is, if ne (rrr) is the initial electron density and next

e (rrr) is the electron density
due to external interactions the pseudoatom density, nPA

e (rrr), can be written as,

nPA
e (rrr) = ne (rrr)−next

e (rrr) (24)

where next
e (rrr) is found by determining the density with the nucleus at the center of the atom re-

moved from the calculation. This yields an atomic potential with the core and valence electrons
described within the density.

Secondly, these potentials are then used to build the full potential of a WDM system. The
potential is given as the superposition of pseudoatom densities,

ne (rrr) = ∑
i

nPA
e (|RRRiii− rrr|) (25)

where i represents the index of a specific atom at location RRRiii. Further, dynamic quantities
can be calculated through pseudoatom molecular dynamics (PAMD) which relies on the pair
interactions generated by these potentials.

Screened Potential

Pseudopotentials have a long history of use within chemistry and condensed matter numer-
ical calculations. The underlying concept is to replace the core electrons of an atom with an
effective potential which retains the physics of the original system while requiring less compu-
tational time. This gain in computational efficiency can be understood in terms of the kinetic
energies of the electrons near the nucleus. Wavefunctions describing these high kinetic energy
states possess a significant number of oscillations near the nucleus. If solution to these wave-
functions are determined in the plane-wave basis, for example, many terms must be included
to account for these oscillations. By directly reducing the number of terms through a smoother
pseudopotential fewer calculations must be performed.

Ziman’s original formulation of the resistivity within liquid metals relied on such potentials
within the nearly-free electron approximation [24]. This approximation treats the potentials as
a perturbation term to the free electron potential which limits the scattering to weak interac-
tions. Therefore, resistivities calculated with pseudopotentials will be examined within the
Born approximation labelled as the screening potential.

Results

Born

In this section, we will report preliminary results for single-component plasmas of aluminum,
hydrogen, and beryllium. For the first two elements, results are presented as conductivity
(1/resistivity) and for aluminum, all data is resistivity.
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Hydrogen
Hydrogen passes through the WDM regime on its way to ICF and inside planetary cores. As
a result, its transport properties at significant temperature and pressure are of great interest to
various fields. We begin this report by considering three different densities of hydrogen, all of
which have relevant QMD data in the literature.
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Figure 1: Pseudoatom conductivities of hydrogen at 10g/cm3. The Born approximation with
TF-DFT does a good job of replicating QMD data for temperatures below 50 eV. Beyond this
temperature, agreement falls off.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 337



Modeling Warm Dense Matter using Quantum-Mechanical Density Function Theory

ò

ò

ò
ò

ò

0 50 100 150 200 250 300
10

20

30

40

50

THeVL

C
o

n
d

u
c
ti
v
it
y

H10
6

W
-

1
m

-
1

L
Conductivity of Hydrogen, 10g�cm3 HBorn, V scrL

V scr,QM

V scr,TF

V pa,SHkL=1

QMD

Figure 2: Pseudopotential conductivities of hydrogen at 10g/cm3. Less agreement than the
pseudoatom potential, but still quite good given the computational cheapness. We see sub-
stantial deviation at all temperatures though, and the S(k) = 1 test being close to QMD data is
probably a coincidence more than anything else.

From Figs. 1 and 2, we can already see a few things worth mentioning. First, the pseu-
doatom potential seems to give the best results at this density and temperature range. We will
see this trend continues as we look at other data. Additionally, in the S(k) = 1 tests, we see
that the structure factor plays an important role in relation to the conductivity, particularly at
low temperatures. This seems to make good sense, since setting the structure factor to one is
equivalent to assuming an ideal gas. This would lead to less scattering and as Ziman et al. point
out in their paper, less scattering leads to a lower conductivity [24].

We also see that, for a system as simple as hydrogen, the Born approximation seems to
yield physically reasonable conductivities that agree with QMD data. Curiously it seems that,
at this density, the Born approximation starts to fail as temperature increases beyond 50eV.
However, ensuring that a QMD calculation is converged at high temperature can be difficult,
so it is possible that the high temperature point has a large error. This is strange because the
Born approximation, which assumes a weak scattering interaction, should become exact in the
infinite temperature limit. It is possible that other effects, such as our choice in XC functional,
could be affecting various portions of our integrand. If the structure factor and potentials are
inaccurate, these inaccuracies will be made worse by a higer temperature simulation since the
Fermi-Dirac function smoothes as temperature increases.

We also ran similar calculations on hydrogen at 80g/cm3 and find that these results agree
with the results at 10g/cm3. We again observe that the pseudoatom potential follows the QMD
data more closely. We also can now see another interesting trend which was hinted at by the
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data at lower density: it appears that Thomas-Fermi (TF) DFT is closer to QMD than the full
Kohn-Sham (KS) DFT calculation. This is surprising in that a KS-DFT calculation should, in
principle, contain more physical information about the system.
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Figure 3: Pseudoatom conductivities of hydrogen at 80g/cm3. Trends similarly to the previous
density.
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Figure 4: Pseudopotential conductivities of hydrogen at 80g/cm3. Pseudoatom was better at
this density as well.

Finally, we ran the same calculations for hydrogen at 160g/cm3 and at this density, we con-
tinue to see agreement. The pseudopotential now does significantly worse than the pseudoatom
potential and still, TF-DFT gives slightly better agreement than KS-DFT. This is likely due to
cancellation of errors.
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Figure 5: Pseudoatom conductivities of hydrogen at 160g/cm3. At this density, we begin to see
some numerical noise in the form of wobbles at both low and high temperatures.
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Figure 6: Pseudopotential conductivities of hydrogen at 160g/cm3.
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Beryllium

The calculations run on beryllium were slightly different than the calculations we per-
formed for hydrogen. Instead of varying the density and scanning over a set range of tem-
peratures, we first considered beryllium at a constant density of 10g/cm3, and then considered
beryllium at a constant temperature of 10 eV.

In addition to a constant temperature plot, we also tested a pseudized version of our pseu-
dopotential with beryllium. By artificially removing oscillations in our potential caused by
valence electrons, we hoped to improve the accuracy of this model but altering the potential
only served to worsen the pseudopotential results.
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Figure 7: Pseudoatom conductivities of beryllium at 10g/cm3. It’s difficult to say whether
or not the drop-off as T → 0 is physical or not since we don’t have QMD data below 5 eV,
although we agree with T-Matrix. We now see that TF-DFT fails to get the correct magnitude
for the conductivity.
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Figure 8: Pseudopotential conductivities of beryllium at 10g/cm3. Note that the screened po-
tential completely and totally misses the QMD behavior.

ò ò ò ò

5 10 15 20
0

2

4

6

8

10

THeVL

C
o

n
d

u
c
ti
v
it
y

H10
6

W
-

1
m

-
1

L

Pseudized Screening Potential, Beryllium HTFL

Pseudized 0.5

Pseudized 0.6

Pseudized 0.7

Pseudized 0.9

V scr HunpseudizedL

QMD

Figure 9: TF Pseudized conductivities of beryllium at 10g/cm3.
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Figure 10: KS Pseudized conductivities of beryllium at 10g/cm3.
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Figure 11: Conductivities of beryllium at 10eV. Again, we see that the pseudopotential fails
and pseudoatom is decent.
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In figure 7 , we see that the pseudoatom potential is, once again, providing data remarkably
similar to QMD data points. We also see that, unlike hydrogen, the KS-DFT calculations are
now doing far better than TF-DFT.

In the following figures, the pseudopotential provides a significant discrepancy to QMD
data. We also observe some rather unphysical behavior in the KS-DFT conductivities. Pseudiza-
tion of this potential doesn’t help the situation and further suggests that the pseudopotential is
just not a good model in tandem with the Born approximation.

In the final plot, we see that all of the previous trends apply as density is varied as opposed
to temperature.

Aluminum

In the case of aluminum, we ran simulations similar to hydrogen. Again, a test involving
the structure factor is carried out to see how much the Born approximation depends on it. We
also pseudize the pseudopotential as with beryllium, though again, this only serves to worsen
our data.

In addition to these runs, we also calculated the resistivity of aluminum at three and five
times the normal solid density of aluminum.
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Figure 12: Pseudoatom conductivities of aluminum at 2.7g/cm3. This plot demonstrates quite
clearly that there are systems which simply cannot be modeled by the Born approximation. We
see behavior at low temperature that disagrees both qualitatively and quantitatively with other
literature calculations. We also see that, as T → ∞, we do approach literature values.
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Figure 13: Pseudopotential conductivities of aluminum at 2.7g/cm3. This result is misleading.
It looks likes the pseudopotential is doing better than the pseudoatom potential but we believe
this to be a cancellation of errors. We also see some really strange behaviors in the KS-DFT
calculations.
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Figure 14: Pseudoatom conductivities of aluminum at 8.1g/cm3.
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Figure 15: Pseudopotential conductivities of aluminum at 8.1g/cm3.
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Figure 16: Pseudoatom Conductivities of aluminum at 13.5g/cm3.
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Figure 17: Pseudopotential Conductivities of aluminum at 13.5g/cm3.

We see some very strange results for aluminum. First, the pseudoatom model utterly fails
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at lower temperatures for aluminum. This is most probably caused by the Born approxima-
tion since scattering within aluminum almost definitely involves higher-order scattering events
which the Born approximation does not take into account. In addition to this, we see that the
pseudopotential data is somehow quite close to other literature values. However, this is most
likely due to a cancellation of errors.
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Figure 18: TF Pseudized Conductivities of aluminum at 2.7g/cm3. As with beryllium,
pseudization further decreases agreement with other calculations.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 349



Modeling Warm Dense Matter using Quantum-Mechanical Density Function Theory

ò

ò

ò

ò

ò
ò

ò
ò

ò
ò

ò
ò

ò

ò
ò

ò

ò
ò ò ò

ò
ò

ò
ò

ò

ò

ò ò

ò
ò

ò

ò
ò

ò

ò ò

ò

ò

ò

ò

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

2.0

2.5

THeVL

R
e

s
is

ti
v
it
y

H10
6

W
m

L
Pseudized Screening Potential, Aluminum HQML

Pseudized 0.5
Pseudized 0.6
Pseudized 0.7
Pseudized 0.9
V

scr

Literature

Figure 19: KS Pseudized Conductivities of aluminum at 2.7g/cm3.

As mentioned previously, pseudization of our potential only serves to worsen our results.
For aluminum, we not only see further deviation from the data present in literature, but pseudiz-
ing the potential also leads to a change in behavior of the resistivity of our system.

T-Matrix

Hydrogen
The hydrogen atom is the stereotypical benchmark element to use in warm dense matter calcu-
lations. There are numerous QMD calcualtions to compare to which makes benchmarking and
testing code convenient.

V PA
tcp vs. V AA

aa
Figs. 20-22 present the calculated conductivites within the PA and AA models with their re-
spective parameters compared to QMD data taken from literature at three different densities.
Here we see that in general the PA model agrees much better with the QMD data while the
AA model consistently overestimates the conductivities. At low temperatures both models
predict a sharp rise in the conductivity consistent with QMD data, but quantitatively both mod-
els significantly overestimate this value at least for the 10g/cc case. Furthermore, at higher
temperatures for the lowest density, the PA model tends to diverge from the trend while the
80g/cc and 160g/cc trends are in agreement at higher temperatures. The lack of agreement at
these higher temperatures could be due to the system no longer residing in the high degeneracy
regime indicating a transition into a low density plasma where simulations with QMD become
difficult.
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Figure 20: Hydrogen conductivity, 10g/cc, V PA
tcp vs. V AA

AA . The PA calculations better follow
the trend at lower temperatures, but both AA and PA trend differently from the QMD values at
higher temperatures.
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Figure 21: Hydrogen conductivity, 80g/cc, V PA
tcp vs. V AA

AA . The PA calculations follow the QMD
values very well compared with AA. Even at higher temperatures PA continues to follow the
trend while AA clearly trends higher.
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Figure 22: Hydrogen conductivity, 160g/cc, V PA
tcp vs. V AA

AA . The PA calculations follow the
QMD data decently. The turning point is off but the high temperature trend is recovered while
AA continues to provide quantitatively incorrect values.
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V PA
aa vs. V AA

aa
Historically, models of WDM systems have relied on simplicity and comparitive ease of ana-
lytical solutions to describe the physics in these systems. The one-component plasma model
is one such approach where ions are treated as fully ionized residing within a background of
fixed negative charge. The fixed background represented the plasma component and accounted
for screening interactions between ions, but did not possess a dynamic component hence only
the ions (one-component) were considered with any amount of physical argument. More so-
phisticated models emerged such as the average atom (related to one-component) and later the
two-component models. The AA model draws from the one-component model by defining a
background charge between atoms, but expands on it by defining a cutoff radius within which
the atoms are treated with orbitals quantum mechanically (not fully ionized).

Presented in Figs. 23-25 are the results from the PA and AA models with the parameters
chosen from the AA model. This helps to explain the relation of these parameters by showing
how they reflect on the physics of the system. Two feature emerge: The first is that, when PA
is coupled with AA parameters, the conductivities are lowered. Second, for the 10g/cc case
the TF and QM values are in better agreement.
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Figure 23: Hydrogen conductivity, 10g/cc, V PA
AA vs. V AA

AA . The use of AA parameters in the PA
calculation yield lower values than when using tcp.

Final Reports: 2015 Computational Physics Student Summer Workshop Page 353



Modeling Warm Dense Matter using Quantum-Mechanical Density Function Theory

ò

ò

ò ò

0 100 200 300 400

100

200

300

400

500

THeVL

C
o

n
d

u
c
ti
v
it
y

H10
6

W
-

1
m

-
1

L
Conductivity of Hydrogen, 80g�cm

3 HT-Matrix, Vaa
potL

Vaa
pa,QM

Vaa
pa,TF

Vaa
aa,QM

Vaa
aa,TF

QMD

Figure 24: Hydrogen conductivity, 80g/cc, V PA
AA vs. V AA

AA . The use of AA parameters in a PA
calculation at this density does not greatly affect the results.
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Figure 25: Hydrogen conductivity, 160g/cc, V PA
AA vs. V AA

AA . The use of AA parameters in a PA
calculation at this density does not greatly affect the results.
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S(k) input vs. S(k) = 1
Integral to understanding interactions within WDM is an accurate understanding of ion-ion cor-
relations. These correlations drive the distributions of both ions and ionized electrons through
their atomic potentials. A quatitiy of interest to describe such a phenomenon is the structure
factor. This intrinsic property of a (numerically converged) system gives the distribution of ions
from some chosen ion which effectively describes the presence of order as a series of peaks or
disorder as a constant value. The role of the structure factor in calculating transport properties
was outlined by Ziman as being crucial to accurately describing scattering processes. In Figs.
26-28 the difference between a calculation with the actual structure factor (ordered system )and
one without the structure factor (disorder system) are shown. The expectation for such as test
is to find the temperature-density regions where a disordered system may be considered. In all
density regimea we see a relatively decent qualitative agreement at higher tempertures while
the values are lower temperatures trend differently. This temperature related effect may be due
to the H atoms prefering a structured state while a disordered state is favorable at higher tem-
peratures.Ultimately, this suggests that the structure factor at lower energy scattering must be
included to calculate comparable values to QMD.
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Figure 26: Hydrogen conductivity, 10g/cc, V PA
tcp with S(k) from input vs. S(k) = 1. The struc-

ture factor is shown to be important especially at low temperatures where there are qualitative
differences. Through all temperatures, the S(k)=1 calculation produced lower values.
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Figure 27: Hydrogen conductivity, 10g/cc, V PA
tcp with S(k) from input vs. S(k) = 1. The struc-

ture factor is shown to be important especially at low temperatures where there are qualitative
differences.
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Figure 28: Hydrogen conductivity, 10g/cc, V PA
tcp with S(k) from input vs. S(k) = 1. The struc-

ture factor is shown to be important especially at low temperatures where there are qualitative
differences.

Beryllium

Constant Density
The following figures show the conductivities for Beryllium calculated with the PA and AA
models at constant density (Fig. 29) and temperature (Fig. 30). For both figures, the conduc-
tivities calculated with the PA model give relatively good QM results when compared to the
AA model. An important distinction between these plots and those of Hydrogen are that the
QM and TF models no longer agree and for lower temperatures they are qualitatively different.
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Figure 29: Beryllium conductivity, 10g/cc, at constant density. PA calculations with KS are
the most similar to QMD data. PA calculations with TF are qualitatively similar but yield larger
values. AA calculations are all much higher than the QMD values with qualitatively similar
values.

Constant temperature
The data collected for beryllium at constant temperature is shown in Fig. 30. Similar to the
constant density values, Fig. 29 we see that the PA data correctly follows the QMD data
whereas the AA model tends to overestimates the values. Addtionationally, TF calculations
show similar trends to their KS counterparts but are higher for the PA case and slightly lower
than KS with AA.
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Figure 30: Beryllium conductivity, 10eV , at constant temperature. PA calculations with KS
are the most similar to QMD data. PA calculations with TF are qualitatively similar but yield
larger values. AA calculations are all much higher than the QMD values with qualitatively
similar values.

Aluminum

Similar to the hydrogen cases, shown here are several comparisons for aluminum. The
comparisons examine the differences between the V PA and V AA potentials, the role of the model
parameters, and finally how the structure factor impacts the calculations at lower temperatures.
As a means of comparison, there exist only literature values calculated with V AA or V scr po-
tentials without any QMD data. Therefore, we rely on the fact that the T-matrix approach with
V PA has been shown to be accurate with respect to QMD data in both hydrogen and beryllium.

V PA
tcp vs. V AA

aa

The resistivities for three different densities of aluminum are shown in Figs. 31-33. At the
lowest density where there exists literature data to compare to we see the difference between
V PA and V AA. As expected, the V AA fit literature values well whereas the V PA approach yields
a quantitative agreement at higher temperatures but shows strong deviations at lower temper-
atures. Additionally, at least for the lower density the KS values are close to TF for both V PA

and V AA. This trend does not continue at higher densities where the TF values diverge from KS
for V PA. The V PA for all densities are consistently larger than their V AA counterparts. Features
at lower temperatures emerge which are due to the inclusion of the structure factor and will be
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discussed later.
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Figure 31: Aluminum resistivity, 2.7g/cc, V PA
tcp vs. V AA

aa . AA calculations fit the literature AA
values well. PA calculations are similar for high temperatures but a low temperature feature
stands out. This is due to the structure factor difference between PA and AA.
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Figure 32: Aluminum resistivity, 8.1g/cc, V PA
tcp vs. V AA

aa . There are low temperature features
similar to the solid density case. However, the TF value is beginning to differ substantially
from the KS for PA calculations.
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Figure 33: Aluminum resistivity, 13.5g/cc, V PA
tcp vs. V AA

aa . There are low temperature features
similar to the solid density case. However, the TF value is substantially different from the KS
for PA calculations.

V PA
aa vs. V PA

tcp

To understand the difference that using different values for the electron density and chem-
ical potential make, Fig. 34 shows the difference between a PA calculation using AA and tcp
parameters. Two differences emerge: The first is that at lower temperatures the aa values push
the resistivity higher while retaining the same general features. Since the overall behavior does
not change, this must be a contribution of the PA model rather than the parameters chosen. The
second feature is the inclusion of several ‘steps’ in the tcp resistivity compared to the aa values.
This is due to a different method of treating ionization between the parameters.
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Figure 34: Aluminum 2.7g/cc, V PA
aa vs. V PA

tcp. The use of AA parameters increases the resistivity
while preserving low temperature features.

S(k) input vs. S(k) = 1

The low temperature feature in all of the densities are shown to be due to the structure factor
in Figs. 35-37. These figures show the comparison between the normal V PA runs and V PA with
the structure factor set to one. Where the normal calculations show an uptick in the resistivity
at the lower end of the temperatures studied, the S(k) = 1 values go to a local minimum.
Therefore, the rise must be due to the ion-ion correlation changing near those temperatures.
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Figure 35: Aluminum resistivity, 2.7g/cc, S(k) input vs. S(k) = 1. The use of S(k)=1 shows
that the low temperature features depend on the structure factor.
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Figure 36: Aluminum resistivity, 8.1g/cc, S(k) input vs. S(k) = 1. The use of S(k)=1 shows
that the low temperature features depend on the structure factor.
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Figure 37: Aluminum resistivity, 13.5g/cc, S(k) input vs. S(k) = 1. The use of S(k)=1 shows
that the low temperature features depend on the structure factor.

Mixtures
There exists QMD data in the literature for a few systems of multi-component plasmas. In this
section, we will look at data for three systems. Carbon and hydrogen (CH) in a ratio of (7 : 9);
beryllium, deuterium, and tritium (BeDT) in a ratio of (1 : 1 : 1); and deterium and tritium in a
ratio of (1 : 1)
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Figure 38: Deuterium and tritium at 10 g/cm3 in a ratio of (1 : 1). This plot demonstrates a
trend that was present in all mixture calculations: the Born Approximation simply does not
capture the physics present in mixtures.
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Figure 39: Deuterium and tritium at 10 g/cm3 in a ratio of (1 : 1). Here we take a closer look at
the T-Matrix results. Both the AA and PA results are shown to confirm our earlier observations.
AA consistently misses the QMD data quantitatively but does seem to trend correctly.
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Figure 40: Carbon and hydrogen at 10 g/cm3 in a ratio of (1 : 1). Once again, the PAMD data
more closely follows the QMD calculations.
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Figure 41: Beryllium, deuterium, and tritium at 10 g/cm3 in a ratio of (1 : 1 : 1).
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The data from all three mixtures is very encouraging and agrees with our results for single
component systems. The added complexity of more than one sort of atom seems to be too much
for the Born approximation. Even for a mixture of deuterium and tritium, which shouldn’t be
significantly more complicated than pure hydrogen, the Born approximation only gets the right
quantitative result if S(k) = 1 and this is most likely a cancellation of errors as opposed to
an accurate modeling of the physics in our system. T-Matrix still does very well with the
pseudoatom potential and, again, average atom overestimates the conductivity for all systems
at all temperatures.

Conclusions
In spite of its crudeness, the Born Approximation in tandem with the Ziman-Evans formula
does a surprisingly good job of qualitatively describing resistivities of various warm dense
plasmas. That said, it is clear from our results that it should not be used for quantitative
purposes. T-Matrix calculations do take more time to run, but the difference in time does not
excuse the discrepancies between QMD data and the Born-based resistivities.

When chosing between a pseudoatom potential and a pseudopotential, the choice is very
clear. Inclusion of the pseudopotential from our DFT calculations into the Ziman-Evans for-
mula produces very nonphysical results, both qualitatively and quantitatively. Particularly, we
see some fairly pathological dips and rises in resistivity as temperature increases. Since these
features are not present in any other method we considered, it is most likely that the potential
is the culprit.

For quantitative accuracy, a full T-Matrix calculation is almost compulsory. It is difficult to
predict whether or not one is in the Born regime. Therefore, using full scattering is the best,
especially when a system is complex.

In the literature, an average atom calculation is the standard method of calculating bulk
properties when QMD is either unavailable or too expensive. We’ve shown in this report that
this method can be improved by using a full pseudoatom potential instead of the more simple
average atom potential. Since the computational cost is similar, PAMD is the clear choice.
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