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Multichannel Detection Challenges 

1.  What is the best way to combine single channel correlations? 
Can it be demonstrated? 

2.  What if the template waveform is uncertain, or the target 
data originates from a much smaller source? 

3.  What if the ambient wavefield isn’t composed of noise alone 
(it’s not)? 

Questions—ordered by difficulty	  

Respective Solutions	  
1.  Beam provides higher detection capability for r than MLE, at 

moderate correlation values. 
2.  Quantitative analysis: nuisance alarm rate increases 

dramatically for template-target match degradation 
3.  Make a detector more specific than a correlation detector by 

modifying the null 
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Multichannel Detection Challenges 

1.  What is the best way to combine single channel correlations? 
Can it be demonstrated? 

2.  What if the template waveform is uncertain, or the target 
data originates from a much smaller source? 

3.  What if the ambient wavefield isn’t composed of noise alone 
(it’s not)? 

Questions—ordered by difficulty	  

Respective Solutions	  
1.  Beam provides higher detection capability for r than MLE, at 

moderate correlation values. 
2.  Quantitative analysis: nuisance alarm rate increases 

dramatically for template-target match degradation 
3.  Make a detector more specific than a correlation detector by 

modifying the null 

This isn’t a Trivial Question! 
 

Practical Consequence: 
Different Detection Statistics for the Same Detector 
yield different results: over time, this can amount to 

~103 missed or false detections 
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Decision Rule: Is there a signal match on multiple channels? 

Q: What is the best way to combine single channel correlations? 	  
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Neyman-Pearson CFAR Constraint 



MLE Correlation Statistic 
Signal models and hypotheses 

Detection Statistic from Generalized Likelihood Ratio 
Multichannel data 
stream x as matrix 

Q: What is the best way to combine single channel correlations? 	  

Harris Statistic 



Computation: The Correlation Detector 
Practical point 1: Multi-Channel data can be organized into 
matrix columns, or multiplexed into long vectors. 
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Practical point 2: No reason data covariance C is diagonal.  

Multichannel data 
stream x as matrix 

We use a reduced Degree of Freedom 
Estimator to correctly parameterize PDF for 
s(x), despite C≠ I 

Q: What is the best way to combine single channel correlations? 	  

Harris Statistic 



Beam/Stack Correlation Statistic 
Signal models and hypotheses 

Detection Statistic from Zero-Delay Beamforming 

Detection Capability: Does it make a difference what 
statistic s(x) you compute? 

Hint: Beaming is better that MLE, if s(x) “moderate”…  

Q: What is the best way to combine single channel correlations? 	  

Gibbons Statistic 



Review Seconds 

x1 y1 
Compute Empirical Distribution from Correlation Pairs 

x2 y2 x3 y3 x4 y4 

Chop up data into non-intersecting windows 
commensurate with template window length. Select 
non-neighboring windows at random. Compute s(x). 

Estimating Effective N 
Q: What is the best way to combine single channel correlations? 	  
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Template Waveform 
Q: What is the best way to combine single channel correlations? 	  
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Target Data 
Q: What is the best way to combine single channel correlations? 	  
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Target Data 
Q: What is the best way to combine single channel correlations? 	  

Waveforms recorded during detonation of 4”, cylindrical explosive at 1m 
HOB, local to source, and add real pre-shot noise to decrease SNR 
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MLE Correlation Statistic 
Q: What is the best way to combine single channel correlations? 	  

Scan template over 600 sec of data 
and use MLE detection statistic 

Harris Statistic 
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Beam/Stack Correlation Statistic 
Q: What is the best way to combine single channel correlations? 	  

Scan template over same data 
and average single channel correlation 

Blue = Previous, MLE values 

Gibbons Statistic 
Harris Statistic 



Compare Detection Thresholds 
Q: What is the best way to combine single channel correlations? 	  

Run template over 2 days of data that includes shots:	  
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Compare Detection Thresholds 
Q: What is the best way to combine single channel correlations? 	  

0.1 0.2 0.3 0.4 0.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

B
e
a
m

S
ta
ti
st
ic

o
v
e
r
T
h
re
sh

o
ld

MLE Statistic over Threshold

Comparison Between Detections, 12 Shots

Detection Values, Relative to False-Alarm Rate Thresholds	  

Low values of correlation 
give ambiguous results	  

At higher values of correlation, 
summing up single channel 
statistics gives larger value, 
relative to threshold	   one-to-one line 



Compare Detection Thresholds 
Q: What is the best way to combine single channel correlations? 	  

140 150 160 170 180 190
140

150

160

170

180

190

200

210

220

230

N̂
fr
o
m

B
e
a
m

N̂ from MLE

Degrees of Freedom Estimates, 12 Shots

Null distribution for beamed 
correlation statistic is always 
lower variance: distribution is 
skinner	  

The Frobenius-norm likely 
induces statistical dependency 
between samples in MLE case, 
and thereby effects denominator	  

Effective Degrees of Freedom, Shaping Null Distribution	  

one-to-one line 



Multichannel Detection Challenges 
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3.  What if the ambient wavefield isn’t composed of noise alone 
(it’s not)? 
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Respective Solutions	  
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Multichannel Template Selection 
•  Run power detector + associate à collect events 
•  Time-reverse data, re-run power detector, and extract waveform between 

forward and reverse-picks: 
•  Cluster using correlation coefficients, select “favorite” signal 

Take these details for granted, and run 
detector on ≥ 2 months of continuous data 

Multi-channel template 

Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



~15 seconds 

5 of 47 Detections 

Two Months of Detector-Processing 

…provides a few analyst-approved 
detections 

Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



5 of 47 Detections: ρ0= 0.35  

42 of 47 Detections 

…provides more analyst-rejected 
detections! 

Two Months of Detector-Processing 
Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



5 of 47 Detections: ρ0= 0.35  

42 of 47 Detections 

Why are there so many bad 
detections?  

Two Months of Detector-Processing 
Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



5 of 47 Detections: ρ0= 0.35  

42 of 47 Detections 

Note that template waveform 
doesn’t perfectly correlate with 

target waveforms, even in absence 
of noise—target is not amplitude 

scaled version of template 

Two Months of Detector-Processing 
Q: What’s the Effect of Uncertainties in template-target on correlation? 	  
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Target and Non-Target Commonality 
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Q: What’s the Effect of Uncertainties in template-target on correlation? 	  
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To an Implicit Signal Target Signal Model 
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Geometric view of “Cone Detector” 

Q: What’s the Effect of Uncertainties in template-target on correlation? 	  
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Q: What’s the Effect of Uncertainties in template-target on correlation? 	  

Do not assume target data is 
amplitude scaled version of 

template. Only assume target data 
correlates above ρ0	  with template. 



Density Function: Cone Detection Statistic 
•  Form Hypothesis Test with Target Signal in Cone 
•  Data Still Includes Gaussian Noise 

Preview 

Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



Density Function: Cone Detection Statistic 
•  Variances σ 2 and target signal u are imperfectly known 
•  Form Maximum Likelihood Ratio, Λ(x) 

Preview 

Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



Density Function: Cone Detection Statistic 
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Density Function: Cone Detection Statistic 
•  Substitute maximum likelihood estimators back into Λ(x)  
•  Λ(x) reduces to a statistic s(x ) = projected energy ratio 

Preview 

PDF for s(x) has closed form expression:  
no Monte Carlo needed to get performance 

Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



Density Function: Cone Detection Statistic 
•  Statistic s(x ) is nonlinear, and conditional upon correlation r 
•  Statistic “compresses” decision region into [-c, ρ0] 
•  Statistic is function of (already computed) sample correlation 

Preview 

Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



Density Function: Cone Detection Statistic 
•  Total probability is computed from projection probabilities 
•  Ratio in r and statistic s(x ) have determinable PDFs 

Preview 

Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



Density Function: Cone Detection Statistic 
•  Variances σ 2 and target signal u are imperfectly known 
•  Form Maximum Likelihood Ratio, Λ(x) 

Preview 

Q: What’s the Effect of Uncertainties in template-target on correlation? 	  



Cone-Detector: Enormous False Alarms 
Q: What’s the Effect of Uncertainties in template-target on correlation? 	  

Null distribution is computed from known correlation distribution using 
variable transformation. It shows probability density of noise giving a 

detection if the template waveform includes uncertainty 
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Q: How do we include unknown non-target signals in the background wavefield?	  



Non-Target Signals Live in a Cone 

Competing hypotheses 
New Null 

Same Altern. 
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Generalized Log-likelihood Ratio 

Competing hypotheses 
New Null 

Same Altern. 

Non-Target Signals Live in a Cone 
Q: How do we include unknown non-target signals in the background wavefield?	  



Statistic represents difference in projected 
signal energy: cone – correlation 

Note argument of scaled log-likelihood is simple 
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Screens Targets from Non-Targets 
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Q: How do we include unknown non-target signals in the background wavefield?	  

Competing hypotheses 

Screens Targets from Non-Targets 

Statistic represents difference in projected 
signal energy: cone – correlation 



PDF for statistic has closed form expression:  
no Monte Carlo needed to get performance 

New Detector: 

Q: How do we include unknown non-target signals in the background wavefield?	  

Competing hypotheses 

Screens Targets from Non-Targets 



Q: How do we include unknown non-target signals in the background wavefield?	  

New Detection Statistic PDF 

•  Express the detection statistic as a polynomial in t(r): 

•  Variable transformation gives point-wise equivalent event:  

t has known PDF pT (t ; Hk) 

•  Get PDF for z: 

z =  



Q: How do we include unknown non-target signals in the background wavefield?	  

New Detection Statistic PDF 

•  Express the detection statistic as a polynomial in t(r): 

t has known PDF pT (t ; Hk) 

•  Get PDF for z: The PDF under H0 sets detector threshold 

z =  

•  Variable transformation gives point-wise equivalent event:  



Q: How do we include unknown non-target signals in the background wavefield?	  

New Detection Statistic PDF 

z =  

•  Luckily, z is one-to-one over our domain… 
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Q: How do we include unknown non-target signals in the background wavefield?	  

New Detection Statistic PDF 

z =  

•  Luckily, z is one-to-one over our domain… 
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Future work: 
Implementation! 



Review Synthesis 

•  Overwhelming non-target detections require more 
representative hypothesis test to target real events. 

•  Implicit signal model with convex-cone geometry includes 
both target waveforms and non-targets 

•  New detector screens target waveforms from convex cone 
members that correlation detectors return 

Important Points	  

Convex Detection	  
•  Proto-type detector returns analyst-equivalent detections 
•  Requires minimal modification from correlation detector, and 

has quantifiable detection performance 
•  Satisfies all solution requirements to reduce false detections for 

GNDD 
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