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This collaborative project brought together climate dynamicists (UCLA, IRI), 
dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists 
(Columbia Water Center, CWC), together with applied scientists in climate risk management 
(IRI) to create new scientific approaches to quantify and exploit the role of climate variability and 
change in the growing water crisis across southern and eastern Asia.

The project objectives were to:
• Develop new tree-ring based streamflow reconstructions for rivers in monsoonal Asia;
• Improve understanding of hydrologic spatio-temporal modes of variability over monsoonal 
Asia on interannual-to-centennial time scales;
• Assess decadal predictability of hydrologic spatio-temporal modes;
• Develop stochastic simulation tools for creating downscaled future climate scenarios to 2050 
and estimates of uncertainties, based on historical/proxy data and GCM climate change
• Develop stochastic reservoir simulation and optimization for scheduling hydropower, irrigation 
and navigation releases.  

The final technical results of the project over the award period are summarized below by sub­
topic. This Final Technical Report for this collaborative research project includes material from 
those submitted separately by PIs M. Ghil (UCLA, SC0006694) and P Smyth (UC Irvine, 
SC0006619).

1. Tree ring-based streamflow reconstructions

We have published a paper on the reconstruction of Upper Indus River discharge from long 
tree-ring records located in the Karakoram region of northern Pakistan (Cook et al., 2013).
While support for the tree-ring sampling came from USAID, the work conducted in producing the 
reconstruction and its novel method of estimating uncertainties utilized support from this project. 
The method of uncertainty estimation is based on the maximum entropy bootstrap (Vinod,
2006). It is noteworthy for being totally data-adaptive and much more natural in the way it 
expresses uncertainty in the reconstructed values back in time. It also automatically produces 
ensembles of pseudo-reconstructions that can be used for further analyses relevant to the goals 
of this project.

Previous studies indicate that there may be some modulating effect from the Pacific Decadal 
Oscillation or PDO on monsoon climate across Myanmar. To further investigate relationships 
between Myanmar hydroclimate and larger-scale climate dynamics, we analyzed the
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instrumental record and 20th century reanalysis data, along with the Myanmar teak series, to 
examine the large-scale climate patterns (precipitation, winds, moisture fluxes, monsoon 
indices) over Myanmar and adjacent southeast Asia during cold and warm PDO phases. We 
found significant decadal to multidecadal modes of variability linked to monsoon rainfall in both 
instrumental/reanalysis and the much longer teak tree-ring data from Myanmar, which appear 
to reflect the remote influence of the PDO and related climatic regime shifts on South Asian 
summer monsoon rainfall (D’Arrigo and Ummenhofer, 2014). The boreal winter PDO may 
precondition tree growth at the onset of the wet monsoon season over this region of south 
Asia. Our spectral analyses of the Maingtha teak identified ~48 and ~18.9yr modes that are 
similar to those identified for the PDO and other long instrumental time series of North Pacific 
climate variability. A ~48-year mode is also evident in the MHS Thailand teak, and is also 
believed to reflect decadal Pacific variability. The ~27yr mode seen in the teak record in Figure 
4 is similar to that observed in a tree-ring reconstruction of Upper Indus, Pakistan streamflow 
over the past millennium (Cook et al., 2013). A ~18yr mode has been associated with lunar-tidal 
forcing in some North Pacific tree-ring records (Wilson et al. 2007). The ~14-15yr mode 
corresponds to bandwidths associated with lower-frequency ENSO variability (Allan 2000), and 
the PDO (Krishnan and Sugi 2003). The amplitudes of the latter two modes vary considerably 
over time, and all may interact with each other and be modulated by various climatic forcings 
and synoptic phenomena.

2. Identification of hydroclimate modes of variability

Correlation maps with the Upper Indus streamflow reconstruction and a variety of datasets 
suggests the importance of the Arabian Sea moisture source, and ENSO & NAO 
teleconnections. We have explored more systematically the three-way interactions between the 
Indian monsoon and the two ocean basins in the light of the synchronization theory of chaotic 
oscillators (Feliks et al. 2013). Four climate records were analyzed: the monsoon rainfall in the 
core region and the Peninsula region for India, the Southern Oscillation Index (SOI) for the 
Tropical Pacific, and the NAO index for the North Atlantic. The individual records exhibit highly 
significant oscillatory modes with spectral peaks at 7--8 yr and in the well-known quasi-biennial 
and quasi-quadrennial bands. A key result is that the 7--8-yr and 2.7-yr oscillatory modes in all 
three regions are completely synchronized, and the energy ratio analysis suggests that the NAO 
induces these modes in the other two regions. Both these modes in the NAO appear to be 
connected to intrinsic modes of variability of the Gulf Stream front.

An assessment was made of the ability of general circulation models in the CMIP5 ensemble to 
reproduce observed modes of low-frequency winter/spring (DJFMAM) precipitation 
variability in the region of the Upper Indus basin (UIB) in south-central Asia. This season 
accounts for about two thirds of annual precipitation totals in the UIB and is characterized 
by “western disturbances” propagating along the eastward extension of the Mediterranean 
storm track (Pal et al. 2014). Observational data are used, first for spatiotemporal 
characterization of the precipitation seasonal cycle. Seasonal spectra and teleconnections are 
then examined and links to global patterns of sea-surface temperature (SST) and atmospheric 
circulation explored. Annual and lowpassed winter variability are found to be associated 
primarily with large-scale SST modes in the tropical and extratropical Pacific. A more obscure 
link to North Atlantic SST, possibly related to variability of the North Atlantic Oscillation (NAO), is 
also noted (Greene and Robertson 2016).

An ensemble of CMIP5 models was then assessed with regard to these characteristics.
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Eight of the 31 models are found to reproduce well the two leading modes (summer and 
winter/spring) of the observed seasonal cycle. Low-frequency (decadal-band) spectral peaks 
for winter/spring precipitation similar in frequency to those observed are found in four of 
the eight models, deriving from just two model families. Key features of the observed SST 
teleconnection patterns are best identified in the two models having higher resolution, but 
with varying degrees of resemblance to observations. Future precipitation and snowpack 
trends for the region of the UIB seem not to depend on model resolution, although the 
evidence for this is not definitive. Whether low-frequency variability represents a useful 
source of predictive information remains to be determined. This work is reported in Greene and 
Robertson (2016).

3. Empirical prediction using data-based closure models via multilayered stochastic 
models

a) Empirical model reduction

Kondrashov et al. (2014) undertook a rigorous mathematical analysis of empirical model 
reduction (EMR: Kondrashov et al. 2005; Kravtsov et al. 2005; Kravtsov et al. 2009) in their 
continuous-time limit; the authors called this limit multilayered stochastic models (MSMs). An 
MSM is a system of stochastic differential equations (SDEs) that models the dynamics of the 
macroscopic, observed variables along with their interactions with the microscopic, hidden 
variables.

The hidden variables are modeled through a “matrioshka” of layers, in which each additional 
layer contains an extra hidden variable that is less correlated with the observed variables than 
those in the previous layer, until some de-correlation criterion is reached. In practice, MSMs are 
learned in a polynomial basis by multilevel regression techniques that lead to an EMR model.

An MSM model can be written as a system of stochastic integro-differential equations that yields 
in practice a good approximation of the generalized Langevin equation of the Mori-Zwanzig 
formalism of statistical mechanics (Zwanzig, 2001). Furthermore, conditions were identified that 
guarantee the existence of a global random attractor for MSMs that generalize the EMR models 
used so far and allow for non-polynomial predictors. These generalized stochastic-dynamic, 
empirical models do not require energy-preserving nonlinearities — such as those present in 
fluid-dynamic models but not in ENSO or other climate models — while the global attractor still 
prevents numerical blow-up.

b) “Past-Noise Forecasting” (PNF) of Madden-Julian Oscillation

In the presence of both low-frequency variability (LFV) and noise, Chekroun et al. (2011) had 
shown that linear pathwise response of a nonlinear stochastic model to perturbations allows one 
to develop a novel Past-Noise Forecasting (PNF) method. The PNF method is based on the 
knowledge of “past noise” at times in the system’s history that resemble in LFV phase the 
present from which one wishes to forecast. These authors successfully applied PNF to an EMR 
model for ENSO; they constructed an ensemble of forecasts that accounts for interactions 
between high-frequency variability (“noise”), estimated by EMR, and the LFV mode of ENSO, 
as captured by singular-spectrum analysis (SSA).
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Following up on the development of PNF and its application to ENSO, Kondrashov et al. (2013) 
have shown that PNF improves the prediction of the Madden-Julian Oscillation (MJO), an 
important intraseasonal phenomenon that affects hydroclimate in Asia. Applying the EMR-PNF 
method to the two leading indices of the MJO, RMM1 and RMM2, yields a bivariate correlation 
skill that exceeds 0.4 at 30 days, a skill that is comparable to that of state-of-the art dynamical 
models. A key result is that — compared to an EMR ensemble driven by generic white noise — 
PNF is able to considerably improve prediction of the MJO’s phase. When forecasts are initiated 
from weak MJO conditions, the useful skill is of up to 30 days. PNF also significantly improves 
MJO prediction skill for forecasts that start over the Indian Ocean.

c) Data-driven Stochastic Modeling and Prediction for Asian Hydroclimate

The UCLA team’s multivariate EMR stochastic methodology has been applied to monthly 
gridded (2.5 x 2.5 degrees) Palmer Drought Severity Index (PDSI) for a 700-yr-long time 
interval (1300-2005). The data were based on the Monsoonal Asia Drought Atlas (MADA) and 
were projected onto the 8 leading PCs in the 10N-56N latitude band. The optimal EMR multi­
level model was 2-level quadratic and energy conserving; it was compared with data in terms of 
robust spectral peaks identified by Multichannel Singular Spectrum Analysis (MSSA). We found 
robust 5-yr and 8-yr low-frequency modes (LFMs) over the Indus river basin, in the actual 
dataset, as well as in the EMR simulations.

The tree-lab team at Lamont produced a 300-member ensemble of pseudo-reconstructions of 
Indus River discharge, based on maximum entropy bootstrapping of tree-ring proxy records.
Our UCLA team analyzed this ensemble by MSSA and identified a robust 27-yr LFM. We 
assessed decadal predictability of hydrologic spatio-temporal modes by applying the SSA-MEM 
prediction methodology to the ensemble mean of the Indus River discharge reconstructions, and 
carried out retroactive forecasts with no look-ahead over the 1702-2005 time interval.

Validation shows some predictability of up to 15 yr, although this predictability appears to have 
been somewhat smaller in the 20th century, and it is largely due to the 27-yr LFM. We also 
generated a very long, 5000-yr stochastic simulation of a univariate EMR model of Indus 
streamflow reconstruction with realistic spectral features. This simulation will serve 
as a synthetic dataset for further analysis and testing of newly developed strategies for 
stochastic reservoir simulation and optimization.

4. Stochastic Simulation of Daily Precipitation Data for Downscaling using Hidden 
Markov Models

a) Methodological development

We developed a framework for a new type of hidden Markov model (HMM), including the 
statistical and mathematical foundations of the model as well as implementing in software in the 
R software package and making it publicly available. In this new modeling framework, an HMM 
is coupled with a generalized linear model (GLM) within a Bayesian framework to downscale 
exogenous input variables to spatio-temporal daily rainfall. This model (which we refer to as a 
GLM-HMM) is an extension of the non-homogeneous hidden Markov model (NHMM) to include 
uncertainty quantification in a Bayesian framework. The GLM-HMM also allows the exogenous 
inputs to directly modulate the emission distribution (governing the occurrence and amounts at
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each station) in a more flexible manner than a traditional NHMM, allowing for modeling of non- 
stationarity (for both seasonal and inter-annual variation).

The GLM-HMM includes hidden weather states for each day which have Markov transition 
dynamics that capture the time dependence and spatial relationship of the rainfall much like a 
traditional NHMM. Each day is modeled by one of the K hidden weather states, where each 
state has a distinct spatial pattern across stations in terms of distribution on precipitation 
occurrence and amount. The Markov state transitions are modeled through a set of transition 
probability matrices that vary over time, allowing the capture of seasonal variation in the relative 
frequencies of different states.

The distributions of daily rainfall depend on both the daily state variable as well as the 
exogenous input variables (which can for example be a large-scale variable reflecting inter­
annual variability). The precipitation distribution for each station is a mixture of a delta function 
at zero and two gamma distributions (one for lower rainfall amounts and one for higher 
amounts). The exogenous variables influence which of the three component distributions is 
chosen given a particular daily weather state. As well as large scale annual exogenous input 
variables, seasonal or daily inputs can also be included in the model. The Bayesian framework 
allows for uncertainty estimation of the dependence of daily rainfall on particular exogenous 
input variables.

b) Algorithm and Software Development

In our work we have found that Bayesian implementations of NHMM models are 
computationally expensive and can be difficult to tune. By incorporating the exogenous 
variables into a different portion of the model (via the new GLM-HMM approach described 
above) we can retain the general form and functionality of the NHMM while removing the need 
for extensive tuning of algorithm parameters. Latent variables are added to ensure the 
mathematical conjugate properties are available to use Gibbs steps throughout the Markov 
chain Monte Carlo (MCMC) algorithm. The model is implemented in R with the aid of the Rcpp 
package to construct compilable modules in C++ for faster run time. This reduced the run-time 
100-fold due to the compiled nature of the Rcpp modules. N=2000 iterations can be run in 4 
hours for a field of 23 stations and 31 monsoon seasons (June, July, Aug, Sept) without the 
need for specialized user knowledge of MCMC tuning methods. In addition, the R code has 
been parallelized and, using the snowfall package, is run on a multi-core Linux machine to 
reduce computational time.

In more recent work we have developed a further extension of our Bayesian inference 
algorithms that allow us to fit these types of models to much larger data set, e.g., to almost 
700,000 daily measurements of precipitation over 30 years across India. This new extension is 
based on a technique known as Polya-Gamma data augmentation, which has been proposed 
and applied successfully recently to multivariate data - our work extends this approach to 
handle temporal data using our GLM-HMM approach.

We implemented or developed metrics to assess the fit and predictive performance of the GLM- 
HMM model. Given particular settings of the exogenous variables, we collect N=500 simulated 
daily downscale runs from the model for each station. Assessment of the spatial features of the 
model is done through comparison of pair-wise station correlations of the simulated time series. 
The skill of the model to capture the temporal aspects of the data is assessed by run lengths of
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wet and dry spells of these 500 simulated runs. The main difference in the GLM-HMM and a 
traditional NHMM is in how the exogenous variables handle station level seasonality and 
downscale at a daily level; seasonal plots with uncertainty bands were compared to the raw 
data. The NHMM can have difficulty because it extends one seasonal input to the entire field of 
stations, whereas the GLM-HMM can have a seasonal trend for each station. The GLM-HMM 
allows the emission distribution of a state to change throughout the season, instead of being 
stationary. These trends were apparent in our model assessment plots. Additionally, larger 
model fit assessment was done through the computation of the recursive log-likelihood and 
annual metrics to measure the influence of different exogenous variables on both training and 
test sets of data. 6-fold cross validation is used to split the data into six portions for training and 
test (holding out 5 year portions of data at a time). This work is reported in Holsclaw et al. 
(2016b).

The resulting software has been publicly released as an R software package, NHMM: Bayesian 
NHMM Modeling, https://cran.r-project.org/web/packages/NHMM/index.html

c) Application of NHMMs to downscaling of rainfall projections in India and China

Downscaling rainfall using the GLM-HMM has been applied to a region in India covering the 
Upper Indus basin that feeds into the reservoir system, and in China for the Upper Yangtze 
basin. The impact of exogenous variables such as the El Nino-Southern Oscillation (ENSO), 
standardized anomaly index (SAI), and wind shear (WSI) have been assessed by this model for 
their skill in out-of-sample prediction of downscaling the monsoon season for these regions. 
Thirty years of daily rainfall data is available for training and testing the model for these regions. 
Test data is held out to assess the ability of the model to forecast or hindcast given the 
exogenous variables. This work is reported in Holsclaw et al. (2016a).

5. Multi-Timescale Climate Informed Stochastic Hybrid Simulation - Optimization Model 
(MclSH) for a Single Multi-Purpose Reservoir

Streamflow forecasts at multiple time scales (e.g., season and year ahead) provide a new 
opportunity for reservoir management to address competing objectives. Market instruments 
such as forward contracts with specified reliability are considered as a tool that may help 
address the perceived risk associated with the use of such instruments in lieu of a traditional 
operation and allocation. A water allocation process that enables multiple contracts with different 
durations, to facilitate participatory management of the reservoir by users and system operators, 
is presented here. Since these contracts are based on a verifiable reliability they may in turn be 
insurable. A Multi-timescale climate informed Stochastic Hybrid Simulation - Optimization Model 
(McISH) is developed, featuring (1) dynamic flood control storage allocation at a specified risk 
level; (2) multiple duration energy/water contracts with user specified reliability and prices; and 
(3) contract sizing and updating to reflect changes in both demands and supplies. The model 
incorporates multi-timescale (annual & seasonal) streamflow forecasts, and addresses 
uncertainties across both timescales. The intended use is as part of an interaction between 
users and water operators to arrive at a set of short-term and long term contracts through 
disclosure of demand or needs and the value placed on reliability and contract duration. An 
application is considered using data for the Bhakra Dam, India. The issues of forecast skill and 
contract performance given a set of parameters are examined to illustrate the approach. 
Prospects for the application in a general setting are discussed in Lu (2014).
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This section formed Part IV of Mengqian Lu’s PhD thesis (Lu 2014).
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