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Summary

The project’s goal was to exploit observations predominantly taken at the ARM CF site of Darwin to 
interrogate the relationship of small-scale tropical convection with larger-scale features of the 
tropical atmosphere. A second goal of the project was to use the findings from the observational 
analyses to inform the development of a new cumulus parametrisation that is being developed by 
the Pi’s group from other funding. The project made extensive use of the observational facilities at 
the ARM site and produced 8 publications. The main findings of the project are:

o Tropical convection occurs in four, instead of the previously reported three, distinct modes. 
These are: Shallow, congestus, deep and overshooting convection (Kumar et al., 2013a).

o Large-scale dynamical conditions are the primary driver for the existence, strength, and type 
of tropical convection with topographic features (e.g., coastlines) playing an important 
secondary role (Kumar et al., 2013b).

O There is a strong relationship of the strength of tropical convection with convergence-related 
large-scale measures (e.g., vertical motion), but only a very weak relationship with stability 
based measures (e.g., CAPE; Davies et al. 2013a).

o Area-averaged rainfall and its relationship to the large-scale dynamical conditions are 
largely controlled by the area coverage with convection, with no strong relationship to 
intensity (Davies et al., 2013a).

o The relationships between convective area coverage and the large scale can be reproduced 
by a stochastic multi-cloud model, which itself can form the basis for a new parametrisation 
(Peters et al., 2013).

o The growth of convection from moderate depth (congestus) to its deeper forms is not a 
simple thermodynamic transition but is strongly coupled to dynamical processes at large and 
mesoscales (Kumar et al., 2013a, 2014).

o Wind-profiler observations are suitable to derive area-averaged vertical profiles of 
convective mass-flux and its components of convective area fraction and vertical velocity. 
(Kumar et al., 2015).

o The vertical profile of convective mass-flux is dominated by the variations in convective area 
fraction with vertical motion being largely a function of convective type. This opens the door 
to developing estimates of convective mass-flux from a single radar (Kumar et al., 2015).

The behaviour of tropical convection as gleaned from observations

The main thrust of the research was to exploit the ARM observations at the Darwin location, in 
particular the data from the C-band polarimetric radar to discover relationships between the 
convective scale and larger scales. To do so we first extended our work to define the large-scale 
state from the TWP-ICE campaign (Davies et al., 2013b) to derive a three-year (wet-season only)



data set of the large-scale state of the atmosphere at Darwin using the standard ARM Variational 
Analysis tool (Davies et al., 2013a). We showed that using ECMWF data instead of radiosondes 
and combining this with the observed rainfall observations from the CPOL radar leads to a faithful 
reproduction of the TWP-ICE estimates of large-scale forcing (Fig 1).
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Fig 1: Time-series of vertical profiles of vertical velocity in pressure coordinates (omega) 
using all observations, i.e., (top panel) the best-estimate values, (middle panel) the direct 
ECMWF analysis, and (bottom panel) using ECMWF data as pseudo-radiosondes and 
combining it with radar-derived rainfall observations. Data are shown for the TWP-ICE 
period (19 January-14 February 2006) at Darwin, Australia.

We then focused on deriving properties of the convective-scale state, beginning with simple 
quantities, like the area fraction covered by convection. This was achieved using standard radar 
algorithms to define convective and/or stratiform rainfall areas. With both information on large and 
small scales concurrently available, we were able to investigate the relationship between the two 
scales (Fig. 2). We showed that there is a strong relationship between convergence-related 
(dynamic) measures of the large scale and the amount of convective rainfall, while the relationship



to stability (thermodynamic) measures were shown to be weak. We also showed that the 
relationship of convective precipitation to convergence, is largely one with the area that is 
precipitating, rather than one with the intensity of the convection. These relationships became 
instrumental in the development of ideas for a new cumulus parametrisation (see below).
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Fig 2: Relationship of moisture convergence with (a) precipitation, (b) convective precipitation, (c) 
convective precipitation area fraction, (d) convective precipitation intensity

Darwin is a coastal location. A very valid immediate next question was whether the relationships 
we found above were a result of the coastal character and if they are valid elsewhere. We tackled 
this problem with two separate approaches. One was to repeat our study at another location, in this 
case, Kwajalein. We found that while the range of large-scale conditions at Kwajalein is different 
from those at Darwin, the fundamental relationships discovered at Darwin also hold a Kwajalein 
(Refers et al., 2013). A second approach we took was to carry out an in-depth study of the relative 
roles of the large-scale conditions - as defined by objective weather regimes - and the land surface 
type on the characteristics of the convection in the Darwin region (Kumar et al., 2013b). The study 
found that the first order influence on the convective characteristics is the large-scale weather 
regime it occurs in. However, we also found that there was a non-negligible but secondary 
influence of the underlying surface.

Having identified simple relationships between the large scale and the “horizontal” structure of 
convection we turned our attention to identifying the relationship of the large-scale to the vertical 
extent and structure of convection. To begin this line of work we conducted a study that aimed at



identifying “typical” convective cloud types encountered in Darwin. We were able to identify three 
distinct modes of precipitating convection (in addition to the fourth mode of shallow convection not 
observable by the CPOL radar) by analysing the distribution of low-level (2.5 km) reflectivity as a 
function of echo top height (ETH; Fig. 3). By identifying two distinct regions of an increase of 
reflectivity (at 2.5 km) with ETH (below 7 km ETH, above 15 km ETH) and one region of constant 
reflectivity (at 2.5 km) with ETH, we were able to define a congestus mode (ETH<7 km), a deep 
convective mode (ETH between 7 and 15 km) and an overshooting mode (ETH>15km).

Reflectivity at 2.5 km (dB)

Fig 3: PDF of reflectivity using a bin size of 1 dB and as a function of ETH. One mean reflectivity 
was obtained per convective cell using reflectivity pixels that are bounded by the respective 
convective cells at the 2.5 km CAPPI level. The white curve is the overall mean reflectivity at 
each ETH level, and the black curve is the modal reflectivity. The dashed horizontal lines 
correspond to the breakpoints in the reflectivity trend indicating the lower (6.5 km) and the upper 
(15 km) ETH boundary for the “normal deep convection.”

We were able to use these cloud types in this and subsequent studies to show that the transition 
from congestus to deep convection has strong large- and mesoscale dynamical drivers and isn’t 
merely a thermodynamic cloud growth process (Kumar et al., 2013a, 2014). We also showed that 
the highest precipitation intensity (or extreme rainfall) is always associated with overshooting 
convection, a tantalising result that deserves follow-up in future work. Having been able to show 
the existence of four (compared to the previously shown three) types of convection has also 
influenced our decision making for building a new cumulus parametrisation (carried out under 
separate funding from the Australian Government), which will treat each of these four types, 
compared to the currently common distinction of shallow and deep convection only.

Our work to this point had highlighted the importance of the fractional area-coverage with 
convection, but it remained unclear how important the vertical distribution of in-cloud vertical 
velocity was to the convective transports, which are proportional to the product of fractional area 
and velocity, the convective mass-flux, which in turn underpins almost all convective 
parametrisation of convection in use today. While most of this work is the subject of a research



proposal recently submitted, we carried out a first foray into this area, by analysing several years of 
dual-frequency wind profiler observations at Darwin and combined with the CPOL radar (Kumar et 
al., 2015). We were able to show that the mass-flux profile is strongly shaped by the area fraction 
of convection with a weaker influence from vertical velocity (Fig 4, grey shading). We then
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Fig 4: Effect of RH in the lowest 5 km (top panels), CAPE (second panels), CIN (third panels) 
and co500 on updraft mass-flux (left column), upward area fraction (middle column) and upward 
vertical velocity intensities (right column). The shaded region is the overall updraft means without 
applying any environmental sorting. The solid and dotted line in each figure corresponds to lower 
and upper tercile of the environmental conditions.

investigated the influence of the large-scale environment on the mass-flux and its components. We 
found (not surprisingly) that higher mass-fluxes are found in moist atmospheres, but we were able 
to demonstrate once again that this a result of more widespread convection, with lower vertical 
motion rather than through more intense convection. As seen in earlier studies, we found that 
CAPE has relatively little effect on the mass-flux profile, in part due to a compensation of higher 
(lower) vertical velocity in high (low) CAPE conditions by lower (higher) area fractions. We also 
found that both vertical motion and CIN strongly affect convection once again through their effect



on the convective area fraction, with both having the expected strongly suppressing effect for high 
CIN and downward vertical motion.

The use of ARM observations in developing a cumulus parametrisation

A stated goal of our work was to analyse the observations in such a way that they can influence the 
design of cumulus parametrisations in general and help us to build a completely new scheme in 
our group in particular. The project was tremendously successful in achieving this in several ways.

First, we showed conclusively from the observations that by far the largest influence on the area- 
averaged (or grid-box averaged) convective rainfall (or mass-flux) is from the area that is 
convening, with the vertical motion playing an secondary role. This opens the possibility to 
separate mass-flux - the variable commonly used in cumulus parametrisation - into area and 
velocity and to treat them independently, a decision we have already made for own developments.

Second, we showed that it might be useful to divide the rich spectrum of convective clouds into 
four major types and to allow for their coexistence in time, a feature none of the current cumulus 
parametrisation schemes allows for.

Third, we showed that commonly used stability measures, such as CAPE, are a poor predictor of 
area-average convective behaviour, as they do not seem to influence the convective area fraction 
much, whilst having a measurable effect on (the less important) vertical velocity.

We made use of these findings in evaluating a promising new technique for parametrisation, that of 
stochastic area-fraction modelling, using the observations at Darwin (and Kwajalein; Peters et al., 
2013). In this study we demonstrated that an existing stochastic multi-cloud model can represent 
deep convection well if its predictors are vertical motion and mid-tropospheric humidity. We used 
the observations to change the model predictors and to retune its parameters to arrive at what will 
form the basis of our own new cumulus parametrisation. The findings of this study also enabled us 
to design a new closure for existing parametrisations, which is currently being tested in two GCMs.
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Abstract

Cumulus parameterizations in weather and climate models frequently apply mass-flux 

schemes in their description of tropical convection. Mass-flux constitutes the product of the 

fractional area covered by convection in a model grid box and the vertical velocity within 

cumulus clouds. However, vertical velocities are difficult to observe on GCM scales, making 

the evaluation of mass-flux schemes difficult. Here, we combine high temporal resolution 

observations of in-cloud vertical velocities derived from a pair of wind profilers over two 

wet-seasons at Darwin with physical properties of precipitating clouds (cloud top heights 

CTH, convective-stratiform classification) derived from the Darwin C-band polarimetric 

radar, to provide estimates of cumulus mass-flux and its constituents. The length of our data 

set allows for investigations of the contributions from different cumulus cloud types, namely 

congestus, deep and overshooting convection, to the overall mass-flux and of the influence of 

large-scale conditions on mass-flux. We found mass-flux was dominated by updrafts and, in 

particular, the updraft area fraction, with updraft vertical velocity playing a secondary role. 

The updraft vertical velocities peaked at above 10 km where both the updraft area fractions 

and air densities were small, resulting in a marginal effect on mass-flux values. Downdraft 

area fractions are much smaller and velocities are much weaker than those in updrafts. The 

area fraction responded strongly to changes in mid-level large-scale vertical motion and 

convective inhibition (CIN). In contrast, changes in the lower-tropospheric relative humidity 

and convective available potential energy (CAPE) strongly modulate in-cloud vertical 

velocities but have moderate impacts on area fractions. Although average mass-flux is found 

to increase with increasing CTH, it is the environmental conditions that seem to dictate the 

magnitude of mass-flux produced by convection through a combination of effects on area 

fraction and velocity.
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1. Introduction

Cumulus clouds play an important role in weather and climate by maintaining the large-scale 

atmospheric circulation (e.g., Fritsch 1975; Emanuel et al. 1994), transporting heat, moisture, 

and momentum in the atmosphere (Yanai et al. 1973) and producing a multitude of clouds 

(e.g., Liu and Zipser 2005). Recent studies indicate the existence of distinct types of cumulus 

clouds in the tropics (e.g., Johnson et al. 1999; Kumar et al. 2013a). These are shallow 

cumulus with cloud-top heights (CTH) near the trade inversion layer 1-3 km above the 

surface, cumulus congestus clouds with CTH in the mid-levels between 3 and 7 km, deep 

cumulonimbus clouds with CTH between 7 km and the base of the tropopause layer (~15 km 

for the topics), and overshooting convection with tops extending into the tropopause layer.

Individual cumulus clouds, particularly deep and overshooting modes, are generally thought 

to contain convective-scale (1-10 km) updraft and downdraft cores. Observations reveal that 

cumulus updraft and downdraft flow characteristics differ in several ways (e.g., Knupp and 

Cotton 1985; Sun et al. 1993). Updrafts are triggered by convergence of environmental 

airflow and typically start near the cloud base. They dominate in the growing and mature 

phases of cumulus clouds (Paluch and Knight 1984). Entrainment processes and water 

loading reduce updraft strength, while latent heating (e.g., Zipser 2003) and precipitation 

(e.g., Fierro et al. 2009; Heymsfield et al. 2010) enhance updraft strength. In contrast, 

downdrafts commonly occur in the mature and decaying phases of cumulus clouds. Mature 

phase downdrafts generally occur above freezing level and they are forced by convergence of 

air detrained from the tops of the updrafts with slower moving ambient air (Smull and Houze 

1987; Sun et al. 1993). While decay phase downdrafts typically occur below the freezing 

level and are forced by precipitation loading, evaporation and melting (May and 

Rajopadhyaya 1999).
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In General Circulation Models (GCMs) convection cannot be represented by modelling 

individual convective clouds. Instead, simple representations of the collective effects of a 

cumulus cloud ensemble existing within a model grid box are applied. Amongst the most 

widespread of these cumulus parameterization approaches is the so-called mass-flux 

approach (see Arakawa (2004) for an overview). Here, the vertical transport by the cloud 

ensemble is directly related to the mass-flux through the clouds, itself a product of the air 

density, fractional area covered by and the vertical velocity within cumulus updrafts and 

downdrafts. While conceptually simple, the evaluation of mass-flux approaches from 

observations has proven difficult, as measurements of the area fraction and vertical velocities 

within updrafts and downdrafts on the scale of a GCM grid box are difficult to ascertain. As a 

result, much of the evaluation of mass-flux schemes has relied on the use of Cloud Resolving 

Models (e.g., Randall et al. 2003; Derbyshire et al. 2004; Petch et al. 2014).

The main motivation of this study is to close this obvious observational gap and to 

demonstrate the potential of using existing observational data set for evaluating model mass- 

flux schemes. In particular, we wish to address the following two questions: 1) What is the 

observed vertical structure of convective mass-flux and which of its constituents (area or 

velocity) dominates the overall structure? 2) How sensitive is mass-flux to changes in the 

environmental conditions?

There are previous observational studies that determined direct in-cloud mass-fluxes. 

Numerous in situ aircraft penetrations conventionally provide the best insights in convective 

cloud dynamics (e.g., Byers and Braham 1949; Marwitz 1973; LeMone and Zipser 1980; 

Jorgensen and LeMone 1989; Anderson et al. 2005). However, to facilitate evaluation of 

mass-flux schemes in GCM, longer temporal length of continuous convective profiling are 

needed, such as those from advanced remote sensing techniques. Examples of long-term in
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cloud mass-flux observations include the works of May and Rajopadhyaya (1999) and 

Giangrande et al. (2013), where they used wind profiler retrievals from a tropical and 

subtropical site, respectively. Both studies found the peaks in updraft speeds and updraft core 

widths associated with deep convection occurred in upper levels, near 10 km altitude. In 

contrast, downdrafts peaked near the cloud base. In the tropics, updraft cores have smaller 

speeds, but are wider compared to the subtropics. Heymsfield et al. (2010), who investigated 

deep convection in both tropics and subtropics using airborne Doppler radars, also reported 

similar characteristics in vertical velocities for updrafts and downdrafts.

To extract mass-flux over a GCM size grid, we need direct measurements of vertical 

velocities inside every cumulus cloud enclosed by the model grid box. Most commonly, this 

is achieved using a dual-Doppler radar retrieval technique (e.g., Collis et al. 2013). However, 

the dual-Doppler approach requires at least two radars, with the accuracy of retrieved vertical 

velocity depending on the location within the radar domain. An alternative and more direct 

approach to determine vertical velocity is to use a wind profiler (May and Rajopadhyaya 

1999; Williams 2012). The current study will be using the latter approach using data 

collected in Darwin, Australia, for the two wet seasons (Nov-Apr) of 2005/2006 and 

2006/2007. The main difficulty in using wind profiler observations is they represent a single 

atmospheric column and temporal aggregation is required to represent larger spatial areas. By 

comparing the wind profiler cloud occurrences with volumetric radar data, we demonstrate 

that the statistical aggregation of single column profiler measurements over a longer period 

do depict convection comparable to that which will be observed in a GCM size grid box. We 

then proceed to determine both the fractional area and in-cloud velocities in convective 

updrafts and downdrafts using the profiler information and aggregate them into GCM- 

equivalent mass-flux profiles.
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Having determined profile of mass-flux from observations over a GCM size box, we evaluate 

the sensitivity of the vertical structure and strength of the mass-flux to environmental 

conditions (lower-troposphere (0-5 km) moisture, CAPE and CIN) and large-scale vertical 

motions. The Darwin wet season experiences a wide variety of convective systems due to the 

presence of two distinct convective regimes - active monsoon/oceanic conditions and build

up/break continental conditions (e.g., McBride and Frank 1999; Pope et al. 2009; Kumar et 

al. 2013b). This makes Darwin a good location to investigate the sensitivity of mass-flux to 

varying environmental conditions. Kumar et al. (2013b) showed that the main influence on 

convection in the Darwin area was the large-scale meteorological conditions. However, they 

also found underlying surface type also plays a role and as a result the effect of the surface 

type (coastal in this case) on the observed cumulus mass-flux characteristics cannot be 

ignored and will require a cautious approach when using these results for GCM evaluations.

Past studies have attempted similar sensitivity tests of mass-flux profiles (or the constituents 

of mass-flux) to the synoptic regimes and environmental conditions using both observations 

and simulations. Cifelli and Rutledge (1994; 1998) using wind profiler observed vertical 

velocity statistics found significant differences in the mean vertical motion between Darwin 

break and monsoon storms, with evidence of a bimodal peak in the vertical velocity profile 

for break cases, while the monsoon cases had a more uniform profile. Here we will extend 

these studies to more detail by contrasting the mass-flux and its constituents as a function of 

different large-scale environmental conditions. In particular, we will investigate the 

sensitivity of observed mass-flux to the low-level (0-5 km) tropospheric humidity and 

qualitatively compare the results to those of the idealized CRM simulations in Derbyshire et 

al. (2004). These simulations implied that in a dry environment, the mass-flux decreases 

monotonically with height above the cloud base leading to the formation of mostly shallow

6



154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

convection. Moist environments, on the other hand, led to deep convection with the peak 

mass-flux located at an elevated height in the mid-troposphere.

The paper is structured as follows. Section 2 will introduce the data sets used in the study. 

Section 3 describes the method to retrieve velocity and area profiles from wind profiler 

observations and establishes these single column observations when averaged in time provide 

a good proxy for mass-flux in a GCM size grid box. Section 4 presents the main results of 

the study, including the mean mass-flux profile and its variability, its sensitivity to 

environmental conditions, and the contributions from different cumulus types to the overall 

mass-flux. This is followed by a summary and discussion in Section 5.

2. Data

The main goal of this study is to provide observational estimates of convective mass-flux and 

its constituents at a scale relevant to the parameterisation of convection in GCMs as well as 

its sensitivity to environmental conditions. This requires the use of a variety of data sets. 

Specifically, we make use of a pair of wind profilers embedded in the field-of-view of 

scanning C-band dual-polarization radar (CPOL; Keenan et al. (1998)) and combine those 

with detailed estimates of the large-scale conditions provided by a variational analysis 

algorithm. Each of these data sources is explained in turn below.

2.1 The Darwin wind profiler radar pair

We use data collected by a 50- and 920-MHz wind profiler pair from two Darwin wet seasons 

(October 2005 - April 2006 and October 2006 - April 2007), recorded at 1-min resolution. 

The main advantage of using this data source is that wind profilers provide more accurate 

estimates of in-cloud vertical velocity than other remote sensing techniques, including dual- 

Doppler radar techniques (e.g., Collis et al. 2013). The disadvantage is that measurements are
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taken at a single point, but frequently in time, and a time-space conversion is required to 

make them useful to study the mass-flux behaviour on scales of a GCM grid box.

Here, vertical velocities are computed by applying the dual-frequency algorithm developed in 

Williams (2012) to the Doppler returns from the vertical beams of the 50- and 920-MHz wind 

profiler pair. The beam width of the vertical beam is approximately 0.2 km at 1 km height 

and increases to 2 km by 10 km height. The wind profiler pair was synchronized to begin 

their vertical beam observations every 1 min. The full description of the Darwin wind profiler 

setting can be found in Williams (2012).

The 50-MHz profiler simultaneously observes both Bragg scatter from ambient air, which 

provides a direct measurement of the vertical velocity of air parcels (wanted signal), and 

Rayleigh scatter from hydrometeors (unwanted signal). If signals from the two scattering 

processing are not properly separated, then the vertical air motion estimates will be biased 

downwards because of contamination from falling hydrometeors. The Williams (2012) 

method uses the spectra from the 920-MHz profiler, which are sensitive to mainly 

hydrometeor returns, to remove the Rayleigh echo returns from the 50-MHz profiler spectra. 

The filtered 50-MHz signal is then processed using the standard wind profiling processing 

technique described in Carter et al. (1995) and is based on the profiler online processing 

(POP) routine. The POP routine estimates the spectrum noise level, the spectrum signal start 

and end integration points, and the first three moments—power, mean reflectivity-weighted 

Doppler velocity and the spectrum width (equal to twice the spectrum standard deviation). 

The mean Doppler velocity corresponds to the vertical air motion. The accuracy of the 

vertical velocity retrieval by the Darwin wind profiler pair is estimated to be between 0.05 to

0.25 m s-1 using a Monte Carlo simulation design (Williams 2012). Further comparisons 

between the Darwin wind profiler and statistical techniques for the separation of terminal fall
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velocity and vertical air velocity also yielded an agreement to within 0.1-0.15 ms-1 (Protat 

and Williams 2011).

The profiler vertical velocity measurements are interpolated onto a vertical grid of 100 m 

resolution over an altitude range of 1.7 - 17 km. However, the highest quality data is thought 

to be limited to heights below 11 km (May and Rajopadhyaya 1999), because of the reduction 

in profiler sensitivity with height. Moreover, the spreading of the profiler beam leads to 

increase in velocity uncertainties with changing height. These uncertainties can be lowered 

by temporal averaging of the data.

Finally, the vertical velocity data from the wind profiler was further filtered to keep only 

measurements that were within cumulus clouds (see Section 3 form more detail). To achieve 

this, we need to know; i) if cumulus cloud occurred over the profiler, and ii) what is the CTH 

of these cumulus clouds. These two cloud properties are extracted from the CPOL radar, 

which contains the wind profilers within its field-of-view, roughly 24 km southwest from the 

radar location (see Fig. 1 of May et al. 2002). The CPOL measurements are introduced in 

more detail in the following subsection. Vertical velocities outside cumulus clouds are not 

considered here.

2.2 Darwin CPOL radar

We use measurements of reflectivity from the CPOL radar, which have been sampled onto a 

cubic grid with a horizontal grid size of 2.5 km x 2.5 km, and vertical resolution of 0.5 km. 

The horizontal scanning area of CPOL is approximately 70,000 km2, sufficient enough to 

contain few GCM size grid boxes.

Specifically, this study makes use of two physical characteristics of precipitating clouds 

derived from the CPOL reflectivities:
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i) We apply a convective vs. stratiform classification and use only those precipitating 

clouds identified as convective over the wind profiler to extract their mass-flux 

characteristics. Steiner algorithm (Steiner et al. 1995) is used to identify convective 

clouds at the CPOL pixel collocated with the wind profiler location. This algorithm has 

been successfully employed in previous studies (e.g., Kumar et al. 2013a-b; Penide et 

al. 2013a). As the CPOL radar takes 10 minutes to complete a full volume scan, all 1

min scans of the wind profiler falling into a 10-minute interval of convective cloud 

occurrence over the profiler are used as valid measurements of vertical velocity.

ii) As our focus is on convective mass-flux, we filter out any vertical velocity 

measurements taken in cirrus anvils and/or in clear air above active convective drafts. 

To do so we make use of the 0-dBZ echo top height (0-dBZ ETH) extracted from the 

CPOL reflectivity profile over the profiler site. Previous studies have shown that the 0- 

dBZ echo tops from C-band radar observations are usually within 1 km of cloud top 

heights estimated by millimetre cloud radars such as that on CloudSat (Casey et al. 

2012) or on the ground at Darwin (Kumar et al. 2013a). To ensure that we study 

continuous updrafts or downdrafts we require that there is vertically continuous 

reflectivity signal between the lowest CPOL level of 2.5 km height and the 0-dBZ echo 

top. We also apply the echo top height to classify the observed precipitating cumulus 

cell as either congestus, deep and overshooting (Kumar et al. 2013 a; 2014), allowing us 

to investigate the contribution to the total mass-flux from the various cumulus modes.

In summary, we use CPOL data for four purposes; 1) identify convective cloud incidences at 

the profiler site, 2) remove vertical velocity measurements taken in clear air above the 

convective towers, 3) separate the convective clouds into three cumulus modes and 4)

10



247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

validate area fractions derived from vertically pointing measurements against that obtained 

with volumetric data (more details in section 3).

2.3 Background environmental conditions

Apart from providing overall mass-flux estimates we also aim to examine the effects of the 

environmental conditions on the mass-flux behaviour. To do so requires reliable 

observational estimates of key environmental parameters. Here we use 6-hourly information 

on lower-tropospheric (0-5) km relative humidity (RH0-5), CAPE (Convective Available 

Potential Energy), CIN (Convective inhibition), and the large-scale vertical motion at 500 

hPa (co500). We use two main sources to derive these parameters.

The RH0-5 is extracted from the Darwin airport operational radiosoundings. We simply 

average the relative humidity measurements between 0 and 5 km. The remaining three 

parameters, CAPE, CIN and oj500 , are from a large-scale data set derived for the Darwin

region by Davies et al. (2013) by applying the variational budget analysis technique of Zhang 

and Lin (1997) using Numerical Weather Prediction (NWP) analysis data as “pseudo

radiosondes” and radar and satellite observations at the surface and top of the atmosphere, as 

suggested by Xie et al. (2004). By comparing their approach to results from the Tropical 

Warm Pool International Cloud Experiment field study (May et al. 2008), Davies et al. 

(2013) showed that this technique provides much better estimates of the large-scale state of 

the atmosphere than the direct use of analyses or reanalyses from NWP Centres.

The median over the two wet seasons for RH0-5, CAPE, CIN and rn500 , respectively, were

74%, 548 J kg-1, 43 J kg-1 and -0.38 hPa Hour-1. Note that a negative value for vertical 

motion represents upward motion. Likewise, the 90% interval (i.e., between 5 and 95% levels 

about the medians) for RH0-5 measurements were between 43 and 96%, for CAPE were
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between 0 and 1410 J kg-1, for CIN were 9 and 243 J kg-1, and were between -6.67 and

3.81 hPa Hour-1. These values set the range for which our results can likely be compared to 

GCMs.

3.0 Method

The main motivation of this study is to provide a statistical picture of mass-flux profiles using 

observations, which will then be useful to evaluate existing cumulus mass-flux scheme in 

models and assess the respective contributions of convective area fraction and vertical 

velocity to mass-flux. Ideally, this would require high resolution observations of vertical 

velocity both in time and space over a volume of 100 km x 100 km in the horizontal and 20 

km in the vertical (typical GCM grid box). No such measurements exist. As outlined in the 

introduction, this study makes use of vertical velocity retrievals from dual-frequency wind 

profiler observations. However, we will combine the wind profiler information with that from 

the scanning CPOL radar to investigate the representativeness of the single site measurements 

for convection over a GCM size grid.

While our overall goal is to provide a statistical study of several hundred cumulus cells 

occurring over time in a GCM box we first illustrate our methodology to derive vertical 

motion and area fraction profiles using a snapshot of a deep convective case observed 

concurrently by both radar types shown in Figure 1. Figure 1a shows the time-height cross

section of reflectivity from the CPOL radar at the profiler site, which is available in 10 min 

time intervals and 0.5 km resolution in height. The remaining panels of Fig. 1 show the wind 

profiler measurements. The profiler observations are available at a much finer resolution of 1 

min in time and 0.1 km in height. The red circles in Fig. 1a depict the 0-dBz ETH locations at 

those times where the Steiner classification finds a convective cloud over the profiler site 

(also indicated by the black line).
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The differences between the CPOL reflectivities (Fig. 1a) and the 50-MHz (Fig. 1b) and 920- 

MHz (Fig. 1c) wind profiler reflectivities are found to be quite large, with the CPOL 

reflectivities in better agreement with the 920-MHz wind profiler reflectivities than with the 

50-MHz wind profiler reflectivities. This is not surprising, as the 50-MHz wind profiler 

reflectivities are a mixture of echoes from clear air and hydrometeors, while CPOL is only 

sensitive to hydrometeors. The differences between CPOL and the 920-MHz reflectivities 

likely reflect the high temporal evolution of the convective event within the sampling 

resolution of CPOL (10 minutes), which is captured by the 920-MHz observations at 1- 

minute resolution.

Examinations of CPOL radar loops for the event described in Fig. 1 revealed that the 

overshooting convective system sampled in Figure 1 was embedded in widespread stratiform 

clouds and the whole system was moving across the profiler from the southwest. The time- 

height sections of vertical velocity (Fig. 1d) indicate that the storm was present over the 

profiler location for approximately one hour. The regions with vertical motion exceeding 1.5 

m s-1 (strong updrafts) and below -1.5 m s-1 (strong downdrafts) are shown by the black 

contours. The upward motions first occur at the low-levels (3 km) around 0500 LT, which 

appear to gradually shift to mid- and upper level. From between 0520-0550 LT, the updrafts 

remain constantly strong between 5 and 15 km. After 0550 LT, there is a secondary increase 

in upward motions at around 7 km. By this time, the main convective cell had passed over the 

profiler and the profiler is now sampling the stratiform anvils of the storm as indicated by the 

absence of convective clouds in Steiner classification applied to CPOL (Fig 1a).

While present in Figure 1, it is evident that downdrafts occur much less frequently and with 

much weaker magnitudes than updrafts. This is well known and has been illustrated in other 

studies using radar profiler measurements (e.g., see May et al. 2002; Heymsfield et al. 2010;
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Giangrande et al. 2013). The observed regions of downdrafts, although short-lived (so 

smaller spatial width), are consistent with the different downdraft types known to exist (e.g., 

Knupp and Cotton 1985; Sun et al. 1993). Downdrafts forming at low levels, which are more 

frequent than downdrafts in upper levels, are likely to be associated with precipitation 

loading, evaporation and melting and can be seen throughout the active storm phase. Several 

downdrafts can be found above the freezing level, such as the observed strongest downdraft 

around 0540 LT between 7 and 10 km and short-lived downdraft preceding the main updraft 

shaft at 0500 LT. These upper-level downdrafts can occur both ahead and behind the 

convective updrafts and their physical cause are suggested to be quite distinct from those 

downdrafts that occur in lower-levels (Sun et al. 1993). These are thought to be air-forced, 

initiated by convergence between air detrained from the tops of the updrafts and slower 

moving ambient air (Smull and Houze 1987). There is tendency that these upper-level 

downdrafts are positively buoyant, whereas the lower level downdrafts are negatively 

buoyant (Sun et al. 1993). It is clear from the case study illustrated in Figure 1 that vertical 

motions vary significantly over the storm lifetime, with cloud height and also between 

convective and stratiform structures. We do not attempt to study the evolution of vertical 

velocities as a function of storm lifetime because the profiler may be sampling only a section 

of individual storms.

To be of use for model evaluation, the derived mass-flux profiles must be representative for 

an area the size of a GCM grid box. To account for all cumulus clouds over the model size 

grid requires computation of convective area fraction. The area fraction is typically defined as 

the ratio of the size of all convective cells in the domain over the total domain size. Scanning 

radars, such as CPOL, are most suitable to calculate area fraction using this spatially 

sampling approach. Since we wish to compute mass-flux from a vertically pointing wind 

profiler, which takes measurements over a column with a small cross-sectional area, the area
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fraction cannot be directly estimated using these measurements. Instead, convective area 

fraction is determined as the ratio of the time CPOL identifies convection above the profiler 

over the total sampling time. We use a long total sampling time of two wet season with the 

rationale that the convection, at a point, derived from this long time series is a good sample of 

that occurring in the entire domain over the same sampling time.

To evaluate this approach, the area fractions were derived as described above using both the 

scanning CPOL and vertically pointing wind profiler, respectively (Fig. 2). Recall that only 

convective cloud columns from CPOL are used to calculate both the spatial statistics from 

CPOL and the temporal statistics at the profiler site. The convective area fraction from CPOL 

was calculated for various circular regions of radius ranging from 10 to 100 km centred on 

the wind profiler site. The CPOL area fractions for three selected domain sizes shown in Fig. 

2 are remarkably similar. This suggests that convection experienced at the profiler site is a 

good approximation for convection experienced in a GCM size grid box centred on the wind 

profiler location. Importantly, the convective area fraction derived from the wind profiler for 

the whole time period (solid curve, |v| > 0 m s-1) shows a similar structure as the area fraction

from CPOL in the lower and middle troposphere but drops off more rapidly above 8 km. The 

CPOL radar takes 10 mins to complete each volumetric scan, so when present it is assumed 

that the convection will last for the entire 10 mins. The example discussed in Fig. 1 shows 

that the temporal variability is high within 10 minutes, with large differences observed 

between CPOL and 920-MHz reflectivities. In contrast, the wind profiler samples every 1 

min, so even though a 10-min window is classified as convective by CPOL, the individual ten 

1-min profiles from the wind profiler does not always contain valid vertical velocity 

measurements. Inevitable instrumental problems may have further contributed to this. Also, 

at higher altitude, the profiler area fraction begins to drop relatively rapidly compared to the
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CPOL fractions due to the drop in profiler sensitivity with altitude. The CPOL sensitivity 

does not change much with height.

We further evaluate the area fraction estimates from the profiler by applying consecutively 

larger thresholds to the vertical velocity measurements. The thresholds of |v| > 0.5, 1.0 and

1.5 m s-1 are chosen as they have been employed by previous investigators to identify 

updraft/downdraft cores with profiler observations (e.g., LeMone and Zipser 1980; May et al. 

2002; Giangrande et al. 2013). Increasing the velocity selection threshold leads to larger 

difference in area fractions from the two radars, particularly below the freezing level. Thus, 

to achieve convective area fractions with the profiler approach that is closest to the area 

fractions obtained with the CPOL radar, all vertical velocity data points (i.e. \v\ > 0 m s-1)

from the identified convective intervals will be used from hereafter. This will likely result in 

values of mean vertical velocity that are much lower than those reported in previous studies, 

which generally used velocity thresholds to remove the low velocity values from their 

analysis.

Equipped with estimates of area fraction and in-cloud vertical velocity from the profiler 

measurements we can now calculate the mass-flux Mc (kg s-1 m-2). Here, Mc is defined

using the traditional GCM-type definition for mass-flux by considering all cumulus cloud 

occurring over a large area:

where: p is the air density (kg m-3);

ou , is the area fraction of updraft cores in the grid box and is a dimensionless 

quantity. The au can be further subdivided into the numbers of cores and the width of cores;
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vu is the mean velocity of updraft (m s-1) ;

and ad and vd is the area fraction and mean velocity of the downdraft cores, 

respectively.

The vertical profile of air density is computed using standard textbook formulae, with input 

temperature and pressure fields extracted from the Darwin radiosoundings. The mean profiles 

of all remaining variables in Equation (1) are computed using the profiler vertical velocity 

data from the convective intervals. We found that unlike the area fraction, the mean mass- 

flux profile was largely independent of the different velocity threshold (result not shown). 

This is because larger vertical velocity thresholds lead to smaller area fractions (Fig. 2) but 

much larger mean vertical velocities, with the two effects compensating and leading to 

similar mean mass-flux values.

4. Results

4.1 Overall characteristics of convective mass-flux and its constituents

a) Mean mass-flux profile

Precipitating convective clouds were identified by the CPOL radar over the profiler site for a 

total of 283 10-minute scans during the two wet-seasons analysed here. This corresponds to a 

convective area fraction near the surface of approximately 0.5 %. Note that this represents an 

average including many instances with no convection present in the domain for significant 

periods of time. It is therefore not comparable to convective area fractions found in previous 

studies (e.g., Davies et al. 2013), which reach values up to 10 % but reflect instantaneous 

conditions rather than long temporal averages. Going back to the overall time average, Table 

1 summaries the contributions to the total convective area fraction from congestus (CTH < 7
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km), deep (CTH between 7 and 15 km) and overshooting clouds (CTH> 15). It also shows 

the variability of convective cloud frequency in different environment and large-scale 

terciles. The results shown in Table 1 are discussed further in sections 4.2 and 4.3.

Mean profile of the overall mass-flux as well as upward and downward mass-flux profiles are 

shown in Fig. 3. Here, the lower x-axis represents the overall mean over the entire two 

seasons including the very frequent times (99.5%) of no convective clouds present over the 

profiler site. To provide at least a rough estimate of the values of mass-flux “when present”, a 

value more useful to modellers, we average mass-fluxes over 3-hour windows and discard all 

windows with no presence of convective clouds (~93 %). These results are indicated by the 

upper x-axis in Figure 3. A 3-hour window translates to a grid size of roughly 60 km; 

calculations based on 5 m s-1 average propagating speed of convective cells (Kumar et al. 

2013b). Note that removing zeros will not affect the profile shape but only its magnitude. The 

overall mean mass-flux (thick curve) increases steadily from near cloud base to peak at 6 km 

just above the freezing level, and thereafter decreases gradually with height. At all height 

levels, except at very high altitudes, mass-flux totals are dominated by updrafts (thin curve). 

Importantly, these observational results also validate those reported in many studies using 

cloud-resolving models (e.g., Derbyshire et al. 2004; Kuang and Bretherton 2006) and are 

also in good agreement with previous attempts to retrieve mass-fluxes from profiler 

observations (e.g., May and Rajopadhyaya 1999).

b) Mean area fraction and vertical velocity

Equation 1 indicates that updraft and downdraft mass-fluxes are affected by three 

fundamental factors; the number of cores, the size of the cores and the vertical velocity in the 

cores. The product of the number and size terms divided by domain size gives the area
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fraction. We now examine the characteristics of these three fundamental factors with the aim 

to understand the relative contributions of these factors to the mass-flux totals.

We begin by examining the variations in convective area fraction (thick solid line in Fig. 4a) 

divided into upward area fraction (thin solid line) and downward area fraction (dashed line). 

Once again we show the overall period averages with the lower x-axis and those for 3-hour 

windows that contain convection with the upper x-axis. At low levels, updraft and downdraft 

area fractions are nearly equal. The updraft fraction remains more or less constant from near 

the surface to 8 km and then decreases steadily at higher levels. Starting from the top the 

small downdraft fraction increases slightly to just above the freezing level, where a 

significant increase in downdraft fraction occurs, indicating the potential importance of this 

level in downdraft formation. In Fig. 4c and 4d, the upward and downward area fractions 

(shaded) are subdivided into the number of cores (solid lines) and their size (dashed line). 

The core width is measured in minutes, and represents the number of consecutive 1-min 

periods with vertical motion > 0 m s-1 for an updraft core. Downdraft cores are defined 

analogously using downward motion.

The mean core spatial width associated with upward motion (dashed line in Fig. 4c) increases 

gradually from an average of ~2 min at cloud base to a maximum average width of ~6 min at 

a height of 8 km. Assuming a propagation speed of 5 m s-1, this translates into a width of 

~600 m near cloud base and ~1.8 km at mid-levels. Above 8 km the updraft core width 

decreases sharply. In contrast, the core frequency associated with updrafts is highest near 

cloud base, decreasing monotonically with increasing height. The net effect of this pattern in 

updraft width and frequency is that the upward area fraction (shaded region in Fig. 4c) is 

highest and constant between cloud base and 8 km. Downdraft number increases downwards 

with a particularly sharp increase near the freezing level. The average width of downdraft
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cores is ~3 min and remains fairly constant with height. Once again assuming a 5 m s 

propagation speed, this translates into a size of ~900 m.

The mean vertical velocity (thick black curve in Fig. 4b) increases gradually with height and 

peaks at ~4 m s-1 at 12 km. This mean profile is the sum of the velocities in updrafts (thin 

black curve in Fig. 4b) and downdrafts (dashed black curve) weighted by the fractional area 

of updraft and downdraft cores. The updraft velocity evolution with height is very similar to 

the overall mean with a drop between 2 and 3 km followed by a steady increase to values of 

~5 m s-1 at high levels. In contrasts, the downdrafts show much weaker velocities of ~ 1 m s-1 

which are almost constant throughout the cloud layer with slightly large values near the tops 

of very deep clouds.

The mean vertical velocity values shown in Fig. 4b are much lower than those reported 

elsewhere (e.g., May and Rajopadhyaya 1999; Heymsfield et al. 2010; Giangrande et al. 

2013). This is because we do not apply any threshold for the inclusion of the observed in

cloud velocities in our sample of convective drafts, whose existence is instead determined by 

the CPOL radar measurements over the profiler site (see section 2.2). To enable a more 

meaningful comparison with previous studies, Fig. 4b shows not only the averages, but also 

the full 2D histogram of vertical velocity distributions. The 90th percentile of updraft and 

downdraft velocities (white curves in Fig. 4b) reached up to 15 m s-1 and -6 m s-1, 

respectively. The profile of the 90th percentile velocities are consistent, both in magnitude and 

in vertical structure, with the values for land-based deep convection reported in Heymsfield et 

al. (2010), who only examined the profiles of the maximum updraft and downdraft velocity. 

May and Rajopadhyaya (1999) and Giangrande et al. (2013) removed velocities between ±1.5 

m s-1 from their analysis, but the strongest velocity profiles in those studies compare well 

with our results. In-situ aircraft penetrations results reported in LeMone and Zipser (1980)
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showed 90th percentile values of around 5 m s-1 in middle levels. These lower values are 

likely due to the more continental character of the convection sampled here as well as a 

possible undersampling of strong convection by aircrafts due to safety concerns.

Next, we reconcile the vertical structure of the mass-flux (Fig. 3) with area fraction (Fig. 4a, 

Fig.4c-4d) and vertical velocity (Fig. 4b). As it is difficult to mentally sum all contributing 

factors to the total mass-flux we compare the updraft and downdraft terms separately. The 

increase in updraft mass-flux between 2 and 5 km is largely a reflection of the vertical 

velocity increase combined with a small increase in area fraction. The large reduction in 

updraft mass-flux above 8 km is due to the strong decrease in area fraction, which is slightly 

offset by an increase in vertical velocity. Note that the decrease in density with height also 

affects the mass-flux profile, such that constant velocity and area fraction would still imply a 

reduction of mass-flux with height. As the downdraft velocities are small and relatively 

constant with height, the strong increase in downdraft mass-flux below 6 km (Fig. 3) is to 

first order driven by the corresponding increase in downdraft area fraction.

Overall, perhaps with the exception of increase in updraft mass-flux at low levels, the total 

mass-flux is governed to first order by the area fraction. If confirmed at other locations, this 

would provide the opportunity of estimating the first order characteristics of mass-flux from 

area fraction alone, a quantity that is much more easily measured using instruments both on 

the ground and in space than vertical motions.

4.2 Sensitivity of mass-flux to environmental and large-scale conditions

Of key relevance to cumulus parameterisation is the connection of mass-flux with the 

environmental conditions in which the convection is embedded. In this section, we examine 

the relationship between RH0-5, CAPE, CIN and rn500 with the updraft mass-flux, upward
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area fraction and upward velocity. As the downdraft contribution to overall mass-flux is 

relatively small we focus on updraft behaviour only.

For the analysis shown in this section, the environmental conditions are grouped into terciles 

of their respective probability density functions. This ensures that the wind profiler sampling 

time in each tercile is identical. Note though that the amount of convective clouds observed in 

each tercile can still vary significantly depending on how favourable the conditions in each 

tercile are for convection. The tercile boundaries for each environmental variable, the amount 

of time with which convective clouds occur in each tercile and their sub-division into 

congestus, deep and overshooting modes are shown in Table 1.

a) Effect of 0-5 km Relative Humidity (RH0-5)

A moist environment, which is represented by the upper tercile of RH0-5, is thought to be 

important to support the formation of deep convection over its shallower counterparts (e g., 

Redelsperger et al. 2002; Derbyshire et al. 2004; Takemi and Liu 2004). The results shown in 

top panels of Fig. 5 reveal several interesting differences between dry (solid curves, RH0. 

5<68%) and moist (dashed curve, RH0-5>82 %) condition updraft mass-flux (left), area 

fraction (middle) and velocity (right). The updraft mass-flux (Fig. 5a) in dry conditions 

exhibits a sharp peak at the height of 6 km with a strong drop-off in mass-flux above that 

level, while in moist conditions a smoother and deeper mass-flux profile is evident. The 

behaviour in dry conditions likely indicates the prevalence of shallower clouds (see Section 

4.3). The updraft area fraction is much smaller in dry conditions, indicative of a less frequent 

occurrence of convection (see also Table 1). As seen before for the overall means (Fig. 3 and 

4), area fraction increases from cloud base to mid-levels, followed by a decrease higher up. 

Vertical velocity increases with height in both states of RH0-5. Perhaps surprisingly, the 

velocities are stronger in dry conditions than in moist conditions, partly compensating the
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lower mass-flux strength induced by the lower area fractions in that state. The higher 

velocities can be understood by the need to produce stronger updrafts to penetrate through the 

dry atmosphere, while in moist conditions weaker updrafts occur more frequently and can 

penetrate higher into the moist troposphere more easily.

b) Effect of CAPE

Next we study the relationship of mass-flux to CAPE (Fig. 5d-f). The differences in the 

upper (> 747 J kg-1; dashed) and lower tercile (<365 J kg-1; solid) CAPE conditions are much 

smaller than those for RH0-5. The mass-flux is slightly weaker in low CAPE conditions and it 

reaches higher levels in high CAPE conditions. Somewhat paradoxically, low CAPE 

conditions give rise to higher area factions. This is consistent with the findings of Kumar et 

al. (2013b) who showed that low CAPE conditions are associated with more frequent but 

shallower convective clouds over Darwin. The air parcels in the convective clouds are less 

buoyant in low CAPE conditions, leading to weaker updraft speed (Fig. 5f) and often 

shallower cloud. In contrast, in high CAPE condition, convection is much deeper because the 

air parcels have greater growth momentum. While less frequent in high CAPE conditions, 

convection that occurs exhibits significantly larger vertical velocities. The net effect is that 

the updraft mass-flux at all heights, except near cloud base, is higher in high CAPE 

conditions compared to low CAPE conditions.

c) Effect of CIN

In general, when the convective inhibition (CIN) of the atmosphere is low, more convective 

cloud systems are likely to form. This is confirmed by our analysis of mass-flux in the lowest 

(< 30 J kg-1; solid) and highest (> 62 J kg-1; dashed) CIN terciles (Fig. 5g-i). There is a large 

difference in mass-flux between high and low CIN conditions, which is entirely caused by
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differences in area fraction, which is synonymous with the frequency of occurrence of 

convection. The vertical velocity profiles are largely unaffected by the state of CIN, 

indicating that CIN is more likely a predictor for the existence of convection than its strength.

d) Effect of large-scale upward motion at 500 hPa ( oj500 )

Similar to CIN, large-scale vertical motion is strongly related to the existence of convection 

(Fig. 5j-l). Almost all convective events occur in the “lower” tercile, which comprises of 

large-scale upward motion (rn500 <-1.82 hPa Hour-1, solid), while the upper tercile of large-

scale downward motion (rn500 >1.24 hPa Hour-1, dashed) is more or less void of convection.

The very small fraction (7%) of convective systems that do form when there is large-scale 

downward motion tend to have very high upward vertical velocities in the upper level, 

although the poor sampling in this class prevents us from drawing any firm conclusions.

e) Summary of effects of environmental conditions on mass-flux

In its entirety Fig. 5 provides an important set of lessons about convective behaviour that can 

potentially be used in the construction of cumulus parameterisations. It is clear that different 

environmental parameters, many of which have been used in constructing elements of 

existing cumulus schemes, have different effects on the mass-flux because they affect its two 

constituents, area and velocity, in different ways. Large-scale vertical motion and CIN are 

strongly related to area fraction. These conditions strongly influence the existence and 

prevalence of convection and through the area fraction exerts a strong control on the 

convective mass-flux. In addition, RH0-5 is strongly related to vertical motion in the clouds, 

although it is likely that there is no direct causality in that relationship. Instead, we speculate 

that the higher velocities in dry conditions are a result of weaker updrafts not being able to 

penetrate the dry atmosphere. Changes in CAPE have the least impact on the convective area
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fraction but instead show a strong relationship with cloud growth dynamics. In low CAPE 

conditions, the convective systems tend to be moderately more frequent but with weak 

updraft speeds while high CAPE conditions support stronger vertical motions, leading to 

slightly higher overall mass-fluxes in high CAPE conditions. In summary, there is some 

evidence from Fig. 5, that the constituents of mass-flux are responding differently to different 

environmental conditions, making it difficult to relate mass-flux itself to only one of them. 

This may indicate a potential benefit from treating area and velocity separately in future 

cumulus parameterisation approaches.

4.3 Contributions of each cumulus cloud type to the total mass-flux in different 

environmental conditions

Having investigated the overall mass-flux properties and their relationship to the state of the 

environment the convection is embedded in, we now investigate the contributions of 

individual precipitating cumulus cloud modes, namely congestus, deep and overshooting 

clouds, to the overall cumulus mass-flux. The three cloud modes are defined by tracking 

convective cells and identifying their 0-dBZ ETH (Kumar et al. 2013a, 2014). Cells that 

never exceed 7 km are classified as congestus, those that exceed 15 km are classified as 

overshooting and the rest as deep convection. Kumar et al. (2013 a) noted that these three 

modes have remarkably different rainfall and drop size characteristics, and thus, it will be 

worthwhile to examine the mass-flux characteristics of these cumulus modes separately as 

well as quantify their overall effect.

The breakdown of the total time for which the three cumulus convective modes are found at 

the profiler site is shown in Table 1. We find that the most frequent type of convection 

sampled by the profiler is deep convection, with just over half of all cases in this category. 

The other two types contribute roughly one quarter each to the overall sample.
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The mean profile of upward mass-flux associated with the three cumulus modes and the 

constituents of these mass-flux profiles are displayed in Fig. 6. Given its high frequency the 

highest contribution to the upward mass-flux in the lower 8 km of the troposphere is from the 

deep mode. The mean vertical velocity intensity of this mode shows intermediate strength 

updraft velocities of 2 to 4 m s-1 with a bimodal structure with peaks at 6 km and above 10 

km. The congestus mode contributes about one quarter of the area fraction below 4 km, but 

due to its relatively weak upward motion on the order of only 1 m s-1 makes a relatively small 

contribution to the overall mass-flux. The overshooting mode contributes around one quarter 

to the area fraction below 10 km and dominates the area fraction above 10 km. It shows the 

strongest vertical motion of the three modes with average values increasing from around 4 m 

s-1 at 5 km to 6 m s-1 above 10 km.

As the mass-fluxes were shown to be sensitive to the environmental conditions we next 

investigate how the relative contribution from the three cloud modes may change with the 

state of the environment. It was evident from Fig. 5 that oj500 and CIN mostly determined the

existence of convection, while RH0-5 and CAPE had a more direct influence on its structure. 

We therefore focus on the latter two parameters and contrast the contribution of the three 

cumulus modes to mass-flux in changing RH0-5 and CAPE conditions. These results are 

shown in Fig. 7

The total time of each cumulus mode during the different environmental conditions are given 

in Table 1. The most notable change in total time of individual cumulus modes with respect 

to different environment conditions occurs for the overshooting mode when sorted with 

respect to CAPE. While constant in overall terms (Fig. 7h and k), overshooting cloud forms 

17% of all convection in low CAPE conditions but 37% in high CAPE conditions. This is a 

result of the occurrence of both the congestus and deep mode decreasing as CAPE increases
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(Fig. 7 h and k). As expected, the vertical velocities for the deep and in particular for the 

overshooting mode increase with CAPE (Fig. 7i and l), leading to the overall larger mass- 

fluxes in high CAPE conditions discussed earlier (Fig. 5). We now see that this increase is 

predominantly driven by an increase in the velocities in the overshooting mode.

Changes in RH0-5 (Fig. 7a-f) also strongly affect the overall mix of the occurrence of 

convective modes. In dry conditions, 60% of the time convection is present is associated with 

either the congestus or overshooting mode. In contrast, in moist conditions the deep mode 

becomes the dominant mode occurring 54% of the time. The area of all three convective 

modes increases significantly in moist conditions (Fig. 7b and e), while the velocities in the 

deep modes decrease by about half with little change in the congestus mode. This once again 

highlights that deep convection of both types is stronger but less frequent in dry conditions.

4.4 Variability in mass-flux measurements

The results shown so far have focused entirely on the mean behaviour of mass-flux and its 

constituents, although some indication of variability is revealed by the breakdown into cloud 

modes and by the 2D histogram of vertical velocity distributions (Fig. 4b). In this section we 

aim to investigate the variability of mass-flux at the typical scale of a GCM grid box across 

different events, as this is more readily comparable to what the mass-flux parameterization 

produces. To enable this investigation we need to compute mass-flux over some discrete time 

window rather than averaging over long periods of time. This once again requires finding a 

compromise between representing the size of a GCM grid box and the results being affected 

by the evolution of the convective systems over the time window. We choose a 3-hour time 

averaging window (~60 km), but we will also contrast our results to those found using a 

longer 6-hour window (~100 km). As most time-windows will have no convection at all in 

them, we focus our investigation on the 95th, 99th and 99.5th percentile of the respective
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distribution functions. Figure 8 shows these percentiles for area fraction (top) and mass-flux 

(bottom) for both the 3-hourly (green) and 6-hourly (red) time windows. For comparison, we 

also include the area fractions measured by CPOL in a 50km radius around the profiler site in 

Figure 8a.

While the length of the time window does not affect the mean profile of area fractions, it does 

affect the variability. Shorter time windows will produce larger variability because there will 

be increases in incidence of both very large and very small area fraction. Of the 2300 (1150) 

available 3-hourly (6-hourly) time blocks, 93% (88%) had a convective area fraction of 0. As 

expected, the upper percentiles of the area fraction distribution yields larger (smaller) values 

for the 3-hourly (6-hourly) window ranging from 0.05 (0.03) for the 95th percentile to 0.1 

(0.08) for the 99th percentile. The 6-hourly window is in closer agreement with the CPOL 

area fractions.

The upper percentiles of the mass-flux distribution associated with the 3- and 6-hourly 

windows are shown in Fig. 8b. This figure is in the same format as Fig. 8a, except the 98th, 

not the 95th percentile is shown, as the 95th percentile mass-fluxes were too small to be seen 

clearly. The 98th percentile mass-flux has the vertical structure as the mean updraft and 

downdraft mass-flux profile (Fig. 3), with peak updraft and downdraft mass-flux just above 

the freezing level and close to cloud base, respectively. At higher percentiles very large 

updraft mass-flux values occur at higher altitude and are linked with large vertical velocity 

events occurring in deep and overshooting convection.

5. Summary and Discussion

The aim of this study was to derive convective mass-fluxes and their constituents on the scale 

of a GCM grid box from wind profiler observations and thereby to provide a zeroth-order
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observational reference for the evaluation of cumulus mass-flux schemes. The analysis 

conducted characterised the updrafts and downdrafts of precipitating convective clouds with 

continuous dual-frequency wind profiler observations taken over two wet-seasons at Darwin, 

Australia. We found the net mass-flux over the entire measurement period to be positive 

(upwards) between 2 and 14 km height with a peak at ~6 km. The downdraft cumulus mass- 

flux was found to be strongest close to cloud base associated with precipitation loading, with 

values of less than half of that seen in updrafts.

The separation of mass-flux into velocity and area fraction, the latter itself a product of core 

width and frequency, showed the mass-flux was most strongly regulated by the area fraction 

compared to the vertical velocity. While of secondary importance to overall mass-flux 

magnitude, the vertical velocity intensities revealed some crucial properties related to the 

cloud dynamics. The convective updraft velocity exhibited a dominant peak in upper-levels 

(>10 km), and a small secondary peak in lower level at 6 km particularly associated with the 

deep convective cloud mode. The observed structures in vertical velocity intensities 

associated with the deep convection (Fig. 4b and Fig. 6) matched well with the updraft 

profiles reported in previous studies (e.g., May and Rajopadhyaya 1999; Giangrande et al. 

2013). The overshooting convective mode had more intense vertical velocity magnitudes than 

the deep mode at all height levels, increasing monotonically with height.

By separating the mass-flux into contributions from different precipitating cumulus types, we 

demonstrated that wide variety of vertical velocity intensities and cumulus sizes contribute to 

the mean mass-flux profile. This was shown to be due to a complex interplay of the 

frequency, size and strength of cumulus clouds with the environment. The analysis revealed 

that ~80% of the cumulus population over the two seasons formed when the large-scale 

vertical motions were strongly upwards (<-1.82 hPa Hour-1) and/or when CIN was small
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(<30 J kg-1). Both low-level relative humidity (RH0-5) and CAPE had a moderate effect on the 

existence of cumulus clouds but these parameters had a significant impact on the vertical 

velocity and hence the growth dynamics of clouds. Higher mean velocities were mainly 

associated with deeper convection that formed in dry (RH0-5 < 68%) and high CAPE 

conditions (Fig. 5 and Fig. 7). While the latter is easily explained by energetic arguments, the 

former is a less obvious result. We interpret this result as driven by the effects of entrainment 

of dry air into the clouds limiting the vertical growth of clouds (e.g., Redelsperger et al. 

2002). The very few deep cumulus clouds that do succeed to grow in the unfavourable dry 

conditions need very strong vertical growth momentum and hence display very large vertical 

velocities.

The downdraft vertical velocities and frequencies were significantly less than those for 

updrafts at all height levels, except at cloud base and near cloud top, where they were similar. 

This is consistent with the conceptual picture that a convective cloud is generally made up of 

one or more dominant updraft cores, which are partly compensated by small and short-lived 

downdrafts driven by precipitation loading in lower levels and air-forced processes in upper 

levels (see Fig 1).

Our study has extended previous investigations of May and Rajopadhyaya (1999) for the 

tropical Darwin region and Giangrande et al. (2013) for mid-latitude central plain of United 

States by examining not only the overall mass-flux but its constituents at scales relevant to 

GCM evaluation. Unlike these studies, we accepted all values of vertical motion in our 

statistical analysis rather than setting a threshold value. This led to better agreement with 

convective area fraction profile shapes derived from the CPOL scanning radar (Fig 2), likely 

making our sample more representative. The mean updraft and downdraft vertical velocity 

profiles found here are nevertheless in good agreement with earlier studies (e.g., Heymsfield
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et al. 2010). The sensitivity of mass-flux to the environmental moisture conditions is in broad 

agreement with the modelling study of Derbyshire et al. (2004). Both the observational and 

model results show that during the moist conditions, the mass-flux has a broad peak at mid

levels, while in dry conditions, the mass-flux decreases monotonically with height albeit this 

decrease starts at higher levels in the observations (4 km) than in the model simulations 

(cloud base).

Despite the availability of two wet seasons of observations, perhaps the biggest limitation of 

our study remains the relatively small sample size. This once again highlights the difficulty of 

supporting the development of cumulus parameterizations with the relevant measurements. 

An obvious way to alleviate this problem is to use data from scanning radar systems. Such 

systems can provide frequent measurements of convective area fractions at GCM grid box 

scale (e.g., Davies et al. 2013) but the challenge is to derive long time series of reliable 

retrievals of in-cloud vertical velocity from them. This will be the next step of this work. We 

will use the computationally-efficient dual-Doppler retrieval technique from Protat and 

Zawadzki (1999), which will be evaluated first using the wind profiler vertical velocities as in 

Collis et al. (2013), but applied to a much longer dataset over Darwin. Our finding that mass- 

flux profiles tend to be dominated by the convective area fraction and that in-cloud velocities 

vary with cloud depth may also enable us to derive mass-flux estimates from scanning 

systems by statistically modelling, rather than measuring, vertical motion and combining 

those with more easily observed area fractions. This will be the subject of a further study that 

will extend the first useful foray into supporting cumulus parameterization development more 

directly with long-term observations presented in this paper.

References

31



741 Anderson, N. F., C. A. Grainger, and J. L. Stith, 2005: Characteristics of strong updrafts in

742 precipitation systems over the central tropical Pacific Ocean and in the Amazon. J. Appl.

743 Meteor., 44, 731-738.

744 Arakawa, A., 2004: The Cumulus Parameterization Problem: Past, Present, and Future. J. of

745 Climate, 17, 2493-2525.

746 Byers, H. R., and R. R. Braham, 1949: The Thunderstorm—Report of the Thunderstorm

747 Project. U.S. Weather Bureau, 287 pp.

748 Casey, S. P. F., E. J. Fetzer, and B. H. Kahn, 2012: Revised identification of tropical oceanic

749 cumulus congestus as viewed by CloudSat. Atmos. Chem. Phys, 12, 1587-1595.

750 Carter, D. A., K. S. Gage, W. L. Ecklund, W. M. Angevine, P. E. Johnston, A. C. Riddle, J.

751 Wilson, and C. R. Williams, 1995: Developments in UHF lower tropospheric wind profiling

752 at NOAA’s Aeronomy Laboratory. Radio Sci., 30, 977-1001.

753 Cifelli, R., and S. A. Rutledge, 1994: Vertical motion structure in Maritime Continent

754 mesoscale convective systems: Results from a 50-MHz profiler. J. Atmos. Sci., 51, 2631

755 2652.

756 Cifelli, R., and S. A. Rutledge, 1998: Vertical motion, diabatic heating, and rainfall

757 characteristics in N. Australia convective systems. Quart. J. Roy. Meteor. Soc., 124, 1133

758 1162.

759 Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of storm updraft velocities

760 from TWP-ICE including verification with profiling measurements, J. Appl. Meteorol.

761 Climatol., 52, 1909-1922.

32



762 Davies, L., C. Jakob, P. T. May, V. V. Kumar, and S. Xie, 2013: Relationships between the

763 large-scale atmosphere and the small-scale state for Darwin, Australia. J. Geophys. Res., 118,

764 11534-11545.

765 Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and

766 P. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J.

767 Roy. Meteor. Soc., 130, 3055-3080.

768 Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in

769 convecting atmospheres. Quart. J. Royal Meteor. Soc, 120, 1111-1143.

770 Fierro, A. O., J. M. Simpson, M. A. LeMone, J. M. Straka, and B. F. Smull, 2009: On how

771 hot towers fuel the Hadley cell: An observational and modelling study of line-organized

772 convection in the equatorial trough from TOGA COARE. J. Atmos. Sci., 66, 2730-2746.

773 Fritsch, J. M., 1975: Cumulus dynamics: Local compensating subsidence and its implications

774 for cumulus parameterization, Pure Appl. Geophys., 113, 851-867.

775 Giangrande S. E., S. Collis, J. Straka, A. Protat, C. Williams, and S. Krueger, 2013: A

776 summary of convective-core vertical velocity properties using ARM UHF wind profilers in

777 Oklahoma, J. Appl. Meteor. Climatol., 52, 2278-2295.

778 Heymsfield, G.M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of

779 deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler

780 radar. J. Atmos. Sci., 67, 285-308.

781 Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert,

782 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397-2418.

33



783 Jorgensen, D. P, E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense

784 hurricanes. J. Atmos. Sci., 42, 839-856.

785 Keenan, T. D , K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The

786 BMRC/NCAR C-band polarimetric (CPOL) radar system. J. Atmos. Oceanic Technol, 15,

787 871-886.

788 Kuang Z., and Bretherton C. S., 2006: A Mass-Flux Scheme View of a High-Resolution

789 Simulation of a Transition from Shallow to Deep Cumulus Convection. J. Atmos. Sci., 63,

790 1895-1909.

791 Kumar, V. V., C. Jakob, A. Protat, P. T. May, and L. Davies, 2013a: The four cumulus cloud

792 modes and their progression during rainfall events: A C-band polarimetric radar perspective.

793 J. Geophys. Res., 118, 8375-8389.

794 Kumar, V. V., A. Protat, P. T. May, C. Jakob, G. Penide, S. Kumar, and L. Davies, 2013b:

795 On the effects of large-scale environment and surface conditions on convective cloud

796 characteristics over Darwin, Australia. Mon. Wea. Rev., 141, 1358-1374.

797 Kumar V.V., Protat, A., Jakob, C , and May P. T., 2014: On atmospheric regulation of the

798 growth of moderate to deep cumulonimbus in a tropical environment. J. Atmos. Sci., 71,

799 1105-1120.

800 Knupp K. R, and W. R. Cotton, 1985: Convective cloud downdraft structure' an interpretive

801 survey, Rev. of Geophy. 23, 183-215.

802 LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE.

803 Part I: Diameter, intensity and mass-flux. J. Atmos. Sci., 37, 2444-2457.

34



804 Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical

805 tropopause. J. Geophys. Res, 110, D23104, doi:10.1029/2005JD006063.

806 Marwitz, J. D., 1973: Trajectories within the weak echo regions of hailstorms. J. Appl.

807 Meteor., 12, 1174-1182.

808 May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity characteristics of deep

809 convection over Darwin, Australia. Mon. Wea. Rev., 127, 1056-1071.

810 May, P. T., A. R. Jameson, T. D. Keenan, P. E. Johnston, and C. Lucas, 2002: Combined

811 wind profiler/polarimetric radar studies of the vertical motion and microphysical

812 characteristics of tropical sea breeze thunderstorms. Mon. Wea. Rev., 130, 2228-2239.

813 May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G.

814 Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor.

815 Soc., 89, 629-645.

816 Paluch, I. R., and C. A. Knight, 1984: Mixing and evolution of cloud droplet size spectra in a

817 vigorous continental cumulus, J. Atmos. Sci., 41, 1801-1815.

818 Penide, G., V. V. Kumar, A. Protat, and P. T. May, 2013: Statistics of drop size distribution

819 parameters and rain rates for stratiform and convective precipitation during the North

820 Australian wet season. Mon Wea. Rev., 141, 3222-3237.

821 Petch, J., A. Hill, L. Davies, A. Fridlind, C. Jakob, Y. Lin, S. Xie, and P. Zhu, 2014:

822 Evaluation of intercomparisons of four different types of models simulating TWP-ICE Quart.

823 J. Roy. Meteorol. Soc., 140, 826-837.

35



824 Pope, M., C. Jakob, and M. Reeder, 2009: Regimes of the North Australian Wet Season. J.

825 Climate, 22, 6699-6715.

826 Protat, A., and C. R. Williams, 2011: The accuracy of radar estimates of ice terminal fall

827 speed from vertically pointing Doppler radar measurements. J. Appl. Meteor. Climatol., 50,

828 2120-2138.

829 Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-

830 dimensional wind field from multiple-Doppler bistatic radar network data. J. Atmos. Oceanic

831 Technol., 16, 432-449.

832 Randall, D. A., and Coauthors, 2003: Confronting models with data - The GEWEX Cloud

833 Systems Study. Bull. Amer. Meteor. Soc., 84, 455-469.

834 Redelsperger, J. -L., D. B. Parsons, and F. Guichard, 2002: Recovery processes and factors

835 limiting cloud-top height following the arrival of a dry intrusion observed during TOGA

836 COARE. J. Atmos. Sci., 59, 2438-2457.

837 Roode, S. R.D., A.P. Siebesma, H. J. J. Jonker and Y. D. Voogd, 2012: Parameterization of

838 the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev, 140, 2424-2436.

839 Smull, B. F., and R. A. Houze Jr., 1987: Dual-Doppler radar analysis of a midlatitude squall

840 line with a trailing region of stratiform rain. J. Atmos. Sci., 44, 2128-2148.

841 Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-

842 dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34,

843 1978-2007.

36



844 Sun, J., S. Braun, M. I. Biggerstaff, R. G. Fovell, and R. A. Houze Jr., 1993: Warm Upper-

845 Level Downdrafts Associated with a Squall Line. Mon. Wea. Rev., 121, 2919-2927.

846 Takemi, T., O. Hirayama, and C. Liu, 2004: Factors responsible for the vertical development

847 of tropical oceanic cumulus convection. Geophys. Res. Lett., 31, L11109, doi:10.1029/

848 2004GL020225.

849 Williams, C. R., 2012: Vertical air motion retrieved from dual-frequency profiler

850 observations. J. Atmos. Oceanic Technol., 29, 1471-1480.

851 Xie, S., R. T. Cederwall, and M. Zhang, 2004: Developing long-term single-column

852 model/cloud system - resolving model forcing data using numerical weather prediction

853 products constrained by surface and top of the atmosphere observations. J. Geophys. Res.,

854 109, DOI: 10.1029/2003JD004045.

855 Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of bulk properties of tropical cloud

856 clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611-627.

857 Zhang, M. and J. Lin, 1997: Constrained variational analysis of sounding data based on

858 column-integrated budgets of mass, heat, moisture, and momentum: Approach and

859 application to ARM measurements. J. Atmos. Sci, 54, 1503-1524.

860 Zipser, E. J., 2003: Some view on ‘‘hot towers’’ after 50 years of tropical field programs and

861 two years of TRMM data. Cloud Systems, Hurricanes, and the TRMM. Meteor. Monogr., No.

862 51, Amer. Meteor. Soc., 49-58.

863

864

37



865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

Acknowledgements

This work has been supported by the US Department of Energy ARM Program (DE-FG02- 

09ER64742). We would like to acknowledge the contributions of Brad Atkinson and Michael 

Whimpey in supporting the Darwin observatory and data management. V. Kumar thanks Ed 

Zipser and two other referees for reviewing this paper.

38



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

0448 0500 0512 0524 0536 0548 0600
Local time (hrs)

Figure 1: Overshooting convection captured by the wind profiler around 0500 LT on 21st
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991
992 Table 1: The two wet-season occurrence frequency of congestus, deep and over-shooting

993 clouds, and separately for the four environmental conditions

994

Environmental Conditions Total of the 1-min wind profiler scans

Congestus Deep (7 km Over- All cumulus

(CTH < 7 < CTH < 15 shooting clouds

km) km) (CTH > 15

km)

0-5 km RH <68% 145 196 148 489

0-5 km RH 68%-82% 228 557 184 969

0-5 km RH >82% 292 741 337 1370

CAPE <365 J kg-1 251 620 184 1055

CAPE 365 - 747 J kg-1 305 540 222 1067

CAPE >747 J kg-1 109 334 263 706

CIN <30 J kg-1 527 1030 512 2069

CIN 30 - 62 J kg-1 78 346 127 551

CIN >62 J kg-1 60 118 30 208

m500 <-1.82 hPa Hour-1 485 1232 649 2366

m500 -1.82 to 1.24 hPa Hour-1 109 176 10 295

co500 >1.24 hPa Hour-1 71 86 10 167

All 665 1494 669 2828

995

996
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abstract

Some cumulus clouds with tops between 3 and 7 km (Cu3km-7km) remain in this height region throughout 
their lifetime (congestus) while others develop into deeper clouds (cumulonimbus). This study describes two 
techniques to identify the congestus and cumulonimbus cloud types using data from scanning weather radar 
and identifies the atmospheric conditions that regulate these two modes. A two-wet-season cumulus cloud 
database of the Darwin C-band polarimetric radar is analyzed and the two modes are identified by examining 
the 0-dBZ cloud-top height (CTH) of the Cu3km-7km cells over a sequence of radar scans. It is found that 
—26% of the classified Cu3km-7km population grow into cumulonimbus clouds. The cumulonimbus cells ex
hibit reflectivities, rain rates, and drop sizes larger than the congestus cells. The occurrence frequency of 
cumulonimbus cells peak in the afternoon at —1500 local time—a few hours after the peak in congestus cells. 
The analysis of Darwin International Airport radiosonde profiles associated with the two types of cells 
shows no noticeable difference in the thermal stability rates, but a significant difference in midtropospheric 
(5-10 km) relative humidity. Moister conditions are found in the hours preceding the cumulonimbus cells 
when compared with the congestus cells. Using a moisture budget dataset derived for the Darwin region, it is 
shown that the existence of cumulonimbus cells, and hence deep convection, is mainly determined by the 
presence of the midtroposphere large-scale upward motion and not merely by the presence of congestus 
clouds prior to deep convection. This contradicts the thermodynamic viewpoint that the midtroposphere 
moistening prior to deep convection is solely due to the preceding cumulus congestus cells.
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1. Introduction
Johnson et al. (1999) and Kumar et al. (2013a) pro

vided observational evidence that convective clouds in 
the tropics could be grouped into three main modes: 
shallow cumulus with cloud-top heights (CTH, by which 
we mean 0-dBZ maximum top height determined with 
a C-band radar) near the trade inversion layer, 1-2 km 
above the surface; midlevel cumulus clouds with a CTH

© 2014 American Meteorological Society
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near the 0°C freezing level; and deep clouds with a CTH 
near the tropopause. These cumulus modes have vastly 
different impacts on the water and energy budgets, as 
well as the circulation (e.g., Tao et al. 2003; Arakawa 
2004). So to improve the parameterization of convective 
and cloud processes in the tropics, we need to better 
understand the characteristics of each of these cumulus 
modes, atmospheric factors that determine the type of 
cumulus mode that will occur, and how these cumulus 
modes may be linked with each other (e.g., Jensen and 
Del Genio 2006; Jakob 2010). This study will focus on 
the cumulus clouds with a CTH between 3 and 7 km 
(Cu3km-7km), which has been hypothesized to pre
condition the atmosphere for deep convection by moist
ening it (e.g., Sherwood and Wahrlich 1999; Derbyshire 
et al. 2004; Mapes et al. 2006; Holloway and Neelin 2009; 
Nuijens et al. 2009; Powell and Houze 2013). A separate 
viewpoint is that the tropospheric moistening preceding 
deep convection is caused by large-scale dynamics (e.g., 
Hohenegger and Stevens 2013; Kumar et al. 2013a). In 
short, the fundamental question we want to address is as 
follows: What causes some Cu3km-7km cells to stay shallow 
throughout their lifetime, and promotes others to grow 
into deep convective cells?

In this study, the observed Cu3km-7km cells are sepa
rated into two modes: those that cease their growth in 
the lower stable layer near the freezing level, referred to 
here as congestus (Cg) cells, and those that continue to 
ascend to greater altitudes to become deep convective 
cells at a later time, referred to here as cumulonimbus 
(Cb) cells. This was achieved by examining the CTH of 
the Cu3km-7km cells in a sequence of the Darwin C-band 
polarimetric (CPOL; Keenan et al. 1998) radar scans. 
We hypothesize that combining the Cg and Cb modes 
into the single Cu3km-7km category could be a reason for 
the limited success in understanding the possible con
nection between the congestus cells and deep convec
tion. Luo et al. (2009) separated the Cg (which they 
referred to as ‘‘terminal’’) and Cb (referred to as 
‘‘transient’’) modes using estimates of the convective 
buoyancy of clouds from satellite observations and 
Numerical Weather Prediction (NWP) analyses and 
found that approximately 30%-40% of the cells are Cb 
while the rest are Cg. However, Casey et al. (2012) noted 
that the method proposed by Luo et al. (2009) may be 
missing up to 70% of the cells compared to the criteria of 
cloud-top heights lying between 3 and 9 km, where there 
is continuous radar echo from the near ground to the 
cloud top (Jensen and Del Genio 2006). The Luo 
method detects fewer cells compared to cells detected 
using cloud radar (e.g., Jensen and Del Genio 2006; 
Casey et al. 2012) because Luo’s method was applied to 
convective cells only. The current study also focuses on

convective cells and uses new height boundaries, as pro
posed in Kumar et al. (2013a), to identify the various cu
mulus modes in the tropics. Based on an objective analysis 
of the behavior of radar reflectivity as a function of CTH in 
the Darwin region, they found a major transition of the 
microphysical behavior of cells once they reached a CTH of 
7 km. Thus, a 7-km height threshold is used here to separate 
shallow cells (aka Cu3km-7km) from deep convection.

A major motivation of this paper is not only to separate 
the Cu3km-7km cells’ population into Cg and Cb modes, but 
also to identify the atmospheric processes that regulate 
the occurrence of these nongrowing and growing cumulus 
clouds. Several studies (e.g., Lin and Johnson 1996; 
Kemball-Cook and Weare 2001; Redelsperger et al. 2002; 
Derbyshire et al. 2004; Kikuchi and Takayabu 2004; Takemi 
et al. 2004; Jensen and Del Genio 2006; Nuijens et al. 2009) 
have noted that presence of dry air at midtroposphere can 
effectively limit the vertical extent of convection. Thus, if 
there is sufficient moistening preceding a Cu3km-7km cell, 
then it increases the likelihood for it to develop into a deep 
Cb tower. Early studies hypothesized that the source of the 
midtropospheric moistening is due to congestus cells (e.g., 
Sherwood and Wahrlich 1999; Mapes et al. 2006; Holloway 
and Neelin 2009). However, a recent study has shown that 
the congestus cells alone would require too long a time to 
produce significant moistening of the midtroposphere, 
which would seem to rule out the potential role of the 
Cu3km-7km moistening as a dominant process for the tran
sition to deep convection (e.g., Hohenegger and Stevens 
2013). Their findings suggested that dynamical processes, 
potentially related to the heating from the Cu3km-7km cells, 
are likely an important ingredient in promoting the transi
tion to deep convection. Another possible mechanism that 
has been found to promote the transition from shallow 
cumulus to deep convection over midlatitude continental 
surface types is greater low-level humidity, stronger large- 
scale updrafts in the midtroposphere, and boundary layer 
inhomogeneity (e.g., Zhang and Klein 2010).

This paper is organized along two major sections. The 
first section outlines and evaluates two new approaches 
to identify the Cg and Cb cells using CTH statistics from 
the scanning mode of the Darwin CPOL radar obser
vations. The difference in microphysical rainfall prop
erties of the Cg and Cb modes is also fully characterized. 
The second section highlights the difference in atmo
spheric conditions preceding the Cg and Cb modes using 
both observational and derived datasets.

2. Distinguishing congestus and cumulonimbus 
cells in radar data

This study uses a two-wet-season dataset (October 2005- 
April 2006 and October 2006-April 2007) of convective
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Fig. 1. The shaded gray circular region is the Darwin CPOL sampling domain. It is 100 km in 
radius from the radar location. The location of the operational Darwin airport radiosonde 
station and radiosonde stations that only operated during the TWP-ICE period are represented 
by a black triangle and black circles, respectively. The enclosed pentagon represents the do
main for the large-scale dataset used in this study (see text for more details).

cells occurring within a radius of 100 km from the 
Darwin CPOL radar (12.25°S, 131.04°E; see Fig. 1). A 
convective cell is defined as consisting of one or more 
adjoining convective pixels (2.5 km X 2.5 km) using the 
2.5-km radar constant altitude plan position indicators 
(CAPPI) data. The convective pixels are identified using 
the “Steiner" convective-stratiform classification algo
rithm (Steiner et al. 1995). For each convective cell, the 
maximum height reached by the 0-dBZ echoes above 
the cell is computed using reflectivity profiles to provide 
an estimate of the CTH. Note there must be continuous 
reflectivity fields in the vertical direction from the base 
of the cell at 2.5-km CAPPI level to the CTH (also see 
Kumar et al. 2013a,b). In most cases, the true cloud-top 
height will extend higher than the 0-dBZ CTH from 
a C-band radar. The difference between the C-band 
0-dBZ top height and CloudSat CTH has been found to 
often be within 1 km (Casey et al. 2012). Similarly, 
Kumar et al. (2013a) noticed good matches between 
0-dBZ cloud tops from the C-band and near —20-dBZ 
cloud tops from a millimeter-wavelength cloud radar 
(MMCR; Moran et al. 1998). Having retrieved one CTH 
per cell, we also calculate a single mean reflectivity, rain

rate, drop size diameter (D0) and number concentration 
of small hydrometers (Nw) for each convective cell. 
These mean values were calculated using the radar 
pixels at the 2.5-km level that are bounded by the hori
zontal cross-sectional area of the cell.

Descriptions of the algorithm used to retrieve drop 
size distributions (DSD) parameters and rain rates from 
the CPOL observations are given in Bringi et al. (2009). 
The algorithm assumes a normalized gamma DSD form 
(Testud et al. 2001) described by the median drop size 
diameter (D0, mm) and the “generalized" intercept 
parameter (Nw). For simplicity, Nw can be thought as the 
number concentration of small hydrometers and has 
units of meters cubed per millimeter (the number con
centration of hydrometeors per unit diameter). The 
parameter Nw is the same as the intercept parameter 
of an exponential DSD with the same D0 and liquid 
water content as the gamma DSD. This algorithm uses 
a multiparameter approach to take advantage of the 
complementary information contained in the polar
ized backscattered signals. First, D0 is retrieved from 
the differential reflectivity using polynomial fits [e.g., 
D0 = /(Z*)], then Nw is estimated using a power law of



1108 JOURNAL OF THE ATMOSPHERIC SCIENCES Volume 71

the form Zh/Nw = c(D0)d, and finally the rain rate is 
estimated using either a function of the form R = f (Kdp), 
R = f (Zh, Zdr), or R = f(Zh), depending on various 
thresholds and a decision tree (Bringi et al. 2009).

The Darwin CPOL radar operates at wavelength 
of 5.3 cm, with a minimum detectable reflectivity of 
-1.25 dBZ up to a radar range of 100 km. At this 
wavelength and radial distance, the radar will not be 
able to detect clouds made of drops of sizes less than 
0.5 mm. Such clouds, which normally are classified as 
nonprecipitating clouds, are typically studied using mil
limeter wavelength cloud radars. Kumar et al. (2013a) 
have carried out a comparison between the cloud occur
rence frequency detected by the Darwin CPOL and the 
Darwin MMCR radars. They found that the CPOL radar 
has a detection efficiency of 30% compared to MMCR 
for shallow cumulus clouds (CTH < 3 km; e.g., Zhang 
and Klein 2010) increasing to a 64% detection efficiency 
when the CTH is between 3 and 7 km (also known as 
Cu3km-7km) . Since CPOL misses most of the shallow cu
mulus cells, statistics associated with shallow cumulus 
category were removed from the subsequent analysis.

Over the two-wet-season study interval, CPOL 
detected a total of 207 871 cells with a CTH between 3 
and 7 km—the Cu3km-7km cells. A 7-km CTH threshold 
is used instead of the often-used 9-km cutoff (e.g., 
Jensen and Del Genio 2006) because convective cell 
reflectivities and the DSD parameters exhibit clear mi
crophysical differences when the CTH of the cells are 
less than 7 km compared to those that extended beyond 
7 km (e.g., Takemi et al. 2004; Kumar et al. 2013a). 
Having identified the Cu3km-7km cells, the next task is to 
distinguish cells that will continue to rise above 
7 km during their lifetime (Cb cells) from those that will 
not (Cg cells). Here, we employ two different methods.

Method 1 is a ‘‘nearest neighbor’’ approach. It em
ploys the same logic as that used in the automated 
Thunderstorm Identification Tracking Analysis and 
Nowcasting (TITAN) radar analysis tool (Dixon and 
Wiener 1993). Note the current TITAN settings of 
a minimum volume requirement of 30 km3 and the re
flectivity threshold of 35 dBZ are fine tuned to identify 
deep convection. The tool has not been optimized to 
detect the less intense Cu3km-7km cells, and so cannot be 
used directly for our purpose. We therefore only use the 
TITAN cell speed and direction products to assist in 
establishing the potential search area to find the nearest 
neighbor for the test Cu3km-7km cells in the subsequent 
scan. The TITAN tool tracks the cloud cells in space at 
discrete times (every 10 min in this case) and so the ve
locity vectors of cloud cells through their lifetime were 
determined from relative motion of the cells. During 
times when the TITAN tool does not detect any cell

track, the cell speed and direction is determined through 
an interpolation process of neighboring TITAN cell 
statistics.

The search area used in method 1 has a rectangular 
layout as highlighted in Fig. 2. This rectangle is posi
tioned in such a way that the enclosed test Cu3km-7km cell 
is 5 km from its nearest two edges. The overall length of 
the north-south edge of the search rectangle is equal to 
twice the product of the meridional component of the 
10-min median TITAN cell speed and the time to next 
scan (10 min) plus the offset of 5 km. The length of the 
east-west edge is calculated in the same way except 
using the zonal component of the TITAN cell speed. 
Note that some of the choices to establish the search 
area are somewhat arbitrary and have been selected as 
a compromise between having a sensible search area 
(not too large) while keeping a good chance of tracking 
the cell over its entire lifetime. Sensitivity studies 
changing those settings produced similar results to the 
ones used here.

Figure 2 shows the three different scenarios that could 
occur in the search area. Cell A is flagged as Cg cell since 
its subsequent stage has lower CTH compared to the 
previous scan. Cell B highlights the scenario where its 
nearest neighbor has a higher CTH compared to pre
vious scan. In such situations, the Cu3km-7km cell is 
tracked over several subsequent scans until its CTH has 
been found to have either exceeded 7 km (thus flagged 
as Cb cell) or its CTH never exceeded 7 km throughout 
its lifetime (flagged as Cg cell). Cell C had no neighbor 
but is still flagged as Cg cell because there is a possibility 
that the test cell decayed by the time the subsequent 
radar scan was completed.

Method 2 is based on a probabilistic approach. The 
search area is defined in the same way as in method 1, 
except we examine up to six subsequent radar scans 
before making a decision. Here a cell is flagged as Cg cell 
if over the next six subsequent radar scans, at least 80% 
of the convective cells have CTH < 9 km; that is, the test 
Cu3km-7km cell has a high probability of never growing 
into a deep convective cell. Similarly, a cell is flagged as 
Cb when at least 50% of the convective cells over the 
next three radar scans are deep convective cells (CTH > 
9 km); that is, the test Cu3km-7km has a high probability 
of growing further. We deliberately used a higher 
probability threshold of 80% for Cg cells and a moder
ate one of 50% for Cb cells because at any given time 
one would expect that there will be more Cg cells than 
deep convective ones. Other settings, such as height 
thresholds of 7-9 km, CTH occurrence ratios of 20%- 
90%, as well as different area multiplication factors (2-6 
times) and lead times (20-120 min), have been tested 
and the results are similar.
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Current CAPPI at 2.5 km Subsequent CAPPI at 2.5

Fig. 2. Schematics for identification of congestus (Cg) and cumulonimbus (Cb) cells using the nearest neighbor 
approach (method 1). (left) Current radar CAPPI snapshot at 2.5-krn level with three Cu3km_7km cells (CuA. CuB, 
Cuc, smaller circles with crosses) and one deep cell (large circle with cross and gray filling), (right) Subsequent 
CAPPI snapshot after a scanning time of 10 min; the gray shaded rectangle is the search area (see text) and the large 
dark crosses represent the initial location of the cumulus cells. The nearest neighbor of CuA has a lower CTH than 
that of CuA; thus, it is an example of a Cg cell. The nearest neighbor of CuB has a higher CTH and represents the 
scenario where CuB can be classified as Cg or Cb depending on maximum CTH reached by this cell as it is tracked 
further through its entire lifetime. The cell Cuc has no appropriate neighbor and is considered a Cg cell.

Figure 3 shows the overall results for all Cu3km_7km 
cells described above. The shaded gray region is the 
probability distribution function (PDF) for reflectivity 
at the 2.5-km CAPPI level associated with all the 207 871 
Cu3km_7km cells in the sample. The solid and dashed 
curves represent the PDFs associated with Cg and Cb 
cells, respectively. The black and red curves are using 
data points detected by the two different methods dis
cussed above. The bars plotted along the PDF curve in 
this figure represent the scatter in reflectivity PDFs 
arising from the sensitivity to parameter settings in the 
search algorithms. Note the current choices for each 
method are determined through a trial and error ap
proach such that the difference between the Cg and Cb 
cells are most clear.

Both methods show that the Cg cells (solid lines) have 
a higher probability of having low reflectivity values 
compared to the overall distribution (shaded gray re
gion). Similarly, the Cb cells (dashed lines) have a higher 
probability of having larger reflectivities. The modal 
reflectivity bin for the Cg cells is 35 dBZ with both 
methods and that of Cb cells is around 40 dBZ, with 
a slightly broader distribution in method 1.

Out of the more than 200 000 Cu3km_7km cells detected 
over the two wet seasons, method 1 flagged 82% as Cg 
cells and 18% as Cb cells. Fifty-one percent of the Cg 
cells had no subsequent nearest neighbor, indicating that 
they were very short lived. Note that because of the

radar wavelength, we only detect the precipitating stage 
of the cells. Removing these short-lived cells from the 
analysis leads to a drop in reflectivity probabilities, 
particularly in the lower reflectivity bins (<25 dBZ; Fig. 
3). Method 2 identifies 51% of the Cu3km_7km population

Method 1

Method 2

30 35 40
Reflectivity at 2.5 km (dBZ)

Fig. 3. Distribution of reflectivity using a bin size of 1 dBZ for the 
Cg (solid line) and Cb (dotted line) cells. The reflectivity is taken at 
the 2.5-km CAPPI level, where one mean reflectivity value is ob
tained per convective cell. The gray shaded region represents the 
PDF obtained using all Cu3km_7km cells (top height < 7 km). The 
black and red curves are the PDF values obtained using two dif
ferent methods of classifying the Cg and Cb cells. The bars plotted 
along each curve represent the sensitivity to parameter settings in 
each method (see text for more details).
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as Cg and 18% as Cb. The remaining 31% of the Cu3knl_7km 
cells are not classified because the ratio of the number of 
Cu3km_7km to deep convective cells is within the un
certain range of 50%-80%, showing a limitation of this 
methodology.

The excellent agreement in the frequency of occur
rence of Cb cells indicates that both methods are robust 
and not unduly sensitive to the thresholds used in each 
method. However, the Cg cell occurrence counts do 
show a significant discrepancy. The extra 30% Cg cells 
identified using method 1 are predominantly of the 
short-lived type (cell C in Fig. 2). Visual inspection of 
radar loops around several of the Cg cells that were 
classified by method 1 but not with method 2 confirms 
that these cells often occur in a single image only, hence 
indicating a lifetime of 10 min or less. To avoid biasing 
our results to those short-lived cells, we will only use 
data from the more conservative method 2 for the rest 
of our discussion. The 18:51 ratio between Cb and Cg 
found using method 2—that is, for every Cb cell there 
will be 2.8 Cg cells—is comparable with the 30:70 ratio 
(1 Cb is to 2.3 Cg cells) found in Luo et al. (2009). This 
provides a good test since the cell identification method 
used in this paper and the method used in Luo et al. 
(2009) are both looking at only genuine convective cells.

3. The basic properties of the congestus and 
cumulonimbus cells

The rainfall and cloud properties over the Darwin 
region have been shown to be strongly regulated by the 
large-scale environment (May et al. 2012; Kumar et al. 
2013b; Penide et al. 2013). Pope et al. (2009) identified 
an effective way to divide the synoptic conditions in 
Darwin into five physically meaningful states. We first 
use this synoptic classification to study the effect of these 
large-scale states on the Cg:Cb ratio. The ratios of Cb to 
Cg cells were found to be largely insensitive to the large- 
scale regimes, with ratios of 25:75 during all five large- 
scale regimes. Overall, the deep westerly (DW) regime, 
which is associated with active monsoon conditions, 
contributed the most to the overall two season Cg and 
Cb cell totals. The second highest contribution was from 
the moist easterly (ME) regime. This regime is associ
ated with the typical monsoon break conditions, and 
was the most frequent (157 out of 293 days) of all the 
regimes. The combined contribution from the remain
ing three regimes to the Cu3km_7km totals was less than 
15%. Hence, these three regimes will not be discussed 
further.

Figure 4 shows the normalized diurnal variations of 
the relative occurrence of the Cg (solid lines) and Cb 
(dashed lines) modes for all cases and separately for the

:ongestus

0.6 —
DW Cg

All Cb DW Cb ME Cb

E 0.4-
* Cumulonimbus

Local time (hrs)

Fig. 4. Diurnal variations of the relative Cg (solid line) and Cb 
(dashed line) cell counts over the two-wet-season study interval for 
the DW (crosses) and ME (diamonds) regimes. A bin size of 1 h in 
local time is used here. In each local time bin, the occurrence fre
quency of the Cg and Cb cell are normalized such that their sum is 
always 1.

DW (crosses, 59 days) and ME (diamonds, 157 days) 
regimes. The overall pattern of the Cu3km_7km pop
ulation shows a late morning to midday peak in all re
gimes (not shown). In the ME regime, this peak is 
contributed by a relative increase in Cg cells around 
midday, followed by relative increase in Cb cells in the 
afternoon and evening hours. The afternoon peak of Cb 
cells is indicative of the well-known often sea-breeze- 
driven diurnal cycle of deep convection in Darwin dur
ing monsoon buildup and break conditions. In contrast, 
the diurnal variability in the DW regime is weak. As 
the DW regime represents monsoon conditions, this is 
likely the result of the presence of continuous cloud 
cover reducing daytime heating and thus suppressing 
sea-breeze-driven convection (e.g., May et al. 2012; 
Kumar et al. 2013b).

We now investigate some of the rainfall properties of 
the Cg and Cb modes making use of the polarimetric 
capabilities of the CPOL radar (e.g., Zrnic and Ryzhkov 
1999; Bringi et al. 2009). Figure 5 shows the distribution 
of the reflectivity, rain rate, median raindrop volume 
diameter (D0), and the number concentration of small 
hydrometers (Nw) as function of CTH using box-whisker 
plots. The CTH varies from 3 to 7 km in steps of 0.5 km. 
Recall that each Cu3km_7km cell is assigned a single mean 
rainfall parameter, obtained using radar data from the 
2.5-km CAPPI level bounded by the horizontal cross- 
section area of the cell. In Fig. 5, the boxes represent the 
25th and 75th percentiles with the thick gray box in
dicating all Cu3km_7km cells, the thin black box the Cg 
cells, and the thin striped box the Cb cells. The curves 
represent the median value for each Cu3km_7km cloud-top 
group, and the whiskers are the 5th and 95th percentiles
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Fig. 5. Box-whisker plots in 0.5 km steps of CTH of (top) (left) reflectivity and (right) median drop size di
ameter (D0): and (bottom) (left) rain rate and (right) number concentration of small hydrometers [logl0(M. )]■ As in 
Fig. 3, a single mean value is obtained per cloud cell. The thick gray box (25th and 75th percentiles) with whiskers (5th 
and 95th percentiles) represents results using all the data. The thin black rectangle shows results for the Cg cells only. 
Similarly, the striped rectangles show the results for the Cb cells. The curves (solid gray for all cells; solid black for Cg; 
dashed for Cb) are the median values for each CTH level.

associated with all the Cu3km_7km cells. The whiskers for 
the Cg and Cb cells are omitted.

For the Cu3km_7km populations as the whole, the me
dian reflectivity at 2.5 km shifts toward higher values 
(top panel) as the CTH increases while the distribution 
gets narrower. A positive correlation between near 
ground cell reflectivity and maximum height reached by 
cloud cell is typical since larger reflectivities generally 
correspond to stronger growth momentum (e.g., Zipser 
and Lutz 1994). In accordance with these results, the cell 
rain rate increases with CTH. The median raindrop size 
D0 is almost invariant with CTH showing a very small 
increase as the cloud depth increases. The concentration 
of small hydrometeors increases by almost an order of 
magnitude as the cells deepen.

The behavior of the cloud properties shows some 
distinct differences between the Cg and Cb classes. 
Overall, for any given CTH the Cg cells have smaller 
mean reflectivity, lower rain rate, and smaller drop size 
at 2.5-km height than the Cb cells with the same CTH. 
The median reflectivity, rain rate, and drop size in the 
Cb cells exceed that of the Cg cells by 5 dBZ, 3 mm h-1, 
and 0.18 mm, respectively. However, the Nw, parameter 
exhibited no obvious difference between the Cg and Cb 
cells, except in the shallowest Cu3km_7km cells with CTH 
below 4 km.

Despite the large mean (or median) differences be
tween the Cg and Cb modes, there is a large overlap of 
the distributions of the rainfall properties. In other 
words, the radar parameters here cannot be used easily
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to predict how an emerging Cu3km-7km cell will develop 
and in which class it will ultimately fall. However, it 
appears that the 25th percentile reflectivity level in the 
Cb cells is often very close to the overall median of all 
the Cu3km-7km cells. The largest separation between the 
Cg and Cb distribution occur when the CTH is small. We 
also investigated potential differences in the vertical 
profile of reflectivity lapse rate (e.g., Zipser and Lutz 
1994) for the Cg and Cb modes (not shown). As before, 
the differences in this parameter did not serve as a con
fident proxy for separating the Cg and Cb cells. We 
hypothesize that the updraft speeds in the convective 
core, which can be obtained using Doppler radar tech
niques, may be a better criterion to distinguish between 
the Cg and Cb cells. Presumably, the Cb cells are likely 
to have a stronger updraft speed since they grow into 
deep convective clouds at a later time.

4. Atmospheric factors affecting the growth of 
convective cloud cells

The goal of this section is to identify key atmospheric 
processes that may determine the growth or suppression 
of Cu3km-7km cells and hence regulate if clouds will fall 
into the Cg or Cb classes defined above. Several hy
potheses to explain the shallow to deep cloud transition 
in tropical convection have been put forward in the re
cent literature:

1) Moistening of the midtroposphere by Cu3km-7km 
cells precedes the onset of deep convection (e.g., 
Sherwood and Wahrlich 1999; Mapes et al. 2006; 
Holloway and Neelin 2009).

2) The moistening of the midtroposphere is caused by 
large-scale dynamical processes leading to ascent. 
The ascent is potentially related to heating from 
Cu3km-7km cells, causing moisture convergence (e.g., 
Hohenegger and Stevens 2013; Kumar et al. 2013a).

3) Increased boundary layer inhomogeneity in the 
thermodynamic and wind fields causes the rising 
cloud parcels to have more momentum, which in
creases the probability of clouds reaching the level of 
free convection and develop into deep convection 
(e.g., Zhang and Klein 2010).

Hypothesis 3 focuses largely on the transition from 
shallow, nonprecipitating convection to deep convec
tion. Therefore, it cannot be reliably tested in this study, 
since we cannot reliably detect fair-weather shallow 
cumulus clouds. Both the Cg and Cb modes have already 
grown past the trade inversion layer. We will therefore 
focus on evaluating hypotheses 1 and 2 in what follows.

Hypothesis 1 and 2 are based on the premise that 
moistening of the midtroposphere occurring prior to

deep convection is crucial for the formation of deep 
convection—often referred to as preconditioning. So we 
begin the analysis by testing this preconditioning re
quirement using the relative humidity and temperature 
measurements from radiosonde observations at Darwin 
airport (see Fig. 1 for the sounding location). The ra
diosondes operated typically at 6-h intervals. Since the 
Cg and Cb modes as well as the subsequent deeper mode 
rarely occur in complete isolation, special care has to be 
taken in establishing the link between the variations 
in atmospheric conditions and the growth of the two
Cu3km—7km modes.

To do so, two procedures are applied here: The first 
step identifies times where one of the Cu3km-7km modes 
is dominant over the other. To achieve this, the ratio of 
the Cb cell count to the total (Cb 1 Cg) is calculated in 
bins of 6 h. A 6-h data block is flagged as dominated by 
the Cg mode if the ratio of the Cb to the total is below 
12%—the lower tercile of the 6-hourly Cb to total ratio 
distribution. Similarly, if the 6-hourly ratio exceeded 
38%, the upper tercile of the Cb to total ratio distri
bution, the data block is flagged as dominated by the 
Cb mode. Only Cg cells (Cb cells) that formed in the 
6-hourly Cg dominated data blocks (Cb dominated 
data blocks) are kept for further analysis. This filter
ing process leaves —42000 Cg cells (40% of the orig
inal Cg population) and —16 600 Cb cells (44% of the 
Cb population).

The second step of our analysis procedure aims to 
filter out atmospheric environments that may have al
ready been modified by deep convection. Because of the 
high time resolution of the radar observations, the tim
ing of the radiosonde ascents relative to the occurrence 
of the Cu3km-7km modes is random. It can be as little as 
10 min and as much as 6 h before or after the cloud ob
servations. As we wish to focus on the effects of the 
environment on the Cu3km-7km clouds, rather than the 
other way around, only radiosonde data with an occur
rence time between 0 and 6 h prior to the detection time 
of the Cg and Cb cells are included in the analysis.

Figure 6 shows the joint frequency distributions of 
relative humidity (top panels) and temperature lapse 
rate (bottom panels) as a function of height for the Cg 
(left column) and Cb (right column) cells derived from 
radiosonde ascents 0-6 h before the radar image as de
scribed above. These two atmospheric parameters were 
chosen as they have been previously deemed to play 
a role in limiting the vertical extent of cumulus clouds 
(e.g., Derbyshire et al. 2004; Takemi et al. 2004). The 
difference between the distributions of relative humidity 
(Fig. 6, top panels), in particular above the altitude of 
5.0 km, in the Cg and Cb modes is quite remarkable. The 
midtroposphere is clearly much drier in periods with
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Fig. 6. (top) The vertical profile of relative humidity using of 5% size bins and (bottom) temperature lapse rate 
using 0.5 K km ^ size bins for (left) Cg and (right) Cb cells. The solid and dashed lines represent the values for the Cg 
and Cb modes, respectively; these have been overlaid for easier comparison.

predominantly Cg cells than in those with large numbers of 
Cb cells. The most notable feature is the abrupt drop in 
relative humidity from a modal value of 72% at 5 km to 
only 30% at 7.0 km associated with the Cg cells. The 
temperature lapse rate distributions associated with the 
two Cu3km_7knl modes are found to be very similar (Fig. 6, 
bottom panels), except that the temperature lapse rates 
distributions are slightly broader for the Cb cells. The re
sults shown in Fig. 6 are consistent with the viewpoint that 
entrainment of dry ambient air into the cells can play a key 
role in limiting the vertical extent of convection (e.g., 
Redelsperger et al. 2002; Derbyshire et al. 2004; Takemi 
et al. 2004; Jensen and Del Genio 2006). A key question 
remaining is to identify the source of the moistening pre
ceding the Cb cells or drying preceding the Cg cells.

5. Sources of midtroposphere moistening preceding 
the development of cumulonimbus cells

In this section we aim to investigate what processes 
are involved in moistening the midtroposphere in the

hours leading up to the onset of the predominantly Cb 
cell population. It is worth recalling that the two main 
processes are a moistening by Cu3km_7km cells (hypoth
esis 1) and moistening that involves large-scale dynam
ical processes (hypothesis 2).

Hypothesis 1 is tested by performing a composite 
analysis of relative humidity and occurrence frequency 
of two Cu3km_7km modes for the 6 h preceding the onset 
of the Cg and Cb cells. The results are shown in Fig. 7. 
For this analysis, the radiosonde data used are the same 
as those employed in Fig. 6, except that now we show the 
temporal evolution of relative humidity. The radiosonde 
data are divided into 1-h bins of time and 0.5-km bins of 
height, and the median is calculated separately for each 
bin and displayed in Fig. 7. The short vertical lines 
(which appear nearly continuous) above the humidity 
panels represent the actual timestamps of the radio
sonde data used in this analysis. It is clear from this il
lustration that the radiosonde data is drawn from nearly 
all times leading up to the cell identification, providing 
confidence that the results are robust on an hourly scale
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Fig. 7. Composite evolution of the (top) 6-hourly relative humidity and (bottom) radar cell occurrence frequency 
for the 6h preceding the onset time of (left) terminal and (right) transient cells. The vertical black lines above the 
relative humidity tendency panels indicate the actual radiosonde times used in the composite analysis.

despite using the 6-hourly radiosonde data. The bottom 
panels show the composite count of the all Cg (solid 
curve) and Cb (dashed curve) cells.

The top panels of Fig. 7 show that conditions in the 
time leading up to Cg cells are distinctly different to 
those for Cb cells. In the case of Cg cells, the atmosphere 
above the boundary layer (but not the boundary layer 
itself) is significantly drier and this structure does not 
change in the 6 h leading up to the Cg cell event. The Cb 
cell cases are generally characterized by moister condi
tions even 6 h before the event, indicating an important 
difference in the meteorological background state as
sociated with the two Cu3km_7km modes. Consistent with 
both hypotheses of preconditioning, the relative hu
midity, especially in the midtroposphere, increases be
fore the onset of Cb cell events. The increase appears 
particularly rapid about 3 h before the event.

The bottom panels of Fig. 7 show that there is a large 
population of Cg cells leading up to both Cg and Cb cell 
events. Within 3h preceding the Cg events, the inci
dence of Cg cells increases without any significant 
change in the vertical relative humidity distribution. 
This is interesting as it indicates that the increased

number of Cg cells is not able to moisten the mid
troposphere by itself, implying either strong compen
sating drying processes or a lack of efficiency in the 
moistening from Cu3km_7km cells alone. Similar to the 
findings in Fig. 4, it is evident that Cb cell events are 
preceded by a high occurrence of Cg cells a few hours 
before the transition to deeper cells. Thus, on face value 
the Cg cells appear to be a key ingredient to pre
condition the troposphere for the subsequent de
velopment of Cb cells, which eventually leads to the 
development of deep convection. However, a significant 
population of Cg cells also exists in the hours leading up 
to the occurrence of mostly Cg events. This clearly in
dicates that other processes must also be important in 
regulating the formation of Cg and Cb cells (hypothesis 
2). This is explored next.

The investigation of the relative role of large- and 
small-scale processes in determining cloud depth re
quires reliable estimates of the large-scale state con
current with the radar observations. Such datasets are 
typically derived from radiosonde arrays deployed 
during field campaigns or are simply derived from op
erational NWP analysis or reanalyses performed with



March 2014 KUMAR ET AL. 1115

NWP systems. Using data from the Tropical Warm Pool 
International Cloud Experiment (TWP-ICE; May et al. 
2008), Davies et al. (2013) have demonstrated that the 
use of NWP analysis at high time frequency is not jus
tified owing to the poor quality of the divergent wind, 
and hence vertical motion field, in these analyses. 
However, they also showed that long records of reliable 
estimates of the large-scale budgets around Darwin can 
be derived by applying the variational budget analysis 
technique of Zhang and Lin (1997) using NWP analysis 
data as ‘‘pseudo radiosondes’’ and observations at the 
surface and top of the atmosphere, as suggested by Xie 
et al. (2004). The resulting large-scale dataset used here, 
which is often referred to as the forcing analysis, in
cludes vertical profiles of heat and moisture budgets as 
well as thermodynamic and dynamic variables at 40-hPa 
vertical and 6-h temporal resolutions. The domain rep
resented by this dataset is shown by the pentagon shape 
in Fig. 1 and is comparable to the CPOL domain used 
here (shaded gray circle).

The large-scale forcing dataset contains several pa
rameters relevant to convection. Table 1 provides an 
overview of some of those parameters showing the 95% 
confidence intervals of their mean.1 Note that the forc
ing dataset has been processed in the same manner as 
the radiosonde dataset above in that only profiles from 
the preceding 6 h relative to cell identification as Cg and 
Cb dominated are used in the analysis. Results shown 
in Table 1 reveal that the mean convection inhibition 
(CIN), surface evaporation, and midtroposphere (300
600 hPa) temperature preceding the two congestus modes 
are similar at the 95% confidence level. Thus, these fac
tors are unlikely a cause for congestus clouds to grow in 
deep convection. In contrast, both the large-scale vertical 
motion (omega) in the midtroposphere and thus the 
vertical advection of moisture, as well as the convective 
available potential energy (CAPE), are clearly larger in 
the intervals preceding Cb cell than in those ahead of Cg 
cells. Similarly, the low-level horizontal winds and thus 
potentially the horizontal advection of moisture are also 
significantly different between the two Cu3km-7km modes. 
One possible explanation for these differences is that the 
different cell modes occur in different meteorological 
regimes, such as the Darwin monsoon (the DW regime) 
and break (the ME regime) conditions, which are known 
to have very different thermodynamic and wind profiles 
(Pope et al. 2009). This is further explored next.

1A set of 100 different mean values are generated using a ran
domly selected samples from the main batch of data. Then the 95% 
confidence interval is extracted from probability distribution 
function of the means (e.g., Chu and Wang 1997).

TABLE 1. Mean atmospheric conditions associated with the Cg 
and Cb cells. The data ranges represent the 95% confidence in
tervals about the mean (see text for details).

Cg cells Cb cells

Total number of cells 
analyzed

42028 16613

CAPE (J kg21) 267.3-292.3 570.9-603.3
CINfJkg-1) 22.4-25.1 23.8-25.2
Surface evaporation 

(mmh21)
0.38-0.40 0.34-0.35

300-600-hPa water 
mixing ratio (gkg21)

4.27-4.61 4.44-4.79

300-600-hPa RH (%) 60.3-62.4 63.9-65.5
300-600-hPa temp (K) 272.9-274.4 272.7-274.2
300-600-hPa omega 

(hPah21)
20.92 to 20.52 22.82 to 22.44

600-1015-hPa HADV
(gkg21h21)

2 0.049 to 2 0.037 20.021 to 20.016

600-1015-hPa horizontal 
advection of 
temperature (K h21)

0.049-0.061 0.027-0.037

600-1015-hPa westerly 
(u, ms21)

5.32-6.00 1.71-2.17

600-1015-hPa southerly 
(y, m s21)

20.71 to -0.47

Ts5

600-1015-hPa wind speed 
(ms21)

7.41-8.13 4.89-5.42

600-1015-hPa wind shear 
(ms21 hPa21)

0.024-0.030 0.030-0.032

We begin this by examining the vertical profiles of all 
the four terms in the large-scale moisture budget ex
pression (Fig. 8). This expression can be defined as

>q >q
~ VH ' $Hq 1 V>P 1 Q2.ap

In the above, most of the notations are convectional; 
dq/dt is the moisture tendency, which for sake of sim
plicity will be referred to as q tend. The q tend term 
arises from contributions from large-scale horizontal 
advection (nH ■ $Hq or simply HADV), vertical advec
tion (vdq/dp or VADV), and the residual term (Q2). 
The Q2 term represents the collective effects of all 
subdomain-scale processes (see Yanai et al. 1973). All 
terms are scaled to the same units of humidity change 
with time (i.e., g kg_1h_1).

The top panels of Fig. 8 show the mean profiles of 
large-scale moisture budget using all data points occur
ring within 6 h preceding the 42 000 Cg and 16 600 Cb 
cells. The middle and bottom panels separate these re
sults into the DW and ME regimes, respectively. Note 
that ~50% of the 42000 Cg cells used in these calcula
tions occurred during the DW regime; thus, the mean 
behavior in the top left panel of Fig. 8 associated with all 
Cg cells will be strongly influenced by the DW regime.
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Fig. 8. Mean vertical profiles of the moisture budget terms preceding the (left) Cg and (right) Cb cells, (top) 
Results for all data, (middle) DW regime, and (bottom) ME regime. The shaded gray region represents moistening, 
while the white area indicates drying.

The Cb cells (right panels of Fig. 8) were most frequent 
in the ME regime (—42% of the 16600 cells), followed 
by the DW regime (35% of the cells). Two features are 
found to be different between the Cg and Cb modes

and these were reproducible regardless of the atmo
spheric regimes (hence can be considered genuine 
factors in regulating the growth of Cg and Cb cells) 
included:
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1) The large-scale vertical advection causes moistening 
of the midtroposphere (300-600 hPa) preceding both 
cloud modes. However, this moistening is larger 
preceding the cb cells than preceding the cg cells.

2) Greater drying by large-scale horizontal advection in 
the low levels (600-1015 hPa) preceding the Cg cells 
than preceding the cb cells.

In contrast, the Q2 and q tend terms associated with 
the different large-scale regimes are found to exhibit 
different signatures. For example, the subgrid pro
cesses (Q2) moisten the troposphere between 600 and 
1000 hPa preceding the Cg cells only during the DW 
regime (thus also shows in overall average; Fig. 8) and 
not during the other conditions. This moistening by Q2 
has been linked to evaporation of precipitation from 
stratiform clouds, which are widespread in the DW re
gimes (Kumar et al. 2013a,b). Thus, the responses in Q2 
term and so in q tend are thought to be a result of dif
ferent synoptic environments of the two regimes them
selves and are less likely to explain why some Cu3km-7km 
cells grow and others remain shallow throughout their 
lifetime.

It is clear from the discussion above that there is 
a strong relationship between the growth of Cb cells into 
deep convection and the moistening of the midtropo
sphere in the hours preceding the onset of Cb cells. The 
moistening preceding the Cb cells appears to be linked 
to either one or both of the following causes: the pre
ceding Cg cells and/or large-scale vertical advection (as 
the horizontal advection terms are almost always nega
tive, so leads to drying). We now investigate the com
peting contributions of these two factors in increasing 
the moisture of the midtroposphere.

It is tempting at first glance to ascribe the midtropo
sphere moistening associated with the growth of Cb cells 
to the occurrence of Cg cells, which peaks a few hours 
before the Cb cells (Figs. 4 and 6). However, this is in
consistent with the findings for the Cg cell events 
themselves, which show Cg cells existing for long pe
riods of time with no effect on the midtroposphere rel
ative humidity and with few Cb and deep cells forming in 
the subsequent period. To study this further, we first 
identify peak Cg cell occurrence events, characterized 
by a Cg cell frequency larger than 42 cells per hour. This 
value corresponds to the upper tercile of all hourly Cg 
cell counts. A total of 275 such events were identified 
from our two wet-season database.

The top panel of Fig. 9 shows the results of a com
posite analysis of the mean Cg cell (solid) and Cb cell 
(dashed) frequencies around these events, separated 
into three bins of the midtroposphere large-scale verti
cal advection of moisture. The vertical advection values

are taken at the 500-hPa level, VADV500, and at the 
nearest time to the onset of events. There are 75 events 
with VADV50o < 0gkg21h_1, indicating drying in the 
midtroposphere by vertical advection (diamonds); 64 
events with VADV500 between 0 and 0.03gkg21h_1, 
indicating moderate moistening (crosses); and 136 events 
with VADV500 > 0.03 g kg-1 h_1, indicating strong 
moistening (triangles). It is evident from Fig. 9 that the 
mean frequency of the Cg cells (solid lines) is inde
pendent of VADV500. In contrast, the mean frequency of 
the Cb cells increases strongly with increasing VADV500. 
Notably, there are 75 events with at least 42 Cg cells per 
hour, but very few Cb cells occurring in the subsequent 
hours because the vertical advection term associated with 
these events is negative (drying). The second and third 
panels of Fig. 9 repeat the composite analysis of the mean 
Cg cell (solid) and Cb cell (dashed) frequencies around 
events for the DW and ME regimes, respectively. While 
there is some effect of the large-scale regime on the 
evolution of the cell modes, qualitatively the two regimes 
behave very similarly to each other and the overall be
havior. Independent of synoptic regime it is the increased 
moistening in the midtroposphere by vertical advection 
and not with the existence of Cg cells that explains the 
difference in the number of Cb cells.

6. Summary

This study used C-band radar data in the Darwin re
gion to identify two types of convective cloud cells with 
a 0-dBZ cloud-top height (CTH) between 3 and 7 km 
(Cu3km-7km). These two modes are the congestus (Cg) 
clouds, which terminate their growth around the freez
ing level, and the cumulonimbus (Cb) clouds, which 
grow into deeper convection at a later time. This was 
achieved by examining the statistical properties of cell 
top heights in a sequence of radar scans. Based on this 
approach, we were able to classify 70% of the entire 
Cu3km-7km population (CTH < 7 km) during two wet 
seasons at Darwin as either Cg or Cb cells. Of the clas
sified Cu3km-7km cells, 26% are found to be Cb cells that 
will ascend to greater altitude at a later time, while 74% 
of the Cu3km-7km cells were found to never grow deeper 
than 7 km. This Cb to Cg splitting ratio is found to be 
invariant of the five large-scale Darwin regimes. Note 
there is a third cumulus cloud type with tops between 3 
and 7 km: the nonprecipitating cumulus cloud. However, 
this cloud type cannot be easily detected by the C-band 
radar and is estimated to be as much as one-third of 
cumulus populations with tops between 3 and 7 km.

The cells classified as Cb are observed to have larger 
radar reflectivities, rain rates, and drop size at the lowest 
radar level (2.5 km) compared to the Cg cells. If the
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Fig. 9. Composite evolution of the Cg (solid lines) and Cb (dashed lines) cell occurrence 
frequency for 6h on either side of the Cg cell peak occurrence events (t = 0). Mean cell oc
currence frequencies in three different bins of the midtroposphere large-scale vertical advec- 
tion of moisture (VADVSOo): (top) all events, and events in the (middle) DW and (bottom) ME 
regime.

atmospheric conditions during both modes were similar, 
then it could be argued that it is the microphysical 
properties of Cb cells themselves that lead to stronger 
growth. However, the atmospheric conditions between 
the two Cu3km_7km modes were found to differ and are 
likely to play a significant role in determining which 
Cu3km_7km cell will be able to grow.

Combining the cell attributes from the radar analysis 
with radiosonde observations and results from the de
rived large-scale budget analyses in the Darwin region 
allowed the investigation of the relationship of the dy
namic and thermodynamic state of the atmosphere with

the two Cu3km_7km modes. In particular, we were able 
to investigate the conditions leading up to the occur
rence of Cb cells, thereby shedding more light on the 
processes involved in the transition from shallow to deep 
convection. In the hours preceding the Cb cells, strong, 
well-defined enhancement in humidity occurs in the mid
troposphere (5-10 km). In contrast, the midtroposphere 
is significantly drier prior to high occurrences of Cg cells. 
So, consistent with several previous studies, the mois
ture profiles of the midtroposphere have a strong impact 
on the vertical development of tropical cumulus clouds, 
and the presence of moisture in the midtroposphere
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appears strongly related to the development of deep 
convective clouds. However, this study has shown that 
large numbers of Cu3km-7km cells exist prior to the de
velopment of both Cg and Cb cell populations, making it 
less likely that Cg moistening alone can explain the 
transition to deeper convection. Instead, it was shown 
that it is the presence of moistening by large-scale ver
tical advection, or simply the presence of large-scale 
upward motion, that is crucial to the development of Cb 
cells in relatively large proportions after the existence of 
the Cg cells. In contrast, when the large-scale motion is 
found to be downward very few Cb cells can form even 
though large numbers of Cg cells are present in the vi
cinity. While the overall number of Cb cells showed 
some dependence on the synoptic regime, the mecha
nisms for the transition from Cu3km-7km to deep con
vection were found to be independent of the large-scale 
regimes, lending additional confidence to the results. 
These results confirm the crucial importance of dy
namical processes and their interplay with the convec
tive cloud population in the transition from shallow to 
deep convection in the tropics.
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Four model intercomparisons were run and evaluated using the TWP-ICE field campaign, 
each involving different types of atmospheric model. Here we highlight what can be 
learnt from having single-column model (SCM), cloud-resolving model (CRM), global 
atmosphere model (GAM) and limited-area model (LAM) intercomparisons all based 
around the same field campaign. We also make recommendations for anyone planning 
further large multi-model intercomparisons to ensure they are of maximum value to the 
model development community. CRMs tended to match observations better than other 
model types, although there were exceptions such as outgoing long wave radiation. All 
SCMs grew large temperature and moisture biases and performed worse than other model 
types for many diagnostics. The GAMs produced a delayed and significantly reduced peak 
in domain-average rain rate when compared to the observations. While it was shown that 
this was in part due to the analysis used to drive these models, the LAMs were also driven by 
this analysis and did not have the problem to the same extent. Based on differences between 
the models with parametrized convection (SCMs and GAMs) and those without (CRMs and 
LAMs), we speculate that that having explicit convection helps to constrain liquid water 
whereas the ice contents are controlled more by the representation of the microphysics.
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1. Introduction

Weather and climate prediction relies on numerical models 
designed to represent our best understanding of the relevant 
components of the Earth system. One critical component of both 
weather and climate prediction systems is the representation of 
the atmospheric processes, both dynamical and physical. Global 
atmospheric models (GAMs) represent the whole globe and 
generally use coarse grid lengths which rely on the representation 
(or parametrization) of many physical processes whose scales 
are sub-grid, with convection and clouds being a key example. 
Regional or limited-area models (LAMs) are a key tool for weather 
prediction, and are increasingly used in climate research and 
prediction to dynamically downscale global climate predictions 
to add better understanding of the regional impacts of climate 
change (e.g. Kendon etal, 2010). LAMs are an attractive tool 
because they cover smaller regions and are thus able to use

smaller grid lengths for the same computational costs, and this 
allows a more explicit representation of the local orography as 
well as convective processes and the associated cloud.

The continuous development and improvement of atmos
pheric models is of critical importance to the weather and climate 
community (Randall etal, 2003). Two further modelling sys
tems which are valuable tools supporting the development of 
LAMs and GAMs are cloud-resolving models (CRMs) and single
column model (SCM) versions of the GAMs (Randall et ah, 1996). 
CRMs are very similar to LAMs in that they also represent a lim
ited area and utilise shorter grid lengths to explicitly resolve key 
processes. They differ in that they have generally been developed 
to understand the physical processes of the atmosphere rather 
than as a prediction system. They are also often run at much higher 
resolution than LAMs and include more complex and computa
tionally expensive representations of the physical processes such 
as microphysics. In this article, as is quite often the case, the CRMs

(C) 2013 Royal Meteorological Society and Crown Copyright, the Met Office
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also differ from the LAMs in the way they are forced. The LAMs 
include the real land surface boundaries and use open boundary 
conditions provided by analysis of global forecasts. In contrast, 
the CRMs use a uniform ocean surface, employ cyclic boundary 
conditions and are driven by a uniform forcing consistent with 
the SCMs. SCMs, while they have their limitations, allow us to 
isolate the behaviour of GAM parametrizations from dynamical 
feedbacks and also prove a computationally efficient method for 
quickly evaluating parametrization changes (e.g. Randall etal, 
2003). In this work, they also use a uniform ocean and are 
essentially driven in the same way as the CRMs.

A framework to test all the models types discussed above 
and confront these with observations is the intercomparison. An 
intercomparison is where various models of the same type are run 
for the same case and their results compared. The benefits of this 
collaborative activity to model developers go beyond the ability to 
compare their model with many other models and identify their 
key deficiencies (as discussed in Fetch etal., 2006) because they 
also bring the community together to jointly discuss and tackle key 
challenges in model development. The GEWEX (Global Energy 
and Water Exchanges) project Global Atmospheric System Studies 
(GASS) acknowledge the importance of these activities and thus 
focus much of their work on coordinating these activities. This 
article describes the lessons we can learn from bringing together 
the results of four model intercomparisons involving GAMs, 
LAMs, CRMs and SCMs.

The intercomparisons were all based around the Tropical 
Warm Pool-International Cloud Experiment (TWP-ICE) which 
took place in and around Darwin, Australia, from 20 January 
to 13 February 2006. Its focus was to describe the evolution of 
tropical convection, including the large-scale heat, moisture, and 
momentum budgets at 3 h time resolution, while at the same 
time obtaining detailed observations of cloud properties and the 
impact of the clouds on their environment (May et ah, 2008). A 
field campaign of this kind provides an ideal test-bed for driving 
and evaluating a range of atmospheric models used in weather 
and climate research and prediction.

Under the umbrella of GASS and with the support of 
the US Department of Energy (DOE) Atmospheric System 
Research (ASR) program, observations made during the TWP- 
ICE campaign have been used to drive and evaluate multiple 
models of four different types. The resulting collaboration and 
articles describing model intercomparisons provide an important 
reference for various institutions to carry out further experiments 
which support their model development processes. The articles 
describing their comparisons using the TWP-ICE data are:

• CRMs: Cloud-resolving models (Fridlind et ah, 2012)
• LAMs: Limited-area models used in regional weather and 

climate prediction (Zhu et ah, 2012)
• GAMs: Global atmospheric models for predicting on 

weather or climate time-scales (Lin et ah, 2012)
• SCMs: Single-column models (Davies et ah, 2013).

In Fridlind etal. (2012), observations made during TWP- 
ICE were used to perform the most comprehensive evaluation 
of a cloud-resolving model intercomparison that has ever been 
carried out. The ability to challenge the models with such a range 
of observations, particularly those which describe the variability 
within the CRM domains, highlighted many challenges for both 
CRM development and for designing the frameworks in which 
the CRMs are run. Specific conclusions from the article noted 
that there was a wide spread in the prediction of cloud stratiform 
fraction and that all models systematically overestimated the areas 
with strong convective mean precipitation. While precipitation 
was constrained by the forcing, it was clear that the CRMs differed 
significantly in their prediction of the precipitation distribution. 
It was noted there was a large spread in predicted ice water path 
and, compared to observational estimates, it was overestimated 
in all models apart from those which were run in two dimensions. 
However, the existing estimates of uncertainty in ice water path

retrievals also require further evaluation, as discussed by Fridlind 
etal. (2012).

Zhu et ah (2012) presented the first comparison of convective- 
scale LAMs carried out within GASS. The models produced 
realistic large-scale thermodynamic fields when compared to 
observations, although the locations of precipitation within the 
domains varied. As with the CRMs, ice water paths differed 
by large amounts between models. Stratiform cloud fractions 
showed large spread, especially high ice anvils, which can have 
large impacts on the radiative properties of the cloud systems. 
Both the water contents and the ice cloud fractions were seen to 
vary significantly between models.

In Lin etal. (2012), GAMs were compared over the TWP- 
ICE region and, while the models all captured the large-scale 
precipitation event seen in the observations, it was delayed by 
over a day. As with the CRMs, ice water contents had a very 
large spread (more than an order of magnitude) but it was also 
clear that in GAMs there was a large spread in liquid water paths. 
There were enough models involved in the comparison to identify 
that the models whose convection schemes were more responsive 
to mid-level moisture performed better during the less active 
periods.

Davies et ah (2013) described the first SCM intercomparison 
to use ensemble forcing which represented the observational 
uncertainty and provided a sensitivity study for the SCMs 
involved. It also included a single 2D and 3D CRM as a reference 
for the SCMs using the ensemble forcing. It was shown that, while 
the ensemble mean generally behaved like a single realisation 
using the mean forcing, this was not the case for all diagnostics 
or all models. The ensemble forcing was also shown to be of 
particular value for investigating how different models respond 
to changes in the forcing.

While the four articles described above each make conclusions 
relevant to evaluation and improvement of the individual model 
classes they address, the archive of all the modelling results 
and observations is also a key output of this project. Individual 
modelling centres can begin to make use of this for their model 
development work. The availability of different model types for 
this case makes this an even more valuable resource. For example, 
the ability of a weather or climate modelling centre to carry out 
sensitivity studies using both their SCM and GCM and place this 
into context by comparing against other models driven in the same 
way is very valuable. Fetch et ah (2007) described a comparison 
using a single GCM, SCM and CRM driven and evaluated 
using observations made during the Tropical Ocean-Global 
Atmosphere Coupled Ocean-Atmosphere Response Experiment 
(TOGA-COARE) as a preparation for an intercomparison 
involving these model types. However, this work lacked the 
unique opportunity of having a completed intercomparison to 
allow us to study the spread and variation of the models. In this 
‘multi-model type intercomp arisen ’, we bring together the key 
findings of each of the separate modelling studies and diagnose 
some cross-model differences to learn more about both the 
models themselves and the experimental framework used.

This article analyses the results of all models used in the 
TWP-ICE intercomparison to identify what can be learnt 
from a multi-model type intercomparison. It also identifies 
and documents the key lessons learnt during this project 
which should help the planning of any similar work in the 
future. Section 2 describes the experimental frameworks and 
models used in these studies and how they differed for the 
different model types. Section 3 analyses the results of all model 
types and in section 4 we summarise our findings and make 
recommendations which should improve any further similar 
multi-model intercomparisons.

2. Experimental framework

The analysis of all the modelling carried out in this cross
comparison was based around the TWP-ICE field campaign.

© 2013 Royal Meteorological Society and Crown Copyright, the Met Office
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Table 1. A summary of the models used in the four separate intercomparison articles.

Model type
Reference

LES/CRM
Fridlind et al. (2012)

LAM
Zhu etal (2012)

Global
Lin etal. (2012)

SCM
Davies etal. (2013)

Number of models 10 6 9 9
Horizontal domain size 200-300knr 400-500knr Global One column
Analysis area Domain Average of grid 

boxes overlapping 
with the TWP-ICE 
variational analysis domain

Average of grid 
boxes overlapping 
with the TWP-ICE 
variational analysis domain

One grid box

Horizontal grid length (km) 0.9-3 1-3 20-250 25-200
Vertical grid length (km) 
around 500 mb

0.18-0.6 0.3-0.5 0.3-1.0 0.3-1.0

Forecast lead time analysed Free running for whole 
period

12-36 h 24-48h Free running for whole 
period

Forcing Variational analysis Nested in global
models driven by EC analysis

ECMWF
analysis variational analysis

Deep convection Explicit Explicit Parametrized Parametrized
Shallow convection Explicit Mix of BL, shallow schemes 

numerical/explicit
Parametrized Parametrized

Cloud fraction scheme All or nothing Some all or nothing, some 
parametrized

Parametrized Parametrized

The periods simulated were designed to be a balance between 
covering a broad range of conditions at the site and the 
increasing computational costs of longer runs. As described 
in May et al. (2008), the Darwin region was influenced by a 
typical monsoonal circulation during TWP-ICE. It experienced 
three distinct regimes: active monsoon during 20 to 25 January, 
suppressed monsoon during 26 January to 3 February, and 
a monsoon break period during 3 to 13 February 2006. 
The active monsoon period was characterized by westerly 
monsoon flow, intensive mesoscale convective systems of mostly 
oceanic origin, and heavy surface precipitation. During the 
suppressed monsoon period, clouds were primarily associated 
with relatively shallow convection accompanied by much 
lower surface precipitation than in the preceding monsoon 
period. The break monsoon period was featured by intense 
afternoon thunderstorms with several squall lines crossing 
Darwin in the evening and early morning. Due to the high 
computational cost, the CRM study focused only on the active 
and suppressed periods and the LAMs were run only for the 
period 1200 UTC on 22 to 0000 UTC on 26 January. In contrast, 
both the SCMs and GAMs were run for the entire TWP-ICE 
period from 0000 UTC on 20 January to 0000 UTC on 13 
February.

2.1. The models used

A brief overview of the basic properties of all the models used and 
the runs carried out in the four intercomparisons are summarised 
in Table 1. As with any intercomparison project, there is a need 
to be pragmatic when specifying the design of the experiments. 
A balance is needed between constraining the components of the 
experiment such that the comparison is as clean as possible and 
the time it takes for the participants to adhere to any requirements. 
This is reflected in the ranges seen in properties such as the details 
of how the models are forced or how properties such as the land 
surface are initialised. While there would be benefit in having 
these set the same across all models, it is often more useful for 
centres to carry out the experiments with settings relevant to their 
typical use.

Table 1 shows that there are generally only a small number of 
models of each type. LAMs in particular only had six different 
models of which three were variants ofWRF. The extent to which 
we should consider the variants of WRF as different models is 
quite subjective and through this article we will generally treat 
all model submissions equally. Full details of all the individual 
models used are available in the individual comparison articles 
and these will not be discussed here in any detail.

Consistent forcing with constrained dynamics, 
precipitation and no surface heterogeneity

Consistent forcing with open boundary conditions, 
dynamical feedbacks and surface heterogeneity

Figure 1. Schematic of the models used in the various comparisons with their 
relationships. Note that observations can be used in all components. CRMs and 
LAMs have resolved convection so provide additional information to convective 
parametrized models. SCMs are a tool to isolate climate model physics and keep 
consistent forcing.

It is useful to consider the purpose of each model type in 
this cross-comparison article. Figure 1 depicts some of the key 
similarities and differences in the models used in this study, along 
with the way in which they are forced. The CRMs and SCMs are 
described here as development and research tools, i.e. they are 
not generally used to make operational predictions of weather 
or climate but more to understand atmospheric processes and 
support the development of other models. The CRMs can provide 
realistic cloud-scale motions to help diagnose how the processes 
should be parametrized in the larger-scale models. The SCMs 
allow us to isolate the model physics from the dynamics in a 
computationally inexpensive tool; in Davies et al. (2013), this 
efficiency has been exploited by carrying out an ensemble of 
forcing to learn about the behaviour of the physics in the SCMs 
as a function of the mean state and forcing. While there may 
be some exceptions, the GAMs and LAMs can be considered 
operational models as they are used to make predictions of 
weather and climate, often operationally as part of a national 
weather or climate service. It is the combination of all these 
model types which allows us to draw further general conclusions 
from this study. We are also able to identify key issues we 
should address when we organise future model intercomparisons 
involving SCMs, CRMs, GAMs and LAMs.
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2.2. Comparing the different forcing and boundary conditions

Variational analysis is used to derive the domain-mean large- 
scale forcing dataset used to drive the SCMs and CRMs. The 
forcing data have a 10 mb vertical resolution and 3h temporal 
resolution (centred in time) and were created using a combination 
of observations and the ECMWF analysis (Xie etai., 2010). In 
both the SCM and CRM integrations, the models were initialised 
only once. The SCMs were then integrated for the entire length 
of the experiment, with no nudging towards observed profiles. 
In contrast, as described in Fridlind etai. (2012), the CRMs 
were free running below 16 km, while above 16 km the vapour 
and temperature profiles were nudged towards observed profiles. 
Thus, both the CRMs and SCMs simulations of the troposphere 
were free running for the entire period. There are pros and cons of 
running the entire period, but free runs are common in CRM and 
SCM intercomparisons (e.g. Xie et ah, 2002; Xu et ah, 2002). The 
SCM article (Davies et ai., 2013) focuses on the results from using 
an ensemble of forcing created using variational analysis with the 
precipitation perturbed within the observational uncertainties. 
However, in this article we focus on the deterministic forcing 
used as the basis for the CRM comparison; this forcing was also 
used in the SCM article for comparison to the ensemble forcing 
and was shown to give similar answers to the ensemble mean for 
most diagnostics.

A notable difference between the deterministic SCM forcing 
and the CRM forcing was the way in which the variational analysis 
was used. The horizontal advection term (which is generally much 
smaller than the vertical) is the same in both methods. However, 
for the SCM comparison, the vertical velocity from the analysis 
was used with the model predicted thermodynamic fields to 
give the vertical advection term to drive the model. In contrast, 
the CRM comparison used both the thermodynamic fields and 
vertical velocities from the analysis to derive vertical advection 
tendencies. Ghan etai. (2001) compared these two methods of 
forcing during the SCM comparison of midlatitude continental 
convection and it was concluded that there was no systematic 
dependence on the forcing method employed. Later, however, we 
will demonstrate that the different forcing method employed in 
the CRM and SCM intercomparison leads to a difference in the 
thermodynamic profile and is therefore a limitation of this cross
model comparison and a difference which should be avoided in 
future work. Hereafter we will refer to these methods as SCM 
forcing and CRM forcing, although we note that either forcing 
method can be applied to both SCMs and CRMs. A further 
difference between the SCM and CRM forcing was that the CRMs 
were transitioned from free-running below 15 km to nudging of 
model domain-mean water vapour and potential temperature 
towards observed domain-mean conditions with a 6h time- 
scale above 16 km (specification and discussion in Fridlind 
etai. 2012). This was a pragmatic decision to better maintain 
a tropopause layer structure consistent with observations while 
not influencing total surface precipitation relative to a fully free- 
running simulation. This difference was much less significant for 
the results discussed in this article.

The GAMs wind, temperature, moisture, and surface pressure 
were initialized at 0000 UTC daily from the ECMWF operational 
analysis using the Cloud-Associated Parametrizations Testbed 
(CAPT) approach (Phillips et ah, 2004). Other fields, such as land 
surface properties (vegetation, soil moisture and temperature) 
were constrained to be as realistic as possible using a range of 
methods in the various models. The methods were chosen by the 
modelling centres themselves as the option they considered the 
best choice for their modelling system. The second day (24-48 h) 
of the forecasts was used for the comparisons made in this article. 
This was chosen to allow spin-up of the models but still keeping 
the large-scale dynamics close to the analysis. The different LAMs 
were constrained in somewhat different ways for the dynamics, 
thermodynamics and other fields such as land surface properties. 
This was an example where the various centres have typical or

operational methods of driving their models and it was reasonable 
that they were driven using their own methods. However, the 
wind, temperature, moisture, and surface pressure in all models 
were essentially initialised and driven at the boundaries either by 
an analysis or by a short-range forecast initialised by the same 
ECMWF analysis that was used by the GAMs.

To understand the role of the different forcing from these 
experiments, it is useful to compare the ECMWF analysis to 
the variational analysis. Figure 2 shows vertical velocity from 
the ECMWF analysis (driving the LAMs and GAMs) and the 
variational analysis (driving the CRMs and SCMs). A key 
difference between the two forcings is that the strong upward 
motion in the wet period around 23-25 January has quite a 
different timing with the negative peak between 23 and 24 January 
for the variational analysis, but this occurs a whole day later in 
the ECMWF analysis. The mean vertical velocity from the wet 
and dry periods (defined in Figure 3(a)) shows that the upward 
velocities are typically stronger in the ECMWF analysis than they 
are in the variational analysis. In the dry period, there is also 
weak ascent in the ECMWF analysis while there is descent in the 
variational analysis. The implications of these mean and timing 
differences will be discussed during the evaluation of results from 
the different models in the next section.

3. Cross-model comparison

It is a challenge to show the vast number of results from various 
models in a simple set of plots. To do this we mainly focus on 
showing a selection of basic fields as the mean of each model 
type and the spread of those models. In plots used here we have 
focused on the use of the mean and standard deviation between 
models to describe the spread. It should be stressed that this 
potentially hides a great deal of information and can lead to 
somewhat misleading conclusions if more detailed analysis is not 
carried out. This is particularly true because of the relatively small 
sample sizes of models of each type (ten CRMs, six LAMs, nine 
SCMs and nine GAMs). Later we show the specific implication of 
the use of means and standard deviation for presenting the data.

By combining all models, we are removing the option for an 
individual centre to identify its own model and development 
needs. However, this level of detail would not be appropriate for 
an overview article and also near-impossible to present clearly. 
Instead we can highlight some basic interesting features from the 
models as a whole and thus allow any centre to carry out further 
work needed to review the performance of its model and any 
required sensitivity studies.

As shown in Table 1, different types of model were run over 
different sizes of experimental domain. To make an appropriate 
comparison with the observations and between different types of 
model, simulations from these four model types were all averaged 
over the variational analysis domain, which is the same as the 
TWP-ICE pentagonal sounding array. It should be noted that 
the actual domain size represented by the GAMs is slightly larger 
than the sounding array due to the coarse resolutions used in the 
GAMs. In addition, since different GAMs were run with different 
horizontal resolutions, model grid points used in the average 
vary from two for the coarsest model to over one hundred for 
models at 20 km resolution. As indicated in Lin et al. (2012), these 
differences are small compared to the variations between these 
GAMs. So we do not expect that they have large impact on our 
analysis.

3.1. Evolution of the models

Time series of some basic fields, such as precipitation, are 
important to give a basic guide to the evolution of the weather 
during the simulations, and these are shown in Figures 3 and 4. 
The period we focus on is 22 January to 3 February. The LAMs 
were only run for the period 0000 UTC on 23 to 0000 UTC on 26 
January and the SCMs and GAMs were run for a longer period
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Figure 2. Comparison of the vertical velocity, a>, from the variational analysis (used to drive the CRMs and SCMs) and the ECMWF analysis (used to drive the GAMs 
and LAMs), showing time-height plots of 6 h mean a> from (a) the variational analysis, (b) the ECMWF analysis, and (c) the difference between the ECMWF analysis 
and the variational analysis. Also shown is the mean during the (d) wet and (e) dry periods (as defined in Figure 3).

than shown. The mean values use a 6 h averaging period. This was 
a pragmatic choice, balancing the removal of shorter temporal 
noise which makes the plot look too busy while maintaining 
useful information around the temporal variability. The standard 
deviations of the model spread were also calculated at these 
6 h intervals but then averaged to 24 h to further remove noise. 
Standard deviation is shown normalised by the multi-model mean 
value. The spread was plotted separately from the mean, since 
plotting together (as is done in some later plots) led to too much 
clutter.

Figure 3(a) shows the time series of the multi-model mean 
surface rain rate along with observations. Also highlighted on this 
plot are two sub-periods we will describe as ‘wet’ and ‘dry’. The 
wet period runs from 0000 UTC on 23 to 0000 UTC on 25 January 
and the dry period from 1200 UTC on 25 to 1200 UTC on 2 
February (day of year 33.5). These are chosen to allow us to sample 
a period of organised convection producing heavy precipitation 
and then a more suppressed period characterised by mid-level and 
shallow convection or broken deep convection producing lighter 
domain-averaged precipitation. The LAM simulations covered 
only the wet period. One further point to note is that the periods

are based on the observed surface precipitation and timing errors 
in some model types would influence results from this kind of 
averaging; where relevant this is discussed.

From Figure 3(a) we can see that the CRMs and SCMs produce 
very similar precipitation rates through the period, as we would 
expect, due to these models being mostly constrained on the 
longer time-scales by their forcing (as discussed in Fridlind et al., 
2012; Davies etal., 2012). Perhaps of interest is that the highest 
peak rates are a little lower in the SCMs, something seen much 
more strongly in the GAMs. This may suggest that the SCM is 
trying to behave like the GAM but needs dynamical feedback 
to show the full response, although it could also be related to a 
low-level dry bias and the way the forcing is applied to the SCMs 
(discussed later).

The GAMs have a significant delay (of 1 to 2 days) and a 
reduced peak (by over 50%) in the large rain event on 23 January 
but have similar amounts of rain during the latter part of the 
period. The LAMs also show a reduced peak rain event, and 
heavier than observed rain after the peak. However, the timing 
of the peak event in the LAMs is much closer to the timing 
of the observed peak than we see in the GAMs. As discussed
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Figure 3. Time series of mean and fractional standard deviation (FSD, defined as standard deviation normalised by the mean value) of (a) rain rate and (b) outgoing 
long-wave radition (OLR). The time axis shows the day of the year at 0000 UTC.

Day of year

Figure 4. As Figure 3, but for (a) water vapour at 500 mb and (b) column water vapour.

in Zhu etal. (2013), the extended period of intense rain in the 
LAMs is the result of differences in mesoscale organisation in the 
inner model domain. For example, some models maintained the 
cyclone in the domain for longer than observed, which resulted 
in an increase in the period of intense precipitation. This issue is 
not seen in the CRMs and SCMs because these model types were 
constrained by the applied large-scale forcing. As the LAMs and 
GAMs are both run from the ECMWF analysis, this suggests that 
the large delay and reduction in the peak rain in the GAMs is, 
at least in part, due to the physics or dynamics in these models 
and not simply an issue with the forcing, which in Figure 2 was 
shown to have around a 1 day delay compared to the variational 
analysis. Issues with GAMs raining too frequently, producing 
too much lighter rain and not enough heavy rain events, has 
been noted before (Sun etal., 2006; Wilcox and Donner, 2007; 
Stephens et ah, 2010) and this may be a useful case to study this. 
We also speculate here that the delay in the ECMWF analysis 
compared to the observationally based variational analysis may 
be due to the physics of the ECMWF model. The ECMWF physics 
will influence their analysis whereas the variational analysis uses 
precipitation observations directly to modify the divergent wind 
held. The SCM results highlight that this issue is not well studied 
in an SCM due to the need for a dynamical feedback.

The spread in the precipitation between models is shown in 
the top panel of Figure 3(a). The SCMs have larger spread than 
the CRMs, suggesting that, although precipitation is dynamically 
constrained on longer timescales, different SCMs can still produce 
quite different rain rates on a 6 h time-scale. The GAMs produce 
the largest spread between models on average, although it is clear 
that the LAMs vary a lot in their precipitation fields on 25 January 
as the large rain event moves away from the domain.

Figure 3(b) shows the time series and spread of outgoing long
wave radiation (OLR). The GAMs and LAMs lack of very intense 
precipitation, which is reproduced in the CRMs and SCMs, is also 
clear in the OLR with both model types missing the dip around 
24 January. The CRM and SCM have larger than observed OLR 
between 25 and 30 January, suggesting a lack of cirrus cloud that 
was clearly seen in the observations and captured by the forcing 
data (Xie etal, 2010). While the GAMs look better during the first 
half of this period, this is probably associated with the delay in 
the main convective event rather than them having a better cirrus 
representation. Overall, it appears that the GAMs and CRMs 
perform better than the SCMs. When we look at the spread of 
the models for OLR (Figure 3(b), top) it is clear that, although 
the GAMs do well in the multi-model mean, there is much larger 
spread than that exhibited by the CRMs and SCMs.
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Figure 4 shows the mean and fractional standard deviation 
of (a) vapour on the model levels closest to 500 mb and (b) 
column integrated water vapour. In Figure 4 we see that in 
general the means of the CRMs compare well to observations. 
The good agreement between CRMs and observations in Figure 
4(a) may suggest that the resolved convection is doing a good job 
of moistening the mid-troposphere. The GAMs and LAMs also 
capture the general water vapour trends, but seem to miss the 
steep drop in both column vapour and vapour at 500 mb around 
the heavy rain event. This is consistent with them delaying and 
reducing the peak in the precipitation during these events. We 
note here that we would expect the GAMs to remain reasonably 
close the observations as the analysis focuses on the 24-48 h 
period of the forecast, so long-term biases are not able to grow. 
On the other hand, the SCMs have already generated an obvious 
dry bias in both the column vapour and the mid-tropospheric 
vapour content at 500 mb by 22 January. This dry bias grows 
through the first half of the run. The dry bias at 500 mb in 
the SCMs may be a consequence of the convection schemes 
not responding to free tropospheric humidity and thus not 
producing an appropriate amount of mid-depth convection; this 
issue is reviewed in DelGenio et al. (2012). The causes of the 
overall dry bias exhibited by the SCMs are discussed in more 
detail in section 3.2. The spread in 500 mb water vapour and 
column vapour (Figure 4(a,b), top) in the GAMs and CRMs is 
similar through most of the period. The SCMs exhibit a larger 
spread than the other models which is in part because the mean is 
smaller but there is more absolute spread. This could be consistent 
with the fact that some convection schemes are more capable of 
moistening the free troposphere (as discussed in Lin et al., 2012) 
and do not have such large biases.

Overall, Figure 3 shows the GAMs and CRMs simulate OLR 
better than the SCMs, presumably because the GAMs and CRMs 
do not exhibit the large dry bias and associated lack of mid- to 
high-level cloud seen in the SCMs. GAMs tend to produce the 
largest spread in OLR. This suggests that modelling centres should 
focus their attention on OLR and in particular its links with the 
behaviour of their convection schemes during both the wet and 
dry period. An SCM may be a useful tool for this; however, care 
must be taken since Figure 4 demonstrates large water vapour 
biases seen in this model type for these simulations, which have a 
strong influence on the OLR.

3.2. The wet and dry periods

Figure 5 shows the profiles of temperature and water vapour 
mixing ratio for the models and the ECMWF analysis differenced 
from the variational analysis averaged over the wet and dry periods 
(as indicated in Figure 3(a)). While not shown here, we note that 
the temperature and water vapour profiles taken directly from 
the radiosondes were a good match to the variational analysis, so 
the differences plotted are a true bias from observations. The first 
point to note from Figure 5 is that, particularly for temperature 
but also for water vapour, there are very large biases in the mean 
of the SCMs. The multi-model spread is large, but in the wet 
period there is no overlap between a standard deviation from the 
mean and the other models. As CRMs do not exhibit these same 
biases but are forced in a similar way, the biases are either related 
to the physics in the SCMs or to the different ways in which the 
forcing was applied in the two model types.

To investigate whether the method of forcing is leading to 
differences in the CRMs and SCMs, we carried out a sensitivity 
study using the Met Office CRM. Figure 6 shows the temperature 
and moisture bias from the wet period using the two methods 
for forcing the CRMs and SCMs. It is clear that the standard 
CRM forcing method and the SCM forcing method do lead to 
significantly different biases. In the lowest few kilometres, the 
temperature and water vapour bias in the Met Office CRM looks 
much more like the multi-model mean SCM bias, when the SCM 
forcing method is applied. However, above this the Met Office

Table 2. A summary of the feedback of the SCM-type forcing on the model bias.

Situation Model bias Feedback with SCM forcing

Convergence Negative bias Increased negative bias
Convergence Positive bias Increased positive bias
Divergence Negative bias Reduced negative bias
Divergence Positive bias Reduced positive bias

CRM appears to behave a little more like other CRMs, suggesting 
that the main influence of the forcing is in the lowest 5 km. This 
can be understood if we think about the convergence of water 
vapour with the two forcing methods, noting that during the wet 
periods there is a convergence of water vapour through much of 
the lower troposphere due to the vertical motion (Figure 2). In the 
CRM forcing method, the water vapour convergence is prescribed 
by the observations. However, in the SCM method of forcing the 
water vapour convergence is determined by the predicted water 
vapour in the model. Application of the SCM forcing to the CRM 
results in a 30% reduction in water vapour convergence due to the 
bias. As the SCMs and CRMs have a negative bias in water vapour 
in the lower troposphere, the convergent term of the forcing will 
give a positive feedback on this bias with the SCM style of forcing. 
Table 2 summarises the convergent term of the forcing feedback 
on the average bias.

The sensitivity to the forcing method (Figure 6) suggests that 
the SCMs general cold/dry bias in the mid to upper troposphere 
(Figure 5) is not entirely an artifact of the forcing because the 
bias is much smaller in the CRM using identical forcing. Also, 
while we would expect the low-level dry bias also to contribute to 
such a bias (less moisture for latent heating in convection), this 
low-level dry bias is also present in the CRMs but the upper-level 
bias is much smaller. Therefore, this cold/dry bias may well be of 
interest to model developers as it is also evident in the full GAMs 
(although with a smaller magnitude for reasons discussed later).

The multi-model spread (of each model type) (Figure 5) is 
consistent with time series. The SCMs have a larger spread than 
the CRMs presumably because convection is parametrized in 
significantly different ways in the different SCMs. The GAMs 
have a larger spread than the LAMs for the same reason. The 
GAMs and LAMs both have lower spread than the CRMs and 
SCMs for two main reasons. Firstly, they are only 24-48 h into the 
forecast so very large biases do not have time to grow. Secondly, 
it is typical for large-scale dynamical feedbacks in the GAMs to 
prevent biases of the magnitude of those seen in the SCMs from 
developing.

Figure 7 shows profiles of the mean and spread of cloud 
fractions from the different models. During the wet period there 
are notable differences in the means, with the CRMs producing 
less cloud fraction below 5 km and more above. The GAMs and 
LAMs also have lower fractions than the SCMs. This may suggest 
there are issues around the forcing during this period leading to 
these differences but, given the very large multi-model spread, care 
should be taken into reading too much into this. It is also worth 
noting that the cloud fraction profiles are consistent with the OLR 
presented in Figure 3, namely, the CRMs produce the largest cloud 
fraction in Figure 7(a) and this corresponds to the lowest OLR 
during the wet period. Likewise the LAMs and GAMs simulate 
lowest cloud fractions, which is consistent with the largest OLR 
during the wet period. The mean of the cloud fractions during the 
dry period agree reasonably well across model types, particularly 
above the freezing level. However, again given the large spread of 
all model types, this would seem an area for all modellers to focus 
further attention on. We note here that the CRMs cloud fraction 
is produced from resolved cloud-scale motion whereas the SCMs 
and GAMs will all have a parametrization scheme to represent 
this. Above the freezing level, CRMs have as large a spread in 
cloud fraction as the SCMs and GAMs and this should be a focus 
for those who develop and evaluate CRMs. Fridlind et al. (2012)

© 2013 Royal Meteorological Society and Crown Copyright, the Met Office
Quarterly Journal of the Royal Meteorological Society © 2013 Royal Meteorological Society

Q. /. R. Maeoml &,c. 140:826-837 (2014)



Evaluation of TWP-ICE model intercomparisons 833

CRM 
LAM 
GAM 
SCM 

o EC analysis

5 - -

I

Temperature bias (K) Temperature bias (K)

Water vapour bias (g kg ') Water vapour ^ ^ ^

Figure 5. Mean temperature and water vapour mixing ratio biases (multi-model mean differenced from the variational analysis) and the multi-model spread shown 
as a standard deviation each side of the mean: temperature bias for (a) the wet period and (b) the dry period, and water vapour bias for (c) the wet period and (d) the 
dry period. Also included is the mean ECMWF analysis.
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Figure 6. The sensitivity of the two forcing methods on (a) the temperature bias and (b) the moisture bias during the wet period using the Met Office CRM. Also 
included are the CRM and SCM multi-model means from Figure 5.
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Figure 7. Domain-mean cloud fraction profiles and spread (shown as a standard deviation each side of the mean) for the (a) wet and (b) dry periods. In the 
CRM/LAMs, a point is considered cloudy if it has a water content greater than 1CT3 gkg©

suggest that CRM cloud fraction differences are attributable in 
part to differing ice nucleation schemes.

Figure 8 shows profiles of the domain mean and spread of ice 
and liquid water content. The liquid water shows that there is 
much lower spread in CRMs and LAMs and the means agree well 
with each other in the wet period (when the LAMs were run). 
This suggests that, for models which resolve cloud-scale motions, 
there is general agreement on the amount of cloud water which 
should be produced. On the other hand, the ice is a different 
story. In the wet period there are both large differences between 
the mean profiles for the model types and also large spread of ice 
for all model types. In the mean, perhaps of particular note are 
the low ice contents in the GAMs during this period; most of the 
SCMs had similarly low ice contents, although the mean does not 
show this and this is discussed later.

A potential reason for the differences in the mean ice contents 
in the CRMs and GAMs is related to what defines the ice water 
content. In the CRMs any solid hydrometeors (including snow 
and graupel) are included in Figure 8, whereas many GAMs and 
SCMs do not represent these species explicitly and therefore do 
not report them. While this difference maybe a simple diagnostic 
issue, there are also potential modelling issues to consider. In 
particular, the snow and, to a lesser extent, graupel is important 
for radiative transfer (e.g. Fetch, 1998) and if ignored in the 
GAMs there is likely to be compensating tuning to add in this 
missing cloud. While the CRM comparison did not request a 
breakdown of the ice into separate categories (owing to a lack 
of observation constraints for separate components), we do have 
this information from some models. As an example, Figure 9 
shows the role of including all precipitating hydrometeors into 
the calculations of water content and cloud fraction for the Met 
Office CRM. While this impact will depend strongly on the 
microphysics scheme, it does highlight the need for significant 
care when we compare water contents and cloud fractions in 
convective situations.

Yet another issue to deal with when diagnosing and comparing 
water contents and cloud fraction is the role of the convection 
scheme in GAMs and SCMs. While convective schemes may 
detrain condensate into the large scale, they also have implied 
water content which are often not diagnosed and reported, not 
used in the radiation schemes, or both. We believe this should 
also be a focus for future comparisons.

3.3. Presentational issues

It was noted in the discussion about ice content that most of the 
SCMs had lower ice contents than the mean shown and that they

were more similar to the GAMs. To highlight this, Figure 10 shows 
the ice content profiles from all the SCMs for the dry period; the 
wet period is not included but showed the same feature to a 
slightly lesser extent. It is clear from Figure 10 that there is a single 
outlier from other models and this is making a large contribution 
to the mean and spread. It would be possible to remove this 
outlier from the data, but there is not a good reason to do this 
and we noted that CRMs and LAMs had significantly higher ice 
contents than most of the SCMs. Another alternative would be to 
plot the median and interquartile range as shown on the figure. 
While this would be an entirely valid option, this is another way of 
downweighting outliers, and with relatively small samples (6-10 
models) it may be preferable to plot both and ensure the true 
story is presented in any reporting of the results. For other issues 
discussed in this article, the averaging used in the plots did not 
influence the conclusions and therefore we have plotted mean 
values and standard deviations from this mean. However, when 
modelling centres use the data from this comparison, they should 
be aware of these issues.

4. Summary and discussion

In this article we have presented some basic fields from four 
intercomparisons of different model types, all simulating the 
TWP-ICE held campaign. This is the first example where there has 
been a coordinated effort to have CRMs, SCMs, GAMs and LAMs 
all evaluated for the same case. The large variety of observations 
and the high temporal sampling of atmospheric conditions, along 
with the availability of four separate model intercomparisons, 
make this a very good study for those developing their regional and 
global atmospheric models. The analysis in this article focused on 
comparing the multi-model means and the multi-model spread 
for each model type. When needed, we also performed some 
additional sensitivity studies using a single model. Conclusions 
from our analysis fall broadly into three categories. Firstly, there 
are the issues and lessons learnt about the design of multi-model 
type intercomparison experiments with recommendations for 
improvements in the future. Secondly, we highlight areas where 
most (or all) of the models of a given type are seen to perform 
poorly or have large spread, and therefore which require attention 
by model developers. Thirdly, we highlight where care needs to 
be taken when analysing and plotting model diagnostics.

Where possible the models were forced in a similar way. 
However, pragmatic choices were made, and, because it was not 
considered a key issue when the case was designed, the SCMs and 
CRMs applied their vertical forcing term differently. While both 
used the same observationally derived vertical velocity, SCMs were
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Liquid content (g kg"1) Liquid content (g kg'1)

Figure 8. Domain-mean cloud water content profiles and spread (shown as a standard deviation each side of the mean). Included are ice mixing ratio for (a) the wet 
period and (b) the dry period, and liquid water mixing ratio for (c) the wet period and (d) the dry period. Note that the wet period has an x-axis range five times larger 
than the dry period.

Ice content (g kg'1) Cloud fraction

Figure 9. (a) solid water content and (b) fractional cloud cover for the wet period. Included are the profiles and spread from the CRMs and GAMs and a sensitivity 
study with the Met Office CRM where precipitating hydrometeors are included in the calculation.
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forced by advecting their predicted temperature and moisture 
whereas CRMs were forced by advecting the observed temperature 
and moisture. This was shown to be important for our results 
with the SCMs growing a dry bias when there was convergence. 
While there is no obviously correct method for forcing SCMs 
and CRMs, it is important for future model comparisons such 
as this to use the same method (or both). The general strengths 
and weaknesses of both methods of forcing SCMs and CRMs 
used here are worth highlighting. The methods try to seperate 
the biases due to the physics from those due to the dynamics; 
however, such methods stop us from seeing how physical errors 
interact with the large scale. This is a reason why SCMs on their 
own cannot be used as a tool for developing parametrisations and 
why other methods such as weak temperature gradient have been 
employed in some studies (e.g. Sobel et al., 2001). Also shown in 
this work is that the SCMs (and CRMs to some extent) generate 
large biases in their temperature or moisture profiles which are 
not seen in the GAMs or LAMs which used a series of short-range 
forecasts. As these biases may well influence many other physical 
aspects of the models, it is our recommendation that the SCMs are 
run as a series of short-range forecasts (as we do with the GAMs). 
As SCMs are computationally inexpensive to run, it should not 
be a problem for this to be done in addition to the longer free 
runs.

We also highlighted two key differences between the variational 
analysis and the ECMWF analysis. Firstly, there was stronger 
upward motion in the ECMWF analysis, although this was not 
linked with any specific differences between model types in our 
analysis. Secondly, the strongly forced rain event was of the 
order of a day later in the ECMWF analysis and this led to an 
expected delay in the peak rain produced in the LAMs and GAMs. 
Interestingly, the GAMs delayed the peak rain rate by a further 
day when compared to the LAMs and produced a weakened peak. 
As a reduced range of precipitation rates is a typical feature in 
many climate models (Stephens et al. 2010), we suggest that this 
may be a useful test case to study this despite the fact that there 
is already a signal for this in the driving analysis. The SCMs also 
produced a reduced peak in precipitation when compared to the 
CRMs.

A key Ending of this study was that all model types had a lower 
tropospheric dry bias for this case and that the ECMWF analysis 
itself had a significant dry bias, particularly in the lowest levels. We 
speculated that, as all the GAMs had a tendency to produce a large 
dry bias, it was therefore the model contribution to the ECMWF 
analysis which led to bias in the analysis itself. It is possible that 
the dry bias which was seen most strongly in the SCMs and the 
GAMs could be the cause of the reduced precipitation intensity 
in the GAMs and the SCMs since they will have a reduced source 
of moisture for producing the precipitation.

This study also highlighted that there remains a great deal 
of uncertainty in ice microphysics across models. There was 
essentially a large spread in ice contents for all four model types 
which, given they all typically use similar bulk microphysical 
schemes, suggests that this remains an area for model developers 
on which to focus their attention. It also means there are no 
reference models for this kind of experiment, so observations to 
constrain the models remain a critical requirement. Liquid cloud 
was a somewhat different story. In the models which had explicit 
convection or cloud-scale dynamics (LAMs and CRMs), there was 
good agreement and small multi-model spread in liquid water 
profiles. However, for models with parametrized convection, 
there were notable differences from the CRMs and LAMs and large 
multi-model spread. The focus of those developing convection 
schemes tends to be on their impacts on the vertical transport of 
heat and water vapour, and on surface precipitation. The results 
shown here suggest that there also needs to be a focus on the 
clouds produced.

The challenges of comparing clouds and microphysical 
properties across model types were also highlighted in this paper. 
In particular, we noted that bulk microphysical schemes make

---- Mean with std
Median with I.Q.R 

- - ■ Individual models

Ice content (g kg"1)

Figure 10. SCM ice contents averaged for the dry period.

different assumptions about how each category (e.g. snow, ice 
and graupel) is defined. However, often only the ice is prognostic 
and reported in many SCMs and GAMs, i.e. a precipitating 
ice hydrometeor content is not always diagnosed or reported. 
This makes a comparison with CRMs and LAMs difficult. An 
appropriate comparison may be to use the water content as 
seen in the radiation scheme, but it is quite possible that many 
models do not consider precipitating ice despite its significant 
contribution to optical depth (Fetch, 1998). Therefore, to really 
understand how clouds compare across models of all types, 
we need to be very specific about the species in the model. 
While forward modelling and simulators can help (and this 
was used to compare CRMs with radar in Fridlind et al., 2012), 
model developers would benefit from some clear comparisons of 
different hydrometeor types, clearly defining what they are, and 
how they influence radiative transfer. We acknowledge that it may 
be premature to focus solely on ice hydrometeor type, given that 
there is a lack of observational constraint. However, it is useful 
to understand how different treatments of the microphysics and 
their application within radiation schemes vary between models 
and to identify the impact of these differences. We therefore 
have a further recommendation for future multi-model type 
intercomparisons to clearly diagnose all hydrometeor types in 
their models separately and to define how they interact with 
radiation.

In summary, the TWP-ICE field campaign and the inter
comparisons of four different model types provide an extremely 
valuable resource for those developing models. This article (along 
with the four individual intercomparison articles) highlights some 
interesting features which this experiment can be used to study 
further, but there are likely to be many more. We have also 
made recommendations for some changes to the forcing for those 
using this case for their model development, as well as vari
ous recommendations for those involved in coordinating future 
multi-model type intercomparisons.
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ABSTRACT

The aim for a more accurate representation of tropical convection in global circulation models is a long
standing issue. Here, the relationships between large and convective scales in observations and a stochastic 
multicloud model (SMCM) to ultimately support the design of a novel convection parameterization with 
stochastic elements are investigated. Observations of tropical convection obtained at Darwin and Kwajalein 
are used here. It is found that the variability of observed tropical convection generally decreases with in
creasing large-scale forcing, implying a transition from stochastic to more deterministic behavior with in
creasing forcing. Convection shows a more systematic relationship with measures related to large-scale 
convergence compared to measures related to energetics (e.g., CAPE). Using the observations, the param
eters in the SMCM are adjusted. Then, the SMCM is forced with the time series of the observed large-scale 
state and the simulated convective behavior is compared to that observed. It is found that the SMCM cloud 
fields compare better with observations when using predictors related to convergence rather than energetics. 
Furthermore, the underlying framework of the SMCM is able to reproduce the observed functional de
pendencies of convective variability on the imposed large-scale state—an encouraging result on the road 
toward a novel convection parameterization approach. However, establishing sound cause-and-effect re
lationships between tropical convection and the large-scale environment remains problematic and warrants 
further research.

1. Introduction

General circulation models (GCMs) employed in cli
mate projections are the tool of choice when quantifying 
the anthropogenic influence on Earth’s climate, ultimately 
answering the question as to the degree to which humanity 
has an influence on global-mean surface temperature. Over
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the past decades, GCMs have undergone considerable 
development, manifested in an ever larger increase in 
complexity and resolution. However, uncertainty in cli
mate sensitivity has not been substantially reduced since 
its ad hoc introduction by Charney et al. (1979) and major 
atmospheric processes are still subject to considerable 
uncertainties. Of these, atmospheric convection and the 
clouds and feedbacks associated with it are most probably 
the most uncertain in the latest generation of GCMs 
(Randall et al. 2007). This is not only true for the multi
model ensemble of the phase 3 of the Coupled Model 
Intercomparison Project (CMIP3; Meehl et al. 2007), but

© 2013 American Meteorological Society
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model parameters associated with convection are often 
the most sensitive in perturbed parameter ensembles 
(Murphy et al. 2004; Klocke et al. 2011).

Uncertainties in the representation of convection in 
current-generation GCMs not only lead to uncertainties 
in estimates of climate sensitivity, but also manifest 
themselves in an erroneous simulation of precipitation. 
Generally, GCMs are capable of capturing the overall 
amount of precipitation well, but the spatial distribution 
and variance often compare poorly to observations (e.g., 
Dai 2006; Pincus et al. 2008). Because of the limited spa
tial resolution of a GCM, atmospheric convection is of 
subgrid-scale nature and can thus not be explicitly re
solved and must be parameterized. Since the emergence 
of the first convection parameterization techniques some 
four decades ago, the response of convective elements to a 
given large-scale atmospheric state has mostly been for
mulated as purely deterministic [see Arakawa (2004) for 
a review], which implicitly prevents a particular model 
integration from developing convective variability beyond 
that given by the atmospheric state at the gridpoint level.

It is just in the last decade that a possible solution to this 
lack of variability in parameterized subgrid-scale pro
cesses has emerged. This solution is based on represent
ing the variability in the response of unresolved processes 
to the large-scale environment in a dynamically stochastic 
rather than in a purely deterministic manner (Palmer 
2001) and has been shown to increase predictive skill of 
numerical weather prediction (i.e., Buizza et al. 1999).

Specifically targeted toward improving the represen
tation of convection, Lin and Neelin (2000, 2003) intro
duced random perturbations to convective available 
potential energy (CAPE) or the heating profile of the 
host convective scheme and found that even such a simple 
approach significantly enhanced precipitation variance 
toward that of observations. Randomly perturbing the 
trigger function of the Kain-Fritsch convection scheme 
also proved to yield an increase in predictive skill (Bright 
and Mullen 2002). Teixeira and Reynolds (2008) randomly 
sampled convective-parameterization-relevant variables 
from a subgrid-scale distribution and found an increase 
in the spread of an ensemble prediction system and in 
particular a better representation of tropical convection. 
A similarly simple approach was taken by Tompkins and 
Berner (2008), who randomly sampled a subgrid-scale 
relative humidity distribution to perturb a convective 
parcel’s initial humidity and/or the humidity of the en
trained air during ascent. Although promising results 
were obtained for midlatitudes, the methodology em
ployed did not yield improvements in tropical convection. 
In all the studies mentioned above, the randomly sampled 
deviations were assumed proportional to the mean of the 
perturbed variable, an assumption shown to be valid

when using cloud-resolving model data as a surrogate for 
observations (Shutts and Palmer 2007).

Taking a step further from just modifying the input 
parameters for existing convective parameterization clo
sures and cloud models, several recent studies focused on 
formulating more advanced stochastic schemes. Majda 
and Khouider (2002) introduced a stochastic parameter
ization of convective inhibition (CIN) based on the Ising 
model of statistical mechanics. It is coarse grained to 
obtain a Markov birth-death process, which is two
way coupled to the large-scale dynamics and which can 
be integrated with very little computational overhead 
(Khouider et al. 2003). The stochastic CIN model is 
used in Khouider et al. (2003) and in Majda et al. (2008) 
to improve the wave variability and climate in an other
wise deficient mass flux-like parameterization in the 
context of a simple 1.5-layer toy GCM. Plant and Craig 
(2008) calculated a distribution of convective plumes 
and then randomly sampled this distribution to obtain 
a plume ensemble that matches a required gridbox-mean 
mass flux given by a CAPE closure. Testing in a single
column model environment yielded high variability for 
small grid boxes, approaching the deterministic limit with 
increasing gridbox size. Recently, this scheme was tested 
in a limited-area model ensemble over central Europe 
and results showed a promising increase in precipitation 
variance (Groenemeijer and Craig 2012). Although not 
concentrating on deep convection, the study of Dorrestijn 
et al. (2013) represents a notable approach to stochastic 
parameterization of shallow cumulus convection. They 
applied a Markov chain method to sample pairs of tur
bulent heat and moisture fluxes obtained from large-eddy 
simulations (LESs) and found a good agreement in the 
calculated ensemble spread compared to the LES data. 
Following the coarse-graining ideas used in Khouider 
et al. (2003), Khouider et al. (2010, hereafter KBM10) 
designed the stochastic multicloud model (SMCM) based 
on a birth-death process to represent tropical convec
tion. The SMCM calculates the evolution of a cloud 
population consisting of three cloud types associated with 
tropical convection (congestus, deep convection, strati
form) constrained by the large-scale atmospheric state. 
The state of the cloud ensemble at any given time and 
large-scale forcing is represented by area fractions per 
cloud type on a subgrid-scale lattice. The SMCM was 
shown to reasonably simulate tropical convection and 
associated wave features when coupled to a simple two- 
layer atmospheric model [KBM10; Frenkel et al. 2012 
(hereafter FMK12), 2013].

As the vast majority of today’s GCM convection 
schemes are mass flux schemes, the cloud area fractions 
simulated by the SMCM could prove valuable for in
troducing a stochastic component to such schemes. Then
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at least one part (area) of the cloud-base mass flux would 
yield a stochastic component, leaving the other part 
(updraft velocity) to be assigned in another suitable 
fashion.

It is the aim of this study to provide an assessment of 
whether the underlying framework of the SMCM is suit
able to reproduce observed convective behavior. In doing 
so, we analyze observed convective behavior and sub
sequently adjust the model parameters, which have so far 
been based on sensible empirical assumptions (KBM10), 
to match the observed mean response of convection to the 
large-scale state. We then use the resulting adjusted model 
to test whether its underlying framework is suitable to 
reproduce the statistical mean behavior of observed con
vection, the positive outcome of which would render the 
SMCM a useful tool for convection parameterization.

The observational dataset that we use in this study is 
described in Davies et al. (2013) and represents a long
term, large-scale dataset for three consecutive wet seasons 
over Darwin, Australia, complemented by an identically 
derived but shorter dataset representative for Kwajalein. 
The Darwin dataset has been shown to contain valuable 
information for characterizing relationships between at
mospheric convection and the large-scale state, with one 
of the most notable findings being that the relationships 
between convection and CAPE or vertical velocity are 
shown to be entirely stochastic or quasi deterministic, 
respectively (Davies et al. 2013).

We introduce the basics of the SMCM, the observa
tional dataset, and the observation-derived forcing for the 
SMCM in section 2 and present the statistical relation
ships of observed convection to large-scale variables in 
section 3. We then adjust the parameters of the SMCM, 
force it with the observed large-scale state, and analyze 
the statistics of the modeled convection as well as the 
stochasticity of the model solution in section 4. Section 5 
gives a summary, conclusions, and a short outlook. 2

2. Prerequisites: The model and the observations

In this study, we utilize the recently introduced SMCM 
(KBM10) in conjunction with a large-scale observational 
dataset representative of a tropical location. In a nut
shell, we investigate the degree to which the mathemat
ical framework of the SMCM is suitable to reproduce the 
behavior of observed tropical convection, a necessary 
step toward a possible future usage in GCMs. In the fol
lowing, we briefly introduce the SMCM (section 2a) and 
the observational dataset (section 2b).

a. The SMCM: A short introduction

Given the temporal evolution of a large-scale atmo
spheric state representative of a tropical location, the

SMCM simulates the evolution of an ensemble of three 
cloud types associated with tropical convection on a 
lattice containing n X n sites. The considered cloud types 
are congestus and deep convective as well as stratiform 
clouds (shallow convection is not considered) and the 
large-scale atmospheric state is given by two variables: 
one representing a proxy for convective propensity and 
the other representing a proxy for midtropospheric 
dryness (cf. section 2c). In the SMCM, the evolution of 
the cloud ensemble is represented by a coarse-grained 
birth-death process. This process is evolved in time 
by means of an acceptance-rejection Markov chain 
Monte Carlo method based on Gillespie’s exact algo
rithm (Gillespie 1975; see KBM10 for details of the 
implementation). Each individual lattice site can take 
one of four states: clear sky, congestus cloud, deep 
convective cloud, or stratiform cloud. The total size of 
this lattice, say 20 X 20 sites, is assumed as being rep
resentative of a GCM grid box, but there is no explicit 
spatial scale associated with either the individual lat
tice sites or the total lattice. There is also no spatial 
coherence between individual lattice sites (i.e., the tem
poral evolution at one site is completely independent 
of that of its neighbors). However, local interactions 
between lattice sites can be easily incorporated, pro
vided the strength and nature of these interactions are 
understood (Khouider 2013).

The evolution of this birth-death process is deter
mined by a set of equations that define transition rates 
from one of the four states (see above) to another. In
dividual transition rates can, but need not, be dependent 
on the given large-scale state and their formulation is 
mainly inspired by physical intuition and based on spe
cific rules; for example, a deep convective cloud is not 
allowed to form from a stratiform cloud (see KBM10 for 
details). The individual transition rates are associated 
with time scales assumed to be representative for a spe
cific transition. These transition time scales have been 
chosen in an ad hoc but physically meaningful manner 
and represent the only parameters that can be used to 
tune the SMCM in its current formulation. KBM10 
presented two sets of transition time scales, both of which 
are based on physical intuition gained from observations 
and modeling studies of tropical convection and should 
be considered as rough estimates. Recently, FMK12 
found a third set of transition rates that improves the 
intermittency of simulated convection compared to the 
results of KBM10. In this study, we use observations to 
take a closer look at these previously made choices of 
transition time scales.

So far, the SMCM has not been used in combination 
with observations but was coupled to a simple two- 
layer atmospheric model capable of capturing the main
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characteristics of tropical convection and associated 
wave features (Khouider and Majda 2006, 2008a,b; 
KBM10). There, simple formulations of precipitation 
formation and the associated heating profiles accounted 
for the feedback to the dynamics. Recently, FMK12 used 
the SMCM to explore its capabilities in the context of 
improving GCM convection parameterizations by using 
the abovementioned two-layer model to flows about an 
equatorial ring. They found that using the SMCM in
creases the variability of tropical convection compared 
to a deterministic convection parameterization and 
that the SMCM is able to produce a realistic Walker 
cell circulation when forced with a longitudinal SST 
gradient.

One may argue that the capability of the SMCM to 
produce sensible results is given by its design principles 
(e.g., prescribing certain transition time scales, assuming 
tropical convection to be dependent on two predictors 
only, or coupling it to a simple two-layer atmospheric 
model). In fact, a comparison of the SMCM-simulated 
cloud area fractions to observational data is still out
standing. It is the aim of this study to use the SMCM in 
a diagnostic fashion by forcing it with an observed large- 
scale state to investigate the feasibility of using its 
underlying stochastic concept for convective parameter- 
izations in full GCMs.

b. Two datasets of observed large-scale atmospheric 
state over tropical areas

We utilize two datasets comprising various quantities 
describing the large-scale atmospheric state over a trop
ical location for the purpose of this study. One dataset 
covers an approximately 190 X 190 km2 pentagon
shaped area centered over Darwin, Australia (Davies 
et al. 2013), investigated during the Tropical Warm 
Pool-International Cloud Experiment (TWP-ICE; May 
et al. 2008). The size of the area is chosen to approxi
mately represent that of a typical GCM grid box and the 
gridbox-mean values of atmospheric variables are com
puted using a variational analysis after Zhang and Lin 
(1997). This variational analysis is applied to a large part 
of three consecutive wet seasons (2004/05, 2005/06, 2006/ 
07). Over northern Australia, the wet season is defined as 
the time period between September of one year and April 
of the following year. The dataset and its documentation 
can be obtained via the Atmospheric Radiation Mea
surement (ARM) Climate Research Facility’s website 
(http://www.arm.gov/data/pi/46) and we use all available 
data for the analysis presented here. Atmospheric vari
ables are available every 6 h. Information on clouds and 
precipitation is retrieved from radar observations by the 
C-band polarimetric (CPOL) research radar (Keenan 
et al. 1998) located at Gunn Point and operated by the

Australian Bureau of Meteorology. From those data, rain 
area fractions attributable to either stratiform or con
vective precipitation are determined after Steiner et al. 
(1995) and used as a proxy for stratiform and convective 
cloud fractions (Kumar et al. 2013b). Convective clouds 
are separated into congestus and deep convection ac
cording to cloud-top height (CTH): convective clouds 
having CTHs of less than 7 km are classified as congestus 
whereas clouds having higher CTHs are classified as deep 
convective clouds (Kumar et al. 2013a). The dataset en
compasses the period of TWP-ICE (May et al. 2008), 
which took place in the same area during January and 
February 2006. The collected data of meteorological re
gimes encountered during TWP-ICE have already proven 
to be very valuable for the evaluation of GCM convective 
parameterizations (e.g., Lin et al. 2012).

The second dataset represents the large-scale atmo
spheric state over Kwajalein and is obtained by applying 
the same variational analysis as is used for the Darwin 
dataset. Convective- and stratiform-precipitation area 
fractions are also calculated according to Steiner et al. 
(1995); however, congestus area fractions are not avail
able because the radar data available to us only consist 
of horizontal 2D scans. The Kwajalein dataset covers 
a shorter time period (May 2008-January 2009) and was 
produced to match the observation intensive period of 
the Year of Tropical Convection (YOTC; Waliser and 
Moncrieff 2007) project. For better comparability, the 
Kwajalein data are derived for an area identical to the 
pentagon-shaped one over Darwin.

We use both datasets in this study to show that the 
functional dependency of tropical convection on a given 
large-scale atmospheric state is similar for both locations 
although they are subject to distinctly different bound
ary conditions (e.g., land-sea distribution or monsoonal 
forcing).

To illustrate the multitude of meteorological regimes 
found in the datasets, we show the time series of se
lected atmospheric parameters for the time period of 
10 November 2005-18 April 2006 over Darwin in Fig. 1. 
It is evident that apart from the variability during the 
TWP-ICE period (19 January-28 February 2006; May 
et al. 2008), the snapshot shown in Fig. 1 alone contains 
a number of evident meteorological regime changes 
that result in distinctly different cloud populations. 
Characterizing the middle-troposphere level, the time 
series of relative humidity qualitatively exemplifies ‘‘wet’’ 
periods around 20 January or 1 April 2006 (among 
others) and ‘‘dry’’ periods around 25 November 2005 or 
1 March 2006 (among others) of the time series. As shown 
in the plot of derived convective and stratiform cloud 
fractions, the abovementioned wet and dry periods are 
each associated with specific cloud regimes: the wet
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Fig. 1. Subset of the dataset comprising the atmospheric large-scale state over Darwin as used in this study. Time 
series covering the time period from 10 Nov 2005 to 15 Apr 2006 showing (top) vertically resolved relative humidity 
as well as (middle) convective and (bottom) stratiform cloud fractions obtained from a scanning rain radar situated at 
Darwin, Australia. See text for details.

periods are generally associated with higher cloud frac
tions compared to the dry periods. Stratiform clouds ex
hibit the highest cloud area fractions, with deep convective 
cloud fraction being about an order of magnitude less and 
congestus cloud fraction being again an order of magni
tude less than that. It must be noted that the derived cloud 
area fractions are representative for precipitating clouds 
only. However, this does not present a serious issue; that is, 
fractions of tropical congestus, deep convective, or strati
form clouds derived from the scanning rain radar compare 
very well to those derived from a vertically pointing cloud 
radar (Kumar et al. 2013a).

It should be mentioned at this point that the obser
vational data to which we are comparing the SMCM- 
simulated cloud fractions are also subject to uncertainties 
and give room for interpretation. The most prominent 
uncertainty, of course, is the estimation of rain rates from 
radar echoes, which is not too straightforward itself, and 
the subsequent assumption that the area of a particu
lar type of rainfall [derived after Steiner et al. (1995)] is 
equal to the cloud fraction of that particular cloud type. 
Therefore, this analysis is limited to precipitating clouds

only. Also, land surface characteristics of the geographical 
area covered by the large-scale observational dataset used 
in this study are far from homogeneous. The CPOL radar 
at Gunn Point covers both water and land surfaces, with 
some of the land surface areas being subject to a pro
nounced convective diurnal cycle that results in some of 
the deepest convection on the planet (Keenan et al. 1990; 
Crook 2001). As these events are locally driven, envi
ronmental conditions leading to their initiation cannot be 
represented in the observational dataset. This uncertainty 
in environmental conditions obviously does not apply to 
the Kwajalein data.

c. Deriving model forcing parameters from the 
observations

The evolution of the cloud ensemble as simulated by 
the SMCM with respect to the large-scale atmospheric 
state is designed to be dependent on two predictors. One 
parameter is used as a proxy for the environment's po
tential to develop and sustain convection C and the 
other is used as a proxy for midtropospheric dryness 
D. Here, the underlying assumption is that convection is
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initiated (sustained) and hindered (depleted) by high 
values of C (D). Because we aim to use the SMCM in 
a diagnostic manner by forcing it with an observed large- 
scale atmospheric state, we have to derive C and D from 
the available observational data. This requires us to 
adapt the formulas for calculating C and D as given in 
KBM10 as these are defined to be used for a large-scale 
state given by the simple two-layer model (Majda and 
Shefter 2001; Khouider and Majda 2006).

As mentioned above, C and D are used as proxies for 
the convective potential of the tropospheric column and 
midtropospheric dryness, respectively. In the original 
SMCM these quantities are scaled to vary roughly be
tween 0 and 2. For the evaluation of the SMCM, we 
derive a total of five (instead of just two) forcing pre
dictors. We proceed in this way because there may exist 
a multitude of possible predictor constellations for ad
equately describing the dependency of tropical convec
tion on the large-scale atmospheric state.

1) C—A PROXY VALUE FOR CONVECTIVE 
PROPENSITY

In the original formulation given in KBM10, C is given 
by the scaled CAPE (calculated for a parcel lifted from 
990 hPa; CC in the following). CAPE corresponding to 
the time series shown in Fig. 1 yields values in the range 
0-1700 Jkg-1; we therefore scale the CAPE values by 
1000 J kg-1 to achieve the desired range of CC 2 [0; 2].

As it has been argued before that CAPE alone may 
not be a good proxy for characterizing the occurrence 
of tropical convection (e.g., Mapes and Houze 1992; 
Sherwood 1999; Sobel et al. 2004; Fletcher and Bretherton 
2010), we also define additional versions of C, represented 
by scaled values of either the ratio of low-level CAPE 
(LCAPE; i.e., CAPE integrated only to the freezing level), 
to total CAPE (CrC), or large-scale vertical velocity at 
500 hPa W500 (C«):

C,c - 2fLCAPE^
\ CAPE/

Cv 52 10hPa h v500’ 500 0. (1)

The choice to investigate the proxies CC and Cv is rel
atively intuitive and straightforward, whereas the choice 
of CrC warrants explanation. KBM10 found that as
suming that congestus activity is positively related to 
LCAPE (derived from a two-layer atmospheric model) 
rather than total CAPE improves the SMCM variability. 
However, our observations show that LCAPE alone is 
roughly constant throughout the whole observational 
period and it is only the ratio to total CAPE that re
sembles some relationship with observed convection.

For illustrative purposes, we show the time series of C 
for the subset of the data shown in Fig. 1 in the top two 
panels in Fig. 2.

Recalling the preceding short analysis of wet and dry 
periods (section 2b), the pattern of CC (Fig. 2, top) re
veals no evident correlation to these periods. The rela
tively high values of CC during the first 40 days of the 
time series should yield intense convective activity, but 
the observed cloud fractions do not support this. How
ever, the observed low convective activity during those 
roughly 40 days could be explained by a relatively dry 
middle troposphere as indicated by the time series of 
DRH, which may hinder the development of deep con
vection (e.g., Redelsperger et al. 2002). Furthermore, 
the wetter periods are characterized by low CC values 
throughout. However, stratiform cloud fraction, most 
probably originating from deep convection, is notably 
high during these periods. This supports a separate anal
ysis of the present dataset, which indeed suggests that, in 
the area of interest, convective precipitation shows no 
significant correlation with CAPE (Davies et al. 2013). 
In fact, CAPE has been shown to be approximately an
ticorrelated with or be entirely unrelated to precipitation 
for regions in relatively close proximity to the areas cov
ered by our dataset (Mapes and Houze 1992; McBride and 
Frank 1999; Sobel et al. 2004).

When convective activity is high, CrC exhibits large 
values (cf. Figs. 1 and 2), implying that in situations of 
intense convection the total CAPE is dominated by the 
contribution coming from below the freezing level. Be
cause low-level CAPE itself does not vary too much, it is 
the lack of contributions to total CAPE coming from 
above the freezing level that makes up for high values of 
CrC, consistent with the findings of McBride and Frank 
(1999), who concluded that high values of CAPE are 
dominated by contributions from above 600 hPa. High 
values of CrC thus imply that during periods of intense 
convection, such as those shown in Fig. 1, the specific 
heating profile of stratiform precipitation (i.e., latent 
heating of the upper troposphere and evaporative cooling 
of the lower troposphere; e.g., Houze 1997) serves to 
adjust the lapse rate toward the moist adiabat. However, 
it is the occurrence of convection itself that may enforce 
high values of CrC, resulting in possible ambiguities when 
attempting to use it as a predictor for convection.

From a dynamical perspective, it is well known that 
large-scale vertical ascent, and thus moisture conver
gence, is associated with and facilitates the development 
of deep convection [cf. the recent study of Hohenegger 
and Stevens (2013)]. Like the convective area fractions 
shown in Fig. 1, the time series of Cv also appears highly 
intermittent and seems to very closely follow the former. 
This is especially true for the first roughly 40 days of the
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Fig. 2. Time series of model forcing predictors obtained from the large-scale state shown in Fig. 1. (top), (middle) 
Values for C (i.e., the proxy for convective propensity), (bottom) Values for D (i.e., the proxy for midtropospheric 
dryness). See text for calculation of the predictors.

time series in which the observed stratiform and con
vective cloud fractions are relatively low. During that 
particular period, Clo shows relatively small values with 
higher ones occurring sparsely, indicating a weakly but 
somewhat constantly forced convective regime. How
ever, ambiguities in establishing sound cause-and-effect 
relationships between C and convection are apparent 
for Clo, which is directly related to large-scale conver
gence, which can in turn be considered as both a cause 
and consequence of convective heating. In fact, discus
sion of these ambiguities is one of the most persistent 
issues in the meteorological community. Ambiguities 
may also arise from the method to derive Clo itself. 
Vertical pressure velocity <a is the key parameter ob
tained from the variational analysis used to derive the 
large-scale atmospheric state we use here. Since the 
variational analysis itself is constrained by total areal 
rainfall, <a is somewhat tuned to match observed rain 
rates. However, because we use area fractions, and not 
rain rates, of convective and stratiform rain in our 
analysis, the causal link to the data processing in the 
variational analysis is weak.

2) D—A PROXY FOR MIDTROPOSPHERIC 
DRYNESS

In the original formulation of the SMCM, the proxy 
for midtropospheric dryness DBe is given by

where 0e BL is the equivalent potential temperature in the 
boundary layer, 0e m is the equivalent potential temper
ature in the midtroposphere, and 15 K is a climatological- 
mean scaling factor (Khouider and Majda 2006). Here, 
the underlying assumption is that the difference between 
the equivalent temperatures as given in Eq. (2) is large 
when the middle troposphere is dry compared to the 
boundary layer. For the calculation of DBe from the ob
served large-scale state, we define 0e,BL and 0ejn as the 
equivalent potential temperatures at 1000 and 500 hPa, 
respectively. To yield the desired range oiDBe fc [0; 2], we 
use a scaling factor of 10 K instead of 15 K.

Additional to the original formulation of D, we intro
duce a simpler proxy for representing the midtropospheric
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dryness by use of the relative humidity at 500 hPa. Then, 
Drh is given by

drh 5 2 3 (1 2 RH500), (3)

with RH500 2 [0; 1]. The resulting time series of D cal
culated with both methods are shown in Fig. 2 (bottom).

Unlike the time series of C, the ones for D show a very 
high level of agreement. It is just for two short time 
periods when the values of Dge and DRH disagree sig
nificantly, namely around 5 February and 10 April 2006 
of the time series displayed in Figs. 1 and 2. These pe
riods are relatively dry compared to the rest of the time 
series, with low values of relative humidity reaching 
down into the boundary layer. For these two cases, rel
atively high values of DRH indicate a dry case, whereas 
the low (or even negative) values of DUe indicate a rather 
wet case. This is because low values of ue occur through
out the tropospheric column down to the surface, thereby 
not yielding the anticipated large difference between ue 
at 1000 and 500 hPa. Defining DUe by Eq. (2) therefore 
poses a limitation for running the SMCM when using 
observational data. As DRH agrees very well with DUe 
throughout the rest of the time series, we will use DRH for 
all further analyses presented in this study. Also, KBM10 

used Dee simply because it is more convenient in the 
context of the two-layer model.

3. The observed mean convective state at Darwin 
and Kwajalein

Before assessing whether the mathematical frame
work of the SMCM is suitable for reproducing observed 
convective behavior of tropical convection, we first an
alyze the observations laid out in section 2b in a manner 
suitable for direct comparison with SMCM output. 
Given the specific values of the forcing parameters C 
and D (cf. section 2c), the birth-death process used in 
the SMCM yields stationary cloud fraction distributions 
of every cloud type. Hence, it is possible to calculate a 
2D histogram of the stationary cloud fraction as a func
tion of C and D. Examples of such equilibrium cloud 
fraction distributions for a given set of transition time 
scales are given in KBM10. Here, we therefore calculate 
joint histograms of observed convective and stratiform 
cloud fractions in the parameter space of observed values 
of C and D to enable a straightforward comparison be
tween observed and modeled convective behavior.

We show such joint histograms of mean observed cloud 
fractions for three sets of forcing parameters, as well as 
their relative standard deviations and number of mea
surements, in Figs. 3-5, for Darwin and Kwajalein. In 
the three sets of forcing parameters, the midtropospheric

dryness parameter is represented by DRH and the convec
tion parameter C is represented by CC, CrC, or Cv. Because 
of the observational limitations mentioned above, we only 
analyze deep convective and stratiform cloud fractions 
and neglect congestus clouds in the context of this study.

We only discuss the results for Darwin in detail. Gen
erally, the data for Kwajalein show the same relationships 
as for Darwin, but with less frequent high values of the 
C parameter and generally smaller stratiform cloud 
fractions. The important finding to keep in mind is that 
convective and stratiform cloud area fractions show very 
similar behavior at both locations given a particular large- 
scale atmospheric state, justifying using the observations 
from both locations together to investigate cloud frac
tions simulated by the SMCM. These results are also not 
impaired by the inconsistent treatment of congestus cloud 
area fractions between the two regions (i.e., excluding 
such clouds for Darwin observations and necessarily in
cluding them for Kwajalein observations).

When we stratify the observational data using CC as 
indicator for convective propensity (cf. Fig. 3), we obtain 
maximum area fractions for both cloud types for some of 
the smallest values of CC and DRH, indicating relatively 
high convective activity for small values of CAPE and 
a moist middle troposphere. Most observations fall 
into a range spanning the lower half of both parameter 
ranges, also resulting in the lowest cloud area fraction 
variability (i.e., relative standard deviation) in that range. 
Similar results are presented in McBride and Frank 
(1999), who found an inverse relationship between CAPE 
and precipitation when analyzing data obtained during 
active and break monsoon periods for a location in the 
Gulf of Carpentaria.

When stratifying the observations according to either 
one of the other two choices for C (cf. Figs. 4 and 5), we 
obtain a completely different functional dependency of 
convective and stratiform cloud fractions on C and D. 
Using CrC and Cv as choices for C leads to

1) maximum values for both cloud area fractions for 
highest values of C,

2) high and low cloud area fraction variability for low 
and high values of C respectively,

3) a sharp increase in cloud area fractions above a 
certain value of C and low values of D, and

4) most observations for low values of C spanning a wide 
range of DRH values.

The results give valuable insight into tropical convective 
behavior. For weak forcing of convective activity (i.e., 
small values of C), average cloud area fractions are small 
but exhibit large variability, indicating a somewhat sto
chastic behavior. This is particularly interesting because 
a large part of the observations yields weak forcing,
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which would normally act to reduce sample variability. 
The stronger the forcing of convective activity gets, the 
fewer observations are registered per bin, suggestive of an 
expected increase in sample variability. However, cloud 
area fraction variability is lowest for strong forcing of 
convection, suggesting a more and more deterministic 
behavior of convection with increasing forcing, in line with 
other results derived from the same dataset (Davies et al. 
2013). Physically, this implies that as forcing is weak, 
convection occurs more randomly in the domain, inducing 
large-scale convergence itself, which may lead to more 
large-scale organization and greater area fraction of con
vection. Examples for this behavior could be forcing of 
convection by local heterogeneities in land surface prop
erties (and thus surface fluxes) or effects of land-sea 
breezes. This could in fact lead to a positive feedback loop 
on various scales. However, assessing the effect that this 
kind of feedback behavior would have on the vertical 
ascent on the scales considered here (i.e., 190 X 190 km2) 
is beyond the scope of our study.

Our results, however, do not support the idea that the 
stochastic component of unresolved subgrid-scale pro
cesses scales linearly with their mean response as put 
forward in earlier studies (e.g., Buizza et al. 1999; Shutts 
and Palmer 2007). The sharp increase in cloud area 
fraction above a certain value of C, accompanied by low 
values of D, is consistent with the “threshold behavior' 
of convection as laid out in, for instance, Peters and 
Neelin (2006). Furthermore, the histograms we show in 
Figs. 4 and 5 indicate that at least for these two choices of 
C, deep convective as well as stratiform area fractions 
are anticorrelated with dryness at midlevels, broadly 
consistent with earlier findings from observational studies 
(Redelsperger et al. 2002; Derbyshire et al. 2004; Takemi 
et al. 2004; Takayabu et al. 2010).

We also note that regimes exhibiting both a strong 
forcing of convection and a dry middle troposphere 
basically do not exist at the locations considered in this 
study. This may be obvious, but such a result is not ap
parent from Fig. 3 where there still exist a quite large
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Fig. 4. As in Fig. 3, but for CrC and Z>RH. The black markers denote the mean values of CrC and Z>RH.

number of measurements yielding a combination of 
a dry middle troposphere and high values of Cc.

Histograms similar to those shown in Figs. 3-5 could 
in principle also be derived from GCM output. Because 
mass flux-based convective parameterization closures 
currently employed in state-of-the-art GCMs do not 
normally predict a parameter that directly corresponds 
to the deep convective area fraction that we use here, 
one could, for example, analyze the functional depen
dence of the total mass flux itself on large-scale param
eters. Such an analysis, however, is beyond the scope of 
this study and will be left for future work.

4. Reproducing observed convective behavior 
using the SMCM

a. Adjusting the model parameters

The equilibrium cloud fractions of the multistate 
Markov chain used in the SMCM are calculated by ana
lytically determining its stationary equilibrium distribu
tion (cf. KBM10 for details). The purpose of this section is

thus not to evolve the SMCM in time but to arrive at 
analytically exact equilibrium cloud fractions that allow 
for a tuning of the model to the observations presented 
in section 3. By the ergodic theorem of Markov chains, 
the equilibrium measure is unique and coincides with 
long-time-average area fractions of the three cloud types 
for each given set of model parameters (i.e., the transition 
time scales and the large-scale forcing). We show results 
from evolving tuned versions of the SMCM in time in 
section 4b. Here, the analytically derived equilibrium dis
tribution is represented by area fractions for each of the 
four allowed states of the Markov chain (i.e., clear sky, 
congestus, deep convection, or stratiform clouds). The 
sum of all four area fractions for each pair of discrete C 
and D values is 1 and the distribution of area fractions 
among the four states can be adjusted by manipulating the 
transition time scales associated with the transition from 
one state to another.

In previous publications, the transition time scales 
used in the SMCM either were chosen in an ad hoc but 
physically meaningful manner (KBM10) or were picked 
to improve the intermittency of the simulated convection
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in idealized experiments (FMK12). Here we use obser
vations to gauge the applicability of the chosen time scales 
to represent observed convective behavior. For reference 
purposes, we show the joint histograms of the analytically 
derived equilibrium deep convective area fractions for the 
transition time scales introduced in KBM10 and FMK12 
(cf. Table 1) in Fig. 6. These joint histograms clearly in
dicate that the previously used transition time scales are 
not suited for reproducing the statistics of observed con
vection laid out in section 3 for several reasons. First, the 
transition time scales used in case 1 of KBM10 and in 
FMK12 yield equilibrium deep convective area fractions 
about an order of magnitude larger than those observed. 
Second, the transition time scales used in case 2 of KBM10 
result in a deep convective area distribution unsuitable for 
reproducing observed behavior.

To obtain a model that is most suitable for repro
ducing the observed convective behavior, we systemat
ically adjust the transition time scales until we arrive at 
a close visual match between the analytical equilibrium 
solution of the SMCM and the observed mean deep

convective cloud fractions for each convective proxy 
(Cc, Crc, CM) for Darwin shown in Figs. 3-5 (we only use 
data for Darwin here to test the robustness of the ad
justed transition time scales by applying it to the Kwa
jalein data in the next section). This close match should 
ideally agree to the general cloud fraction distribution in 
C-D space in both magnitude and shape. Additionally, 
the equilibrium area fraction calculated for the mean 
observed C and D values (black dots in Figs. 3-5) should 
also match closely. The second requirement achieves 
a tuning of the model to the “mean observed climate,“ 
thus yielding an optimal representation of observed 
tropical convective cloud distribution, given that the 
cloud-type relationships imposed in the SMCM corre
spond to those in nature. We find that it proves difficult 
to adequately satisfy both conditions, leading to a trade
off of getting either the mean climate or the maxima 
right. In general, we focus on arriving at the correct 
mean climate cloud fractions as this is of higher rele
vance regarding a possible future implementation into 
GCMs. The final “best fit“ transition time scales for
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Table 1. Transition time scales (h) as used in the SMCM. The three leftmost columns contain the transition time scales introduced in 
previous studies (KBM10, FMK12), yielding the equilibrium deep convective area fraction distributions in Fig. 6. The three rightmost 
columns contain the visually derived “best fitting" transition time scales for each of the three convection proxies leading to the modeled 
equilibrium cloud fractions in Fig. 7 at Darwin.

Process

KBM10

FMK12

This study

Case 1 Case 2 Cc Gc C„

Formation of congestus (t0i) 1 3 1 1 1 1
Decay of congestus (t10) 5 2 1 1 1.2 1.2
Conversion of congestus to deep (ti2) 1 2 1 3 1.2 1.2
Formation of deep (t02) 2 5 3 4 2.2 2.2
Conversion of deep to stratiform (t21) 3 0.5 3 0.13 0.16 0.16
Decay of deep (t20) 5 5 3 5 2.2 2.4
Decay of stratiform (t30) 5 24 5 5 4 4

each convective proxy C are listed in Table 1 and a 
comparison of modeled equilibrium and observed mean 
deep convective area fractions as /(C, D) is displayed in 
Fig. 7. Given the number of transition time scales (seven), 
we acknowledge that our approach toward tuning the 
SMCM appears simple and ad hoc and that there may be 
more sophisticated and quantitative methods. Ffowever, 
we are confident about the time scales we arrive at, as 
these do represent the visually closest match possible and 
any deviations from the chosen sets lead to substantial 
deterioration of the resulting equilibrium cloud fraction 
distributions shown in Figs. 3-5.

As expected from the observed mean cloud fractions 
as/(C, D), we find that matching the SMCM equilibrium 
cloud fractions to the observed cloud fractions stratified 
by Cc results in starkly different time scales compared 
to the other two convection proxies (Table 1). Ffowever, 
all three sets of best-fit transition time scales preserve an 
important constraint laid out in KBM10, namely that

cloud decay acts on identical or longer time scales than 
cloud formation. It must be kept in mind, however, that 
these best-fit time scales were found by visually match
ing the joint histograms of modeled and observed area 
fractions.

The joint histograms displayed in Fig. 7 indicate that 
each of the three analytical equilibrium deep convective 
area distributions corresponding to the best-fit transition 
time scales in Table 1 has some difficulty in reproducing 
certain aspects of the corresponding observations at 
Darwin. For every version of C, the model overestimates 
deep convective area fraction for almost the entire range 
of considered combinations of C and D.

This overestimation is highest when using CrC to 
stratify the observations; however, the overall functional 
relationship is captured (cf. Fig. 4). Using observations 
stratified by Ccto adjust the transition time scales yields 
higher modeled area fractions at nearly every con
sidered C-D pair, with the degree of overestimation

Analytical equilibrium deep convective area fractions

Fig. 6. Analytical equilibrium deep convective area fraction of the SMCM's birth-death process given the two sets of transition time 
scales introduced in KBM10 and FMK12 (Table 1): (left).(middle) case 1 and 2 time scales of KBM10, respectively, and (right) time scales 
used in FMK12. For the two cases of KBM10, the transition from deep convective to stratiform area depends on C. See text and KBM10 
for details regarding the calculation of equilibrium area fractions.
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Fig. 7. (left) Joint histograms of analytically computed equilibrium deep convective area fractions of the SMCM 
and (right) the relative difference to observed mean deep convective area fractions at Darwin as a function of large- 
scale variables (top) Cc, (middle) CrC. and (bottom) C„ and _DRH. SMCM cloud fractions for each version of C 
correspond to the transition time scales shown in Table 1. Only histogram boxes having more than five observations 
are shown. The markers denote the mean observed values of Cc, CrC. and C„ and DRH at Darwin, respectively.
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showing no functional dependence on C and D. Using 
Cv, the SMCM’s equilibrium distribution resembles the 
functional dependency of the observations well. Further
more, the relative difference of modeled versus observed 
area fractions shows an evident dependency on C and D. 
The model over- and underestimates deep convective 
area fractions for low and high values of C, respectively. 
This transition from over- to underestimating the area 
fractions appears systematic and gradual, a promising 
result in terms of possible future model adjustments (see 
below). The modeled joint histograms in Fig. 7, however, 
do not show the capability of the SMCM concept to re
produce observed temporally resolved tropical convec
tion; they are merely analytical equilibrium solutions of 
the SMCM’s internal birth-death process given a partic
ular set of transition time scales (cf. KBM10 and refer
ences therein for details).

We conjecture that the main reason why the SMCM 
over- and underestimates deep convective area fraction 
for low and high values of Cv (and CrC), respectively, is 
not a matter of finding the correct transition time scales 
or of ill-formulated “transition rules’’ but is due to the 
functional dependency of transition rates on C and D. 
KBM10 formulate this dependency as

r(x) = 1 - e-x, x 2 [0; 2], (4)

with x being either C or D and Eq. (4) being directly 
linked to transition rates R; for example,

Rab=r(c)r(D) (5)

indicates the transition rate R from cloud state a to b. 
This formulation leads pronounced changes in transition 
rates for small values of C or D with the response be
coming less strong with increasing values of C and D. 
Therefore, the SMCM in its original formulation is not 
designed to reproduce the sharp increase in observed 
cloud fractions shown in Figs. 4 and 5 for higher values 
of C. Alternative formulations of G(x) could be sought to 
improve the SMCM’s capability to reproduce observed 
cloud area fraction distributions. This will be investi
gated in future research.

b. Applying the SMCM to observations

In this section, we use the three sets of observation- 
derived parameters discussed in sections 2c and 3 in 
combination with the best-fit transition time scales shown 
in Table 1 to perform simulations with the SMCM. We 
first quantitatively discuss the temporally resolved re
production of cloud area fractions compared to observa
tions in section 4b(1) and then carry out a more thorough 
statistical analysis in section 4b(2).

1) SMCM TEMPORALLY RESOLVED TROPICAL
convection

We use the subsets of the data from the Darwin and 
Kwajalein locations introduced in section 4b to compare 
the time series of observed cloud area fractions to those 
modeled by the SMCM for illustrative purposes. As we 
obtained the best-fit transition time scales shown in 
Table 1 from analyzing just Darwin data, application of 
these time scales to Kwajalein provides a strong test for 
our method. We force the SMCM with each of the three 
combinations of CC, CrC, and Cv with DRH. The internal 
model time step is set to 5 min. The 6-hourly observa
tions were linearly interpolated to match the model time 
step. The subgrid-scale lattice of the SMCM is set up to 
have 20 X 20 sites. As the whole domain covers an area 
of about 190 X 190 km2, each lattice site thus has an edge 
length of about 10 km. There is currently no fixed spatial 
scale for an individual lattice point considered in the 
formulation of the SMCM. Preliminary analysis shows 
that an increase in lattice sites, and the reduction of 
lattice size going with it, reduces the simulated temporal 
variability compared to observations but has no effect 
on correlations. This is mainly an effect of the SMCM- 
modeled cloud fractions approaching the deterministic 
limit of the Markov process (cf. KBM10).

From a GCM convection parameterization perspec
tive it thus seems attractive to use SMCM lattice sites 
with a globally uniform fixed spatial scale (e.g., 1 X 
1 km2), leading to increased convective variability with 
increasing GCM resolution (i.e., reduced GCM gridbox 
size). This would yield a more realistic representation of 
convection compared to current deterministic schemes.

The resulting modeled time series of deep convective 
cloud area fractions for Darwin and Kwajalein are shown 
in Figs. 8 and 9, with the observed time series included 
for reference purposes. We show neither observed and 
modeled congestus nor stratiform cloud fractions because 
our main interest lies in assessing the representation of 
deep convection as this is our current target for GCM 
convection parameterizations.

We first consider the observed and modeled deep 
convective area fractions over Darwin shown in Fig. 8 as 
we have adjusted the model parameters of the SMCM 
specifically for this location. Forcing the SMCM with CC 
results in more or less constant convective cloud area 
fractions showing no resemblance of the different re
gimes found in the observations. Because of the non
negative and mostly nonzero values of the CC time series 
(cf. Fig. 2), the SMCM cannot reproduce the intermit- 
tency of cloud area fractions found in the observations. 
The same issue is apparent when forcing the SMCM 
with CrC. However, periods of higher modeled deep
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Fig. 8. Observed and SMCM-modeled time series of deep convective area fraction over Darwin during the time 
period 10 Nov 2005-18 Apr 2006. SMCM time series are obtained by forcing the SMCM with the observed C and D 
parameters introduced in section 2c and the transition time scales shown in Table 1. Results indicate one possible 
solution of the stochastic modeling approach.

convective cloud fraction seem to loosely correspond to 
periods of higher observed fractions, giving slightly 
more confidence in using Crc over Cc.

The results from using Cw to force the SMCM show 
substantially more agreement with the observations, 
with Clo leading to more variability during periods of low 
convective activity, especially during the first month or 
so of the considered time period. Analysis of correla
tions between modeled and observed deep convective 
area fraction time series and probability distribution 
functions thereof confirms that using Clo as proxy for 
convective propensity results in a better representation 
of convective behavior compared to the other two proxies

(not shown). Despite these encouraging results, the is
sues raised toward the end of section 4 are apparent. For 
periods of weak forcing, the SMCM produces too high 
a deep convective cloud fraction whereas cloud fractions 
during strongly forced periods are substantially under
estimated compared to observations. This is exactly what 
is to be expected from the modeled equilibrium cloud 
fractions shown in Fig. 7.

The observed and modeled time series of deep 
convective area fraction for the Kwajalein area (Fig. 9) 
generally show the same behavior as the ones for the 
Darwin area (Fig. 8). In particular, the over- and un
derestimation of deep convective area fractions for
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Fig. 9. As in Fig. 8, but over Kwajalein during the time period 2 May 2008-31 Jan 2009.

small and large values of CM, respectively, is evident. 
Nevertheless, Cw proves to be the parameter of choice 
for reproducing deep convective features over Kwajalein 
with the SMCM. Considering that we did not use the 
Kwajalein data to adjust the transition time scales in 
the SMCM in the preceding part of this paper, this re
sult confirms the findings presented in section 3, namely 
that convection over Kwajalein shows similar func
tional dependencies to the large-scale environment as 
does convection over Darwin. Furthermore, this result 
indicates that at least in the framework of the SMCM, 
tropical convection acts on similar time scales for both 
tropical locations considered here. It is, however, im
portant to keep in mind the possible ambiguities when 
attempting to establish cause-and-effect relationships 
between the large-scale state and convection when using 
Clo (cf. section 3).

2) Statistics of SMCM-modeled versus
OBSERVED TROPICAL CONVECTION

We now analyze the SMCM-modeled tropical con
vection to quantify the capability of the SMCM frame
work to reproduce the observed statistical properties of 
deep convective and stratiform area fractions laid out in 
section 3 as well as the actual stochasticity of the mod
eled convection. For the sake of brevity, we limit this 
analysis to experiments in which convection in the 
SMCM is determined by CM. We choose to do so because 
the SMCM versions using the two other parameters Cc 
and Crc were shown unsuitable for reproducing the 
basic temporal behavior of convection [cf. section 4b(l)].

Similar to the analysis of observed convection pre
sented in section 3, we stratify the modeled time series 
of deep convective and stratiform area fractions by the
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Fig. 10. Joint histogram of modeled cloud area fractions and relative standard deviations as function of large-scale variables C„ and 
Drh at the (left) Darwin and (right) Kwajalein sites derived from sampling the modeled cloud area fraction time series using all the 
available forcing data from observations (cf. section 4b) and the transition time scales from Table 1. Only pixels having more than five 
observations are shown, (top) Deep convective clouds and (bottom) stratiform clouds. Sample sizes per bin are as in Fig. 5. The black 
markers denote the mean values of C„ and Z>RH.

values of Cw and DRH used for forcing the model. To 
ensure comparability with the observations, we average 
the modeled area fractions over 6-h periods centered 
over each time step of the observed large-scale atmo
spheric state. Similar to the histograms shown in Figs. 3-5, 
we show the results obtained for Darwin and Kwajalein 
separately in Fig. 10, again providing a test for the validity 
of the chosen transition time scales for both locations.

As expected, the joint histogram of SMCM deep 
convective area fractions obtained from the modeled 
time series of the Darwin location very much resembles 
that of the analytically derived equilibrium area fraction 
for the same set of transition time scales (Fig. 7, bottom). 
These statistics of the modeled time series more clearly 
reveal the shortcomings of the SMCM framework in 
reproducing observed convection already mentioned in 
sections 4a and 4b(l). The order of magnitude of deep 
convective area fraction is generally well captured, with 
the SMCM over- and underestimating area fractions for 
weak and strong convective forcing, respectively. The 
same also holds for the simulated stratiform cloud frac
tions for the Darwin area, which we show here for illus
trative purposes, mainly to highlight that the transition 
time scales that we determined in section 4a also yield 
sensible values for that cloud type. More importantly, 
the sample standard deviations of deep convective and 
stratiform area fractions of the modeled time series

show similar behavior compared to those of the ob
servations (i.e., area fractions show higher and lower 
variability for weaker and stronger convective forcing, 
respectively). Sensitivity tests in which we force “un
tuned" versions of the SMCM with the observed large- 
scale atmospheric state show that this behavior is in 
fact an intrinsic property of the SMCM framework 
and does not depend on the chosen set of transition 
time scales. The modeled time series underestimate 
the degree of variability throughout, however (note the 
different color scales in Fig. 10 compared to Fig. 5). So 
for the Darwin area, the SMCM framework is suitable 
for reproducing observed behavior of tropical convec
tion, both in terms of deep convective and stratiform 
cloud area fractions and variability, as a function of the 
observed large-scale environment.

For the Kwajalein area, the joint histograms in Fig. 10 
lead us to similar conclusions, thereby supporting the 
applicability of the SMCM framework to both tropical 
locations considered here. However, because of the sparse 
sampling of strong convective forcing over Kwajalein, 
the overestimation of cloud area fractions for weak 
convective forcing dominates the statistics. As men
tioned in section 4a, the sometimes substantial over
estimation of cloud area fractions could be mediated by 
using alternative formulations of Eq. (4), which will be 
a topic of future research.
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5. Summary and conclusions

This study was driven by the need for alternatives to 
the mostly deterministic convection parameterizations 
used in general circulation models (GCMs). For this, 
we first determined statistics of observed tropical con
vection over Darwin and Kwajalein stratified by envi
ronmental conditions. Then, we used these observed 
statistics to investigate whether the underlying frame
work of the stochastic multicloud model (SMCM; 
KBM10) is suitable for reproducing observed tropical 
convection, a prerequisite to using the underlying sto
chastic framework of the SMCM in a GCM convection 
parameterization.

We investigated the dependency of tropical convec
tion, given by the fractional area coverage with deep 
convective or stratiform clouds, on a set of two proxy 
values obtained from the observed large-scale atmo
spheric state (derived by means of variational analysis; 
Davies et al. 2013). One proxy (C) represents the ability 
of the atmospheric column to initiate/sustain convection 
whereas the second proxy (D) represents midtropospheric 
dryness. As there exists no generally accepted theory of 
which environmental conditions actually lead to tropical 
convection, we used three different formulations for C: 
CAPE, the ratio of low-level CAPE (LCAPE; i.e., CAPE 
integrated up to the freezing level) to CAPE, and vertical 
velocity at 500 hPa. The value of D is obtained from rel
ative humidity at 500 hPa.

We found that the relationship of observed cloud area 
fractions with CAPE is very different compared to the 
other two C proxies. We find the highest deep convec
tive and stratiform cloud area fractions for low values 
of CAPE, supporting earlier findings that CAPE is ap
proximately anticorrelated or only weakly correlated 
with tropical precipitation (Mapes and Houze 1992; 
McBride and Frank 1999; Sobel et al. 2004; Fletcher and 
Bretherton 2010). Here, the studies of Mapes and Houze 
(1992) and Sobel et al. (2004) are of particular interest 
as they base their findings on observations gathered at 
Darwin and Kwajalein, respectively. On the other hand, 
deep convective and stratiform cloud area fractions are 
positively correlated with the other two C proxies. The 
cloud area fraction distributions as function of C and D 
also revealed that, for those two C proxies, 1

1) high and low cloud area fraction variability occurs 
for low and high values of C, respectively, implying 
that convection appears more random under weakly 
forced conditions and gets more and more determin
istic with increasing forcing (cf. also Davies et al. 
2013), thus contradicting the idea that the stochastic 
component of unresolved subgrid-scale processes

scales linearly with their mean response (e.g., Buizza 
et al. 1999; Shutts and Palmer 2007);

2) cloud area fractions increase sharply above a certain 
value of C given low values of D, consistent with earlier 
reports on critical behavior of tropical convection (e.g., 
Peters and Neelin 2006);

3) cloud area fractions show identical relationships to 
environmental conditions for both locations (Darwin 
and Kwajalein), albeit with starkly different boundary 
conditions (e.g., land-sea distribution, monsoonal forc
ing); and

4) deep convective and stratiform cloud area fractions 
are anticorrelated with midtropospheric dryness [con
sistent with Redelsperger et al. (2002), Derbyshire 
et al. (2004), Takemi et al. (2004), and Takayabu et al. 
(2010)].

By design, the SMCM has a stationary equilibrium cloud 
area fraction distribution. By adjusting this distribution 
to the mean observed cloud area fractions, we tuned the 
SMCM for it to potentially reproduce the observed 
convection most closely. It proved difficult to exactly 
match the mean observed cloud area fraction distribu
tion as f(C, D), especially for the data stratified by 
CAPE. Generally, the SMCM yields too high and too 
low a cloud fraction for weak and strong large-scale 
forcing, respectively. We found that the values of the 
tuning parameters leading to a sensible match with the 
observed convection also respect the general rules for 
cloud transition probabilities laid out in KBM10, an 
overall very encouraging result.

Using the parameter-adjusted SMCM, we simulated 
convective area fractions using the time series of the 
observed large-scale state. We thus applied the SMCM 
in a diagnostic fashion and found that the modeled area 
fractions of deep convective and stratiform clouds com
pare better to observations when using the convection 
proxy related to convergence (i.e., vertical velocity at 
500 hPa) rather than those related to stability (i.e., total 
CAPE and the ratio of low-level to total CAPE). This is 
most probably related to the nonintermittent and positive- 
definite nature of the latter proxies, which does not allow 
for simulation of the intermittent cloud features found in 
the observations.

When using the convergence-based convection proxy 
to force the SMCM to generate time series of tropical 
convection, we found that the framework of the SMCM 
is capable of reproducing the overall functional re
lationships as well as the statistics of observed tropical 
convection well. In particular, the SMCM tropical con
vection also shows higher variability in weakly forced 
conditions compared to stronger forced conditions. The 
degree of variability is underestimated compared to
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observations though. We conjecture that the variability 
of the modeled convection would be higher if the 
SMCM were used in a prognostic framework rather than 
the diagnostic framework that we applied it to in this 
study. Furthermore, the 6-hourly time step of the ob
served large-scale state that we employ here may smear 
out part of the convective-scale variability, thus possibly 
constraining the stochastic process employed in the 
SMCM too strongly and also limiting the applicability to 
analysis of the diurnal cycle. Future work should thus 
also concentrate on deriving large-scale, long-term data
sets of improved temporal resolution.

We acknowledge that there do exist ambiguities in 
establishing sound cause-and-effect relationships when at
tempting to relate tropical convection to large-scale con
vergence. Here, we argue for an integrated view of tropical 
convection over the entire range of atmospheric forcing 
strength of large-scale convergence. For weak (or even 
negative) convergence, convective area fractions are 
very small and show substantial variability about the 
mean (i.e., induced by very localized forcing such as land 
surface heterogeneities or land-sea breezes). However, 
these small-scale features induce some low-level con
vergence themselves, which may lead to more large-scale 
organization and greater area fraction of convection. 
This could in fact lead to a positive feedback loop on 
various scales. However, assessing the effect that this 
kind of feedback behavior would have on the vertical 
ascent on the scales considered here (i.e., 190 X 190 km2) 
is beyond the scope of our study. In conclusion, we ac
knowledge the complex interactive relationship between 
convection and area-averaged vertical motion while not
ing that both directions in the interaction are likely at play 
and of importance with different weights based on the 
large-scale synoptic situation.

This study has shown that the stochastic concept be
hind the SMCM has the potential to underpin novel 
convection parameterizations in GCMs. As mass-flux 
convection parameterizations need to predict the verti
cal mass flux at cloud base, the concept of the SMCM 
would yield a stochastically based area and the updraft 
velocity could be given by another adequate formulation 
[e.g., such as that introduced in Jakob and Siebesma 
(2003)]. Furthermore, a reduction of GCM gridbox size 
(i.e., increasing resolution) would then lead to increased 
convective variability, making it superior to currently 
used deterministic convection schemes. Ultimately, fu
ture efforts will converge toward implementing a pro
totype version of a parameterization incorporating the 
SMCM framework into a full GCM.
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[1] A persistent problem for numerical weather and climate models is the representation 
of tropical convective precipitation which for the most part occurs on spatial and 
temporal scales too small and too short to be explicitly resolved. Given that model 

parameterizations represent this subgrid convection as a function of the large-scale 
atmospheric state, an understanding of the strongest relationships between the two scales 
is needed. This study introduces a method to create two concurrent long-term data sets 

that describe both the large-scale atmosphere and the characteristics of the small-scale 
convection. Important relationships between these two scales are then investigated. It is 

found that convective precipitation, through convective precipitation area, has the 
strongest relationship with dynamical variables such as moisture convergence and 
vertical velocity at midlevels. The magnitude of the fluctuations of convective strength 
about the mean is found to be anticorrelated with the strength of the large-scale variables, 
indicating a more stochastic behavior of tropical convection in weakly than strongly 
forced regimes, respectively. Atmospheric stability related variables are not found to be 
positively related to either convective precipitation area or convective precipitation 
intensity, which is often an assumption made in convective parameterization. On the 

contrary, in a more unstable atmosphere, there is lower convective precipitation.

Citation: Davies, L., C. Jakob, P May, V. V. Kumar, and S. Xie (2013), Relationships between the large-scale atmosphere and 
the small-scale convective state for Darwin, Australia, J. Geophys. Res. Atmos., 118, 11,534-11,545, doi:10.1002//grd.50645.

1. Introduction
[2] Atmospheric convection is an important phenomenon 

which drives weather and climate in the tropics as well as 
the global general circulation. Convection is relevant on a 
range of spatial and temporal scales from large-scale phe
nomena, such as the Inter-Tropical Convergence Zone, El 
Nino-Southern Oscillation, and the Madden-Julian Oscilla
tion, to short weather time scales, such as an individual 
squall line and mesoscale convective systems. Numerical 
models exhibit limitations in their ability to capture convec
tive phenomena. Particular examples include biases in the 
tropical mean precipitation distribution [Sun et al., 2006; 
Zhang et al., 2007] and significant timing errors in the diur
nal cycle of convection over land [Yang and Slingo, 2001].
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Shortcomings in model simulations have been related to the 
model representation of convection [e.g., Neale et al., 2008; 
Bechtold et al., 2008; Zhang et al., 2006; Neale and Slingo, 
2003; Wang and Schlesinger, 1999]. This is largely due to 
the limitations of the convective parameterizations used in 
models to represent the subgrid scale behavior of convection 
in relation to the resolved large-scale processes. Accurate 
representation of convection is particularly important for 
the tropics where precipitation is generally associated with 
convective cloud systems.

[3] Convective parameterizations (see Arakawa [2004] 
for a full review of convective parameterization approaches) 
generally exploit some relationship between the large-scale, 
given by the atmospheric state at the model grid box scale, 
and the convective scale. The schemes mostly invoke an 
assumption that the two scales are in quasi-equilibrium 
[Arakawa and Schubert, 1974; Emanuel, 1991; Brown and 
Bretherton, 1997] and use these assumptions to provide 
closure to the model equations. A variable which charac
terizes the thermodynamic state of the atmosphere, such as 
Convectively Available Potential Energy (CAPE), is often 
used to determine convective strength. CAPE is the verti
cal integral of the temperature perturbation of a buoyant air 
parcel ascending from near the surface to its level of neutral 
buoyancy. A comprehensive investigation of other possi
ble relationships, between a large range of large-scale and 
small-scale variables, which may be used in the closure of 
convective parameterizations is somewhat lacking.
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[4] Another possible limitation of convective parameteri- 
zations (and other parameterizations in general) is that they 
determine the subgrid scale convective behavior determinis
tically, meaning that for a given large-scale state, only one 
possible convective state can be attained. This is unlikely 
to be true in the real atmosphere, but traditional param- 
eterizations cannot produce variability about their mean 
relationship between the two scales. Several cloud-resolving 
models (CRM) studies have identified variability in the large 
to small-scale relationships, however, to our knowledge 
there are no observational studies investigating the stochas
tic nature of these relationships [e.g., Cohen and Craig, 
2006; Shutts and Palmer, 2007; Plant and Craig, 2008]. 
There have been several attempts to include stochastic 
elements in the description of convection in models. Buizza 
et al. [1999] showed that applying multiplicative noise to the 
physics tendencies improved modeled skill. Lin and Neelin 
[2007] used empirical relationships to adjust the convec
tive parameterization. Khouider and Majda [2006] used a 
Markov chain lattice to stochastically describe the evolution 
of convective cloud types in a model grid-cell. Plant and 
Craig [2008] developed a fully stochastic convective param
eterization. These studies have used either assumptions of 
empirical relationships or higher resolution models, such as 
CRM, to study the stochastic nature of the relationships. 
This study aims to supplement this earlier work by providing 
observations of the key relationships and also quantifying 
their stochastic components.

[5] In this study, we first develop two concurrent data sets, 
one representing the large-scale atmosphere and another the 
small-scale convective state, over a sufficiently long time 
period to sample a large range of different states. These 
data sets are then used to investigate important relationships 
between the two scales and furthermore to determine the 
stochastic nature of the relationships. Section 2 describes 
the methodology used to derive data sets for the large-scale 
atmospheric state and the concurrent small-scale convec
tive state. Section 3 then discusses some key relationships 
between the two scales that are relevant for convective 
parameterizations. The stochastic nature of these relation
ships is probed in section 4. The following sections then 
discuss the results (section 5) and summarize the main 
conclusions (section 6).

2. Deriving Concurrent Long-Term Large-Scale 
Atmospheric and Convective States

[6] To investigate relationships between the large-scale 
atmospheric state and associated convection, two concurrent 
data sets are required, one that describes the average state of 
the atmosphere over an area similar to that of a Global Cli
mate Model (GCM) grid-box and another that describes the 
subgrid-scale behavior of convection. In order to investigate 
a wide range of meteorological conditions and to increase 
sampling, these data sets should be as long as possible. This 
section describes the derivation of two such data sets for a 
tropical location, i.e., Darwin, Australia.

2.1. The Large-Scale State for a Tropical Location
[7] In order to study convection, the large-scale state 

data set should, ideally, include both thermodynamic and 
dynamic variables with a high degree of accuracy. An

important source of such large-scale state data sets are 
the observations made during the intensive observation 
periods of field experiments such as TOGA-COARE: 
(Tropical Ocean-Global Atmosphere-The Coupled Ocean- 
Atmosphere Response Experiment) and Global Atmospheric 
Research Program’s Atlantic Tropical Experiment (GATE) 
[Webster and Lukas, 1992; Houze Jr and Betts, 1981]. Such 
studies often deploy arrays of radiosonde observations and 
collect surface and top of the atmosphere data including 
energy and water fluxes. A useful method to analyze this 
data is the variational budget analysis developed by Zhang 
and Lin [1997] where radiosonde, top of the atmosphere 
(TOA), and surface data are combined and constrained by 
the vertically integrated heat and moisture budgets. Zhang 
et al. [2001] showed that surface precipitation data signif
icantly improved the quality of the analysis. While field 
experiments produce the most comprehensive data sets to 
study tropical convection, they are usually of short dura
tion, which prevents a large-sample statistical analysis of the 
relationship between convection and the large-scale state of 
the atmosphere. The top panel of Figure 1 shows an exam
ple of the results from such a field experiment. It shows the 
time-height evolution of vertical motion during the recent 
Tropical Warm Pool-International Cloud Experiment (TWP- 
ICE) at Darwin, Australia [May et al., 2008] as derived 
by the variational analysis technique described above [Xie 
et al., 2010]. It can be seen that there is strong upward 
motion during the active monsoon period (before day 25 
which is 25 January 2006). A subsequent suppressed mon
soon period is associated with downward motion between 
700 and 200 hPa and toward the end of the TWP-ICE period 
(after day 33 which is 3 February 2006), the diurnal cycle 
becomes dominant with frequently alternating upward and 
downward motion.

[8] A source of long-term large-scale data sets is oper
ational or reanalyses of the atmosphere as provided by 
several numerical weather prediction (NWP) centers. Such 
data sets cover many years and in principle provide a good 
source of large-scale information. However, analysis tech
niques in the tropics are not as far advanced as those in 
the extratropics and the lack of dynamical constraints, as 
well as the increased role of diabatic processes, limits the 
accuracy of the resulting analysis products. This is exem
plified by the middle panel of Figure 1 which shows ver
tical motion for TWP-ICE from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) operational 
analysis. It shows upward motion during the active mon
soon consistent with the observations, although the vertical 
structure differs somewhat. It appears the timing of peak 
precipitation lags the observations, and this behavior is dis
cussed in Petch et al. [2013]. During the suppressed period, 
the analysis fails to show the midlevel downward motion 
(compare to the observations, top panel) and the diurnally 
driven period is not well captured.

[9] To exploit both the strengths of the variational anal
ysis technique and to overcome some of the weaknesses of 
NWP analysis results, a hybrid approach was developed by 
Xie et al. [2004]. NWP analysis is used as a replacement 
for radiosonde observations which provides higher tempo
ral resolution sounding data than the twice daily long-term 
observations available. The analysis data are combined with 
surface and TOA observations at the Atmospheric Radiation
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Figure 1. Timeseries of vertical profiles of vertical velocity in pressure coordinates (omega ) using all 
observations, i.e., (top panel) the best-estimate values as described inXie et al. [2010], (middle panel) the 
direct ECMWF analysis, and (bottom panel) using the hybrid approach described here. Data are shown 
for the TWP-ICE period (19 January-14 February 2006) at Darwin, Australia.

Measurement site at the U.S. Southern Great Plains using 
the variational analysis technique of Zhang and Lin [1997]. 
The surface data are radar-derived precipitation rates, and 
TOA microwave radiometer total column water vapor is 
used to constrain the moisture budget. Xie et al. [2004] 
demonstrated that for this extratropical location, the hybrid 
approach can successfully provide large-scale state data for 
long, continuous periods of time. The key observations for 
using this technique are long-term observations for surface 
precipitation and TOA radiation.

[10] We apply the hybrid approach to the TWP-ICE 
period so that its results can (i) be compared with the 
full field-experiment data and (ii) be evaluated against 
the ECWMF analysis to gauge any improvement over a 
pure NWP system. To do so, ECMWF analysis grid-points 
around Darwin are used to replace the TWP-ICE radiosonde

observations. Specifically, the vertical profiles of zonal and 
meridional winds, temperature, and specific humidity are 
interpolated to the locations of the radiosonde launch sites. 
The method used was Barnes interpolation, however, experi
mentation with bilinear interpolation suggests that the result
ing profiles are not sensitive to the method used.

[l l ] The bottom panel of Figure 1 shows vertical velocity 
derived using the hybrid technique. During the active period, 
vertical motion is similar to when using all observations, in 
particular the timing of the peak vertical motion is improved 
compared to the ECMWF analysis (middle panel). During 
the suppressed period, the hybrid approach shows downward 
motion in midlevels. Although the structure is somewhat 
different to using all observations, it resembles the observa
tions (top panel). At the end of the TWP-ICE period, there 
is correctly intermittent upward and downward motion.
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Figure 2. Relationship of 500 hPa vertical velocity in 
pressure coordinates (omega) derived using the variational 
approach from all observations on the .r axis against both 
omega at 500 hPa from ECMWF analysis shown as crosses 
and 500 hPa omega derived using the variational method 
but using the hybrid approach (as discussed in the text) 
shown as points. Data are shown for the TWP-ICE period 
(19 January-14 February 2006) at Darwin, Australia.

[12] Figure 2 compares vertical velocity at 500 hPa 
derived with variational analysis using the hybrid approach 
and the ECMWF analysis to vertical velocity at 500 hPa 
derived with variational analysis from all observations. It 
is clear that when using the hybrid approach, the represen
tation of vertical velocity substantially improves compared 
to the ECMWF analysis. Correlating all observed values of 
vertical velocity at 500 hPa with those derived from the 
hybrid approach and the ECMWF analysis yields correlation 
coefficients of 0.98 and 0.25, respectively.

[13] Having demonstrated the utility of the hybrid 
approach in providing reliable estimates of large-scale infor
mation, we apply the technique to derive three wet seasons 
(2004/2005, 2005/2006, and 2006/2007) of the large-scale 
state information for the TWP-ICE region around Darwin. 
The analysis technique is limited to periods, such as the wet 
season, when there are sufficient observations of precipita
tion. This data set is derived using the ECMWF operational 
analysis as radiosonde surrogate and constraining the varia
tional analysis with area-mean surface precipitation derived 
from the polarimetric C-band radar (CPOL) [Keenan et al., 
1998] using the algorithm of Bringi et al. [2004]. It is

worth noting that the use of the area-mean total precip
itation as a constraint in the variational analysis limits 
its use as a surrogate for convective activity below. The 
radar data are processed in the same way as during the 
TWP-ICE experiment [see Xie et al., 2010 for more detail]. 
The resulting data set has approximately 1900 samples at 
6-hourly intervals.

2.2. Defining the Concurrent Convective State
[14] To correctly associate a particular large-scale atmo

spheric condition with a convective state, a description of 
the latter is also required concurrent in space and time with 
the large-scale state. To achieve this, a detailed analysis of 
the CPOL observations at 2.5 km above the surface is per
formed. Firstly, the data are classified into its convective 
and stratiform components using the algorithm of Steiner 
et al. [1995]. This method classifies pixels with large val
ues of radar reflectivity as convective and then associates 
sufficiently intense, nearby precipitation values as also con
vective. Other precipitating radar pixels are classified as 
stratiform. The classified data are then area-averaged over 
the 6 h periods which are ±3 h the time of the large- 
scale state to produce convective and stratiform precipitation 
rates. Precipitation rates are further decomposed into area 
and intensity as given by P = a I, where P is precipitation, a 
is precipitation area, and / is precipitation intensity (defined 
as precipitation per unit precipitation area), for the same 
6 h periods. Additional information on the small-scale state 
is found by analyzing the statistics of convective cells using 
the Thunderstorm Identification, Tracking, Analysis, and 
Nowcasting (TITAN) radar data analysis tool [Dixon and 
Wiener, 1993] which identifies characteristics of individual 
convective storms. Further detail on this analysis can be 
found in Kumar et al. [2012].

[15] While the focus of this study is on how the convec
tive scale variables relate to the large scale, it is worthwhile 
determining how the small-scale variables relate to each 
other. Table 1 shows correlations coefficients between the 
small-scale variables related to both the convective and strat
iform parts of the precipitation processes. Domain-averaged 
total precipitation is strongly correlated with both convec
tive precipitation (through convective precipitation area) 
and stratiform precipitation. This result may be related to 
the finding of Mapes et al. [2006] who suggested that 
convective and stratiform precipitation exhibit similar rela
tionships over different spatial and temporal scales. Total 
precipitation area is very strongly correlated with strati
form precipitation area as stratiform precipitation dominates 
the areal coverage. While both convective and stratiform

Table 1. Summary of Correlations Between Small-Scale Precipitation Variables

Precipitation
Area

Convective
Precipitation

Convective
Precipitation

Area
Precipitation

Stratiform

Stratiform
Precipitation

Area

Convective
Precipitation

Intensity

Stratiform
Precipitation

Intensity

Precipitation 0.85 0.94 0.93 0.94 0.81 0.50 0.44
Precipitation area 1.00 0.65 0.71 0.93 0.99 0.34 0.23
Convective precipitation 1.00 0.96 0.75 0.61 0.57 0.49
Convective precipitation area 1.00 0.79 0.66 0.52 0.49
Stratiform precipitation 1.00 0.92 0.37 0.33
Stratiform precipitation area 1.00 0.31 0.20
Convective precipitation intensity 1.00 0.88
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Figure 3. Relationship of moisture convergence with (a) precipitation, (b) convective precipitation, 
(c) convective precipitation area fraction, (d) convective precipitation intensity, and (e) stratiform 
precipitation, (f) Relationship of convective precipitation and stratiform precipitation.

precipitation are strongly correlated with their precipita
tion areas (0.96 and 0.92, respectively), there is weaker 
correlation (0.75) between convective and stratiform precip
itation components. Convective and stratiform precipitation 
are also less related to the other’s area (0.61 and 0.79, 
respectively). While there is some relationship between 
convective intensity and stratiform intensity (0.88 correla
tion), there are weak correlations with all other precipitation 
and area variables. Further investigation attributes this to 
complex nonlinearities in the relationships (cf. section 3). 
Convective precipitation, which is dominated by convective

precipitation area, and convective precipitation intensity are 
key variables for convective parameterizations. These small- 
scale variables form the main basis for further analysis in the 
subsequent sections.

3. Relationships Between the Large-Scale 
Atmospheric State and Convection

[ie] We now use the two concurrent data sets described 
in section 2 to investigate relationships between the 
large- and the small-scale states, i.e., between atmospheric
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Table 2. Summary of Correlations Between Moisture Conver
gence and Omega at 700 hPa and Various Small-Scale Convective 
Precipitation Terms

Moisture
Convergence

Omega 
(700 hPa)

Precipitation 0.81 -0.79
Precipitation area 0.65 -0.61
Convective precipitation 0.78 -0.76
Convective precipitation area 0.75 -0.76
Convective precipitation intensity 0.45 -0.39

dynamics/thermodynamics and convection. Given the possi
ble large number of large-scale variables, the investigation 
is divided to three overall categories, dynamics, thermody
namics, and atmospheric stability.

3.1. Relationships Involving Dynamical Processes
[17] This section investigates the relationships of the 

convective state to a few dynamical characteristics of the 
large-scale state. Specifically, the dynamical variables con
sidered are vertically integrated moisture convergence and 
vertical velocity in pressure coordinates (!). Figure 3 shows 
the relationships between some key small-scale variables 
and moisture convergence, and Table 2 shows the associ
ated correlations. While moisture convergence is a vertically 
integrated variable, it is found to be strongly correlated 
with vertical motion at 700 hPa (-0.69). Precipitation 
is highly correlated with both dynamical variables, with 
this correlation being slightly higher for moisture conver
gence (0.81) compared to ! at 700 hPa (-0.79). Figure 3a 
shows that indeed the largest precipitation occurs with 
the strongest moisture convergence. While there is gener
ally lower precipitation associated with negative moisture 
convergence, precipitation can occur when there is net 
divergence and hence likely subsiding condition due to 
shallow but precipitating convective clouds. There is scat
ter about this relationship particularly for low values of 
moisture convergence.

[18] This data set does not allow for the interpreta
tion of causality as convective heating and precipitation 
are known to induce moisture convergence, and equally 
under conditions of high moisture convergence, convection 
is more likely. This issue of cause and effect has been dis
cussed in the context of the assumptions made in convective 
parameterizations e.g., Arakawa [2004], and it has been 
argued [Emanuel, 1994] that convergence is a consequence, 
rather than a cause, of convection. Investigation shows that 
the relationship between convective precipitation and the 
dynamical variable at the previous 6 h interval is somewhat 
weaker (0.30 for moisture convergence and -0.27 for ! at 
700 hPa). This issue will be discussed further in section 5.

[19] It is worth noting again that a strong relationship 
between total precipitation and large-scale vertical motion is 
expected as a result of the use of total precipitation in the 
construction of the large-scale data set. Hence, further anal
ysis will focus on variables that are not a direct input to the 
variational analysis scheme used here.

[20] In section 2.2, we showed that there are strong rela
tionships between total precipitation and both convective 
precipitation and convective precipitation area. It is therefore

not surprising that the relationship existing between mois
ture convergence and total precipitation is also apparent 
with convective precipitation and convective precipitation 
area (Figures 3b and 3c; Table 2). The correlations are 
slightly weaker, however, 0.78 and 0.75, respectively. This 
suggests that larger moisture convergence is associated 
with increased convective precipitation through predom
inantly increasing the convective precipitation area. The 
same applies to ! at 700 hPa although correlations are lower. 
This result provides observational support for a finding from 
cloud-resolving modeling studies, e.g., Cohen and Craig 
[2006], that convection responds to an increase in prescribed 
model “forcing” predominantly through an increase in con
vective area. Figure 3d and Table 2 show that the relation
ship is different when considering convective precipitation 
intensity. There is little discernible relationship between 
moisture convergence and precipitation intensity, although 
large values of moisture convergence tend to produce inten
sities above 10 mm h-1, and negative moisture convergence 
results in a wide range of lower precipitation intensities. This 
complex interaction results in low correlations between the 
large-scale atmospheric state and precipitation intensity and 
may be related the dependence of precipitation intensity on 
raindrop terminal velocity [Parodi and Emanuel, 2009].

[21] As shown in Table 1, there is a strong correla
tion between total precipitation and stratiform precipitation. 
Therefore, stratiform precipitation is also strongly correlated 
with moisture convergence (Figure 3e) and ! at 700 hPa 
(0.75 and -0.71, respectively), although the correlation is 
weaker than with convective precipitation. Such a relation
ship exists as there is a strong relationship between con
vective and stratiform precipitation (Figure 3f and Table 2) 
which may be expected as convection is the source of strat
iform cloud in many cases. For this reason, we focus on 
convective characteristics hereon.

3.2. Relationships Involving Moisture

[22] This section investigates the relationship of 
convective-scale behavior in relation to large-scale moisture. 
Specifically, the large-scale moisture variable considered is 
midlevel moisture which is defined as the specific humidity 
at 600 hPa. Similar relationships are observed with other 
moisture variables, for example, midlevel moisture is cor
related 0.96 with column-integrated relative humidity and 
0.95 with precipitable water. Also, as there are strong rela
tionships between precipitation, convective precipitation, 
and convective precipitation area, which are also apparent in 
the relationships with large-scale variables (cf. sections 2.2 
and 3.1), this section will focus on convective precipitation 
area and convective precipitation intensity only.

[23] Figure 4 shows the relationship between midlevel 
moisture and small-scale convective variables. While there 
is a general tendency for larger convective precipitation 
area in moister atmospheres, there is much scatter in that 
relationship. Essentially, atmospheres which are more moist 
support large convective areas with a small increase in the 
likelihood of large area with increased moisture. There are 
two possible reasons for this (i) because the atmosphere 
is moist, the effects of entrainment on convective strength 
are reduced leading to more convective precipitation or
(ii) in a strongly convecting atmosphere, evaporation of 
both precipitation and detrained condensate will moisten
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Moisture at 600 hPa (g kg' Moisture at 600 hPa (g kg'

Figure 4. Relationship of 600 hPa moisture with (a) convective precipitation area fraction and (b) con
vective precipitation intensity. Also shown are mean and ±1 standard deviation values for deciles of 
the data set.

the atmosphere. This result does not suggest causality but 
shows that a weak relationship exists. Figure 4a, using 
convective precipitation area rather than total precipitation, 
somewhat resembles distributions in Bretherton et al. [2004] 
and Holloway and Neelin [2009] with increasing precip
itation area for larger values of moisture. However, the 
relationship does not have the strong pickup in precipita
tion shown in Holloway and Neelin [2009] who used 1 h 
radiosonde data nor the more gradual increase Bretherton 
et al. [2004] found using daily data. Figure 4a shows that 
there is much scatter in the relationship between midlevel 
moisture and convective area consistent with the findings 
of Peters and Neelin [2006] who found an increase in pre
cipitation variance for high values of precipitable water. 
The differences between the findings in this study and the 
results in previous studies may be somewhat explained by 
Masunaga [2012] who found that the timescales investigated 
were important when determining the nature of the relation
ship between precipitable water and precipitation. Figure 4b 
shows the perhaps surprising result that convective precipi
tation intensity does not show much discernible relationship 
with midlevel moisture, with the exception that in a very dry 
atmosphere domain-mean convective intensity is slightly 
lower. This implies that at least small but strong convective 
clouds can exist in any atmosphere and that once again, it is 
the area of convection that increases in atmospheres that are 
more moist.

[24] Figure 5 shows a different perspective on how con
vective precipitation relates to moisture. Here probability 
distributions of precipitation in convective cells from the 
TITAN analysis [Kumar et al., 2012], averaged over 6 h, 
are shown as a function of midlevel (600 hPa) moisture. 
The precipitation distributions are sorted into deciles based 
on midlevel moisture and then averaged over each decile. 
Red colors represent averages with the largest moisture and 
blue colors averages with the low moisture. In general, many 
more convective cells are observed when the atmosphere is 
moist, thus reflecting the increased convective area shown 
in Figure 3. Therefore, for each decile, the distribution is 
normalized by the number of convective cells observed in 
that decile. When the atmosphere is moist, the numerous

convective cells tend to have lower precipitation intensity. 
As the atmosphere dries, there is a shift in the distribution 
toward fewer convective cells but with larger values of pre
cipitation intensity. This shows that in a moist atmosphere, 
convective cells are less intense, but more numerous; how
ever, in a drier atmosphere, while there are fewer convective 
cells over all, the individual cells are more likely to be 
more intense.

3.3. Relationships Involving Atmospheric Stability
[25] This section will investigate the relationship of con

vective scale activity with two measures of atmospheric 
stability: Convective Available Potential Energy (CAPE), 
which is a vertically integrated measure of the buoyancy of 
a parcel lifted from 990 hPa, and a measure more frequently 
used by weather forecasters to predict convective show
ers and thunderstorms called the A-index [Charba, 1977].
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Precipitation rate (mm hr"

Figure 5. Distribution of precipitation rate per convective 
cell averaged over deciles of 600 hPa moisture. The distri
bution is normalized by the total number of convective cells 
in each decile. Deciles with large moisture are in red and 
deciles with low moisture are in blue.
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Figure 6. Relationship of (top) CAPE and (bottom) A-index with (left) convective precipitation area 
fraction and (right) convective precipitation intensity. In the top panels, also shown are mean and ± 1 
standard deviation values for deciles of the data set.

The A-index is calculated based on temperature (T) and 
dew point temperature (Td) at key pressure levels as shown 
in equation (1).

„ _ Tiooo hPa + Tx50 hPa „ . Zd.1000 hPa + F.S50 hPa
A------------------- -------------------- i 500 hPa + ------------------- -------------------

(a) lb,

- (Tlm hPa - Tdjoo hPa) (1 )
'---------- .-- ■------- 1

(c)

[26] Figure 6 shows the relationships between CAPE, 
A-index, and selected small-scale variables. Convective 
precipitation and CAPE effectively have zero correlation 
(—0.003) showing that, at least for this data set, CAPE is 
not likely to be a good predictor of convective precipitation 
consistent with McBride and Frank [ 1999], The relationship 
between CAPE and precipitation has been also discussed 
in Xie and Zhang [2000] and Zhang [2002]. CAPE at the 
previous 6 h interval has slight positive correlation with 
convective precipitation (0.06) which is discussed further in 
section 5. Detailed investigation shows that CAPE increases 
through a combination of an increased height of the level 
of neutral buoyancy and larger perturbations in the par
cel temperature throughout the atmosphere compared to the 
environment. Convective precipitation intensity also does 
not have a strong relationship with CAPE.

[27] The A-index on the other hand has a very different 
relationship with convective precipitation. Figure 6 (bottom 
left) shows that convective precipitation values greater than 
0.5 mm It1 only occur for values of A-index greater than 
35 K. Generally, in the forecasting context, A-index values 
greater than 30 K indicate potential of Mesoscale Convective 
Cloud (MCC) and greater than 40 K almost 100% chance of 
thunderstorms.

[2s] Equation (1) indicates that the A-index has three dis
tinct components. Term (a) relates to lower tropospheric 
stability, term (b), a measure of mean low-level (boundary 
layer) moisture, and finally, term (c) relates to midlevel 
humidity. Given that the A-index includes term (a), which is 
also relevant for CAPE, it is instructive to investigate which 
of these terms, if any, has the dominant role in determin
ing the relationship to convective precipitation. Investigation 
shows that the stability component of the A-index (term 
a) has very similar relationship with convective precipita
tion to that of CAPE (Figure 6, top left). CAPE and the 
stability component of the A-index are correlated 0.7. The 
low-level moisture and midlevel humidity components of 
the A-index (terms b and c) are correlated 0.77 and 0.94, 
respectively, with the full A-index, rendering these terms 
important for determining the A-index values. The relation
ship between the humidity component of the A-index and 
convective precipitation, in particular, resembles Figure 4a.
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Figure 7. Mean and standard deviation 6 h mean con
vective precipitation (blue and red lines, respectively, and 
shown on left y axis) as a function of moisture convergence. 
The data are computed over 10 bins, and the number of 
points in each bin is shown above the .r axis. Also shown is 
the ratio of the standard deviation to the mean ( green line 
shown on the right y axis).

Hence, these terms of the A-index are the main contributors 
to the full A-index and when combined are correlated 0.96 
with the full A-index. For this data set at least, the A-index 
is a predictor for precipitation based on low-level mois
ture and/or midlevel humidity rather than on estimate of 
atmospheric stability.

[29] Figure 6 (bottom right) shows that there is very little 
relationship between A-index and convective precipitation 
intensity. Large values of A-index tend to be associated with 
a range of convective precipitation intensities.

4. The Stochastic Nature of the Large-Scale 
to Small-Scale Relationships

[30] Section 3 has shown that there exist a number of 
relationships between the large-scale state of the tropical 
atmosphere and the state of convection. However, it was also 
shown that even the strongest of those relationships, such 
as that between moisture convergence and convective rain
fall area, show a considerable amount of scatter, confirming 
the at least partially stochastic nature of small- to large-scale 
relationships. As the degree of stochastic behavior has sig
nificant consequences for the representation of small-scale 
processes such as convection in coarse-resolution (>10 km) 
models, it is worthwhile to try and further quantify some 
simple statistical properties of the relationships, which is the 
goal of this section.

[31] We choose the apparently strongest relationship, 
namely that between convective precipitation and moisture 
convergence (Figure 3b) for this investigation. First, the 
moisture convergence values are grouped into 10 equally- 
sized bins. Then, for each bin, we calculate the mean and 
standard deviation of its respective convective precipita
tion values. Figure 7 shows these quantities and also their 
ratio. The mean convective precipitation is low for small 
values of moisture convergence and increases with increas
ing values of moisture convergence. The standard deviation

of convective precipitation also increases with increasing 
values of moisture convergence. It is clear that for neg
ative values of moisture convergence, the standard devi
ation of convective precipitation is larger than the mean 
value suggesting that convective precipitation appears rather 
stochastic in weak dynamical conditions. For positive and 
increasing moisture convergence, the mean convective pre
cipitation increases more rapidly than the standard deviation 
showing that larger values of convective precipitation are 
likely more deterministically related to the large scale. This 
is confirmed by the ratio of standard deviation to mean 
which is around 1.5 for negative values of moisture conver
gence and above 0.5 for large positive values of moisture 
convergence. This finding confirms the empirical fact that 
convective storms in the tropics are easier to predict when 
embedded into large-scale dynamical features, such as a 
monsoon trough or the active phase of the Madden-Julian 
Oscillation, than in weakly forced conditions.

[32] It is interesting to note that the nature of this relation
ship is not consistent with some existing implementations 
aimed at characterizing small-scale stochastic behavior in 
large-scale models, such as multiplicative noise [Buizza 
et al., 1999; Teixeira and Reynolds, 2008] but rather that 
noise (or the stochastic behavior) decreases as a function of 
increasing forcing.

5. Discussion
[33] Results in the previous sections have shown that 

convective precipitation and in particular the area covered 
by convection are related to a number of characteristics 
of the large-scale state, in particular moisture convergence 
and midlevel vertical velocity. One caveat of this study is 
the location for which the data were available. Given the 
region around Darwin consists of both areas of land and 
areas of ocean, it is possible that there may be a strong diur
nal component to the found relationships. In particular, the 
Tiwi Island have strong convective storms each afternoon 
which may contribute considerably to the total convective 
precipitation [Keenan et al., 1990; Crook, 2001].

[34] The role of the diurnal cycle is further investigated 
by first calculating the mean diurnal cycle of vertical pro
files of vertical velocity (co). Then the mean diurnal cycle 
is removed from the timeseries of the vertical profiles of 
co. Figure 8 shows the mean co for deciles of convective 
precipitation. Red colors represent averages with the largest 
convective precipitation and blue colors averages with the 
low convective precipitation. The solid lines are without the 
diurnal cycle removed and the dotted lines after the diurnal 
component is removed. It can clearly be seen that the role 
of the diurnal cycle is to modify the structure of the verti
cal profiles rather than to significantly alter the magnitude or 
the relationship of vertical motion with convective precip
itation. In fact, the correlations of convective precipitation 
and moisture convergence or co at 700 hPa (with the diur
nal cycle removed) are 0.77, and all correlations are similar 
to those in Table 2. Similar results are found when consider
ing moisture and stability variables with the conclusion that 
the diurnal cycle does not substantially effect the relation
ships discussed in section 3. Another test for the robustness 
of the relationships is to divide the data set by wind direc
tion, which in the Darwin region is well known to affect
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Figure 8. Profiles of vertical motion (omega) over the 
TWP-ICE domain averaged over deciles of 6 h mean con
vective precipitation. Deciles with strong precipitation are 
red and low convective precipitation are blue. The dashed 
lines show omega with the diurnal cycle removed.

the nature of the convection from more continental in east
erly conditions to more oceanic in westerly conditions [May 
et al., 2008]. There are no discernible differences in the 
large-to-small-scale relationships when doing so (not 
shown). Finally, preliminary investigations using similar 
data sets for another location, namely the largely land-free 
Kwajalein atoll, also confirm this result (not shown).

[35] As discussed in section 3.1, it is difficult to establish 
cause and effect relationships between convection and the 
atmospheric large-scale state from this data, it can only be 
shown that such relationships exist. For example, convection 
and moisture convergence are shown to be strongly related 
in this study and, although the relationship is weaker when 
considering the moisture convergence 6 h previous, there is 
still positive correlation. It is likely that, while convection 
can enhance convergence in a general sense, the relationship 
is more subtle than simply attributing either cause or effect 
to either moisture convergence or convection.

[36] An important factor to consider when interpreting the 
above results is the effect of the temporal resolution and 
the spatial averaging of the data set on the relationships 
identified. For example, the relationship between moisture 
convergence and convective precipitation (Figure 3b) shows 
that convective precipitation does occur under subsidence 
conditions. Given that the data are averaged over 6 h periods 
over a large area, it may be that subsidence does not occur 
for the whole period or at all locations. There may be local
ized convergence associated with the precipitation. Another 
interesting result is that this data set does not show strong 
relationship between convection and CAPE. The amount of 
convective precipitation at a grid box in a numerical model 
is often related to the strength of CAPE through the closure 
of the convective parameterization. These results, however, 
suggest the reverse is true, i.e., that convective precipita
tion is small when CAPE is large. This is understandable 
as CAPE suggests the presence of instability in the atmo
sphere; and should convection, and associated convective 
heating and precipitation develop, the instability would be

reduced or removed. In fact, it may be more reasonable to 
consider that CAPE at some previous point in time might 
be a predictor for subsequent convective precipitation. This 
data set suggests a weak positive relationship between con
vection and CAPE, however, the 6 h temporal resolution 
of the data limits further detailed investigation of the rela
tionship. Finally, over short-time periods and small spatial 
areas, convection dries the atmosphere by removing mois
ture through precipitation. The results here (section 3.2 and 
Figure 4a) that show that large convective precipitation is 
associated with large precipitable water may, again, be due 
to the low temporal resolution data, which is averaged over 
large areas.

6. Summary
[37] This study uses concurrent observations of the large- 

scale and convective scale state of the tropical atmosphere 
at Darwin, Australia to investigate the nature of the relation
ship between the two scales. It first presents an application 
of a hybrid approach for deriving the large-scale state of the 
atmosphere for a tropical location. Testing of the method
ology for the period of the TWP-ICE experiment shows 
that constraining ECMWF analyses with observed precipita
tion improve the estimates of large-scale variables, such as 
vertical velocity, compared to the ECMWF analyses alone. 
It is shown that the hybrid data set is a close approxima
tion of that derived using all observations from the field 
experiment. The concurrent data set describing the small- 
scale atmospheric state is derived through the analysis of 
CPOL radar observations. The radar-derived precipitation 
data is classified into convective and stratiform components. 
Complex relationships are found between the small-scale 
precipitation variables themselves. This study focuses on 
convective precipitation, convective precipitation area, and 
convective precipitation intensity as these are the first-order 
characteristics that need to be represented in convective 
parameterizations used in GCM. Their faithful represen
tation is a prerequisite for describing the more complex 
interaction of convection with its associated stratiform cloud 
systems. It is found, averaged over a domain similar in size 
to a GCM grid box, that convective precipitation mainly 
increases through increasing the area that precipitates, which 
supports the findings of earlier CRM studies.

[3 s] Investigation into the relationships between the large- 
and the small-scale states shows that the strongest relation
ships of the convective scale are with dynamical variables 
such as moisture convergence or vertical velocity. While 
the issue of cause and effect cannot easily be separated, 
the data show clearly that strong convective precipita
tion is associated with positive moisture convergence while 
lower convective precipitation occurs under weak or diver
gence conditions. It is also shown that the stochastic nature 
of this relationship is dependent on the strength of the 
large-scale forcing, which is inconsistent with multiplicative 
noise used in some convective parameterizations. When 
convection is embedded in a strong dynamically active 
state, the relationship between the two is highly determin
istic. In weak dynamical conditions, although convection 
is less active, there is much scatter in the relationship. 
In a relative sense, convection is therefore more stochas
tic when “weakly forced “ This fact is well known to
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forecasters in tropical regions when forecasting weather on a 
daily basis.

[39] Strong relationships with stability related variables, 
such as CAPE, are neither found with convective precipita
tion area nor convective precipitation intensity. The relation
ship identified suggests that when convective precipitation 
is large, CAPE is most likely to be small, although there 
is much scatter in the relationship. In fact, a model of con
vection based on CAPE would suggest a highly stochastic 
relationship which highlights a possible limitation of current 
deterministic convective parameterization that are based on 
CAPE closures.

[40] This study shows that the construction of a high qual
ity long-term data set describing the large-scale atmosphere 
at a tropical location is possible. In addition to NWP anal
ysis data, the method requires frequent radar observations 
to calculate precipitation and related small-scale variables. 
Such data sets can be used to investigate the fundamental 
relationships between convection and the large-scale atmo
sphere. Furthermore, where relationships are identified, their 
deterministic or stochastic nature can be determined. Such 
data sets provide valuable observational evidence to develop 
convective parameterizations.
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ABSTRACT

Two seasons of Darwin, Australia, C-band polarimetric (CPOL) research radar, radiosoundings, and 
lightning data are examined to study the relative influence of the large-scale atmospheric regimes and the 
underlying surface types on tropical convective cloud properties and their diurnal evolution. The authors find 
that in the “deep westerly" regime, which corresponds to the monsoon period, the convective cloud occur
rence rate is highest, consistent with its highest relative humidity. However, these convective clouds have 
relatively low cloud-top heights, smaller-than-average cell volumes, and are electrically least active. In this 
regime, the cloud cell volume does not vary significantly across different underlying surfaces and afternoon 
convective activity is suppressed. Thus, the picture emerging is that the convective cloud activity in the deep 
westerly regime is primarily regulated by the large-scale conditions. The remaining regimes (“easterly," 
“shallow westerly," and “moist easterly") also demonstrate strong dependence on the large-scale forcing and 
a secondary dependence on the underlying surface type. The easterly regime has a small convective cloud 
occurrence rate and low cloud heights but higher lightning counts per convective cloud. The other two regimes 
have moderate convective cloud occurrence rates and larger cloud sizes. The easterly, shallow westerly, and 
moist easterly regimes exhibit a strong, clearly defined semidiurnal convective cloud occurrence pattern, with 
peaks in the early morning and afternoon periods. The cell onset times in these three regimes depend on the 
combination of local time and the underlying surface.

1. Introduction

Convection patterns in the vicinity of Darwin, Aus
tralia, a site typical of the monsoon climate of northern 
Australia, have been investigated using ground remote 
sensing observations (e.g., Keenan and Carbone 1992; 
Rutledge et al. 1992; Williams et al. 1992; May et al. 
2008; Protat et al. 2011). The main reasons for focusing
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on Darwin are that 1) the site has one of the most 
comprehensive long-term meteorological observational 
networks anywhere in the tropics; and 2) it experiences 
a wide variety of convective systems, and therefore 
should have important implications for the wider tropical 
Asia-Pacific region. Furthermore, the Darwin site com
bines seasonally varying meteorological conditions with 
distinct dry, wet, and transition seasons, with a complex 
topography of coastlines, islands, and oceanic areas. This 
makes Darwin an ideal location to investigate the relative 
roles of large-scale meteorology and surface types.

Past studies using data around Darwin explored the 
statistical characteristics of convection, where meteo
rological regimes were broadly separated into two cat
egories; the buildup-break periods with low-level easterly 
winds and monsoon periods with low-level westerly 
winds (e.g., Keenan and Carbone 1992; Rutledge et al.

© 2013 American Meteorological Society
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1992; Williams et al. 1992; May and Ballinger 2007). In 
break periods, cloud cells were reported to be more in
tense, taller, and electrically more active compared to 
monsoon periods. However, the daily total rain accu
mulation is higher during monsoon periods, with a —50% 
contribution from stratiform rain (May et al. 2012).

Recent cluster analysis of thermodynamic sounding 
data using 49 wet seasons (defined as October-April) of 
radiosonde measurements showed that the Darwin wet 
season can be subdivided into five objective regimes, 
which have significantly different synoptic environments 
(Pope et al. 2009a). These regimes have been shown to 
be associated with significantly different properties of 
ice clouds for the Darwin region (Protat et al. 2011). 
Consequently it is worthwhile to investigate how con
vective cloud properties may change when data are sep
arated into the five regimes instead of using the simple 
monsoon-break separation. Such a separation can aid the 
evaluation and development of convective parameteri
zations in models (e.g., Jakob 2003, 2010) as it can help 
better identify the relationship between the large-scale 
state (as defined by the cluster regimes) and small-scale 
cloud properties.

Several convective cloud properties will be considered 
in this study, including convective cloud occurrence and 
convective cloud-top heights, volume, kinematics, cell 
onset times, and electrical properties. Another impor
tant element affecting the growth of convective cloud 
systems is the merging of individual clouds since this 
leads to formation of larger cloud systems (Westcott 
1994; Simpson et al. 1993). Previous research efforts in 
this area generally focused on a single convective cloud 
property. For example, Westcott (1994) considered case 
studies of convective cell merging and proposed that 
merging occurs because of horizontal expansion. Carbone 
et al. (2000) studied the Hector storms over Tiwi Islands 
and found that they formed mostly due to sea-breeze 
convergence. Pope et al. (2009b), using six wet seasons 
of satellite observations, found that in the north Australian 
region, mesoscale convective systems (MCSs) during the 
westerly (easterly) flow generally first formed over the 
western (eastern) side of Australia and then move across 
the continent. Building on these previous studies, a uni
fied study of several convective cloud properties as to be 
carried out here will provide a more complete under
standing of convective cloud properties and competing 
factors that regulate cloud growth.

May and Ballinger (2007) considered a small subset of 
aforementioned convective cloud properties for the 
Darwin region, which were identified using the auto
mated Thunderstorm Identification, Tracking, Analysis 
and Nowcasting (TITAN) radar analysis tool (Dixon 
and Wiener 1993). Their convective radar echo-top height

(ETH) statistics showed little evidence for a multimodal 
distribution as hypothesized by early observations 
(Johnson et al. 1999) and models (Liu and Moncrieff, 
1998). Instead they found a continuous distribution of 
ETH with the peak of the distribution shifting toward 
the tropical tropopause layer (—15 km) as the distribu
tions are conditioned on higher reflectivity (May and 
Ballinger 2007). But they did not provide any informa
tion on the variations with respect to underlying surface 
and local time or the variability with respect to recently 
identified large-scale atmospheric regimes.

The present paper aims to extend the May and Ballinger 
(2007) study. The specific objectives of this study are
1) to assess how the large-scale atmospheric regime af
fects the distribution of the convective clouds, ETH, and 
associated electrical activity by analyzing the diurnal 
and spatial variability; 2) to examine the variability of 
convective cell volume, kinematics, and cell onset times 
during the respective large-scale atmospheric regimes; 
and 3) attempt to ascertain the significance of the large- 
scale regime against other competing factors such as 
underlying surface and diurnal cycle, in the production 
of tropical convective clouds. This paper is organized as 
follows: the datasets, together with the techniques em
ployed to extract convective cloud properties from radar 
reflectivities are described in section 2. The basic char
acteristics and spatial variability of convective clouds 
properties as a function of the large-scale atmospheric 
regimes is described in section 3a, followed by an anal
ysis of the diurnal variability in section 3b. Finally, the 
results are summarized and discussed in section 4.

2. Datasets and method

The study makes use of two wet seasons (October 
2005-April 2006 and October 2006-April 2007) of data 
from the Darwin C-band polarimetric research radar 
(CPOL; Keenan et al. 1998), the Australian GPATS 
(http://www.gpats.com.au/) lightning products and ra
diosoundings at Darwin airport. The sounding data are 
from the daily 2300 UTC (0830 LT) operational obser
vations. The 2300 UTC data are selected to avoid modi
fication of the environment by strong diurnal convection.

The CPOL radar (12.25°S, 131.04°E) as shown in Fig. 1, 
collects a three-dimensional volume of data out to a range 
of 150 km once every 10 min. Each volume consists of 
a series of 16 conical sweeps at elevations ranging from 
0.5° to 42°. The radar transmits alternate linear horizontal 
and vertical polarization pulses of wavelength 5.3 cm. 
The main data source used in the present paper is the 
three-dimensional radar reflectivity after attenuation 
by rain is corrected for using the method developed 
by Bring! and Chandrasekar (2001). Other important



1360 MONTHLY WEATHER REVIEW Volume 141

100 —

fan Diemen Culf

Continemo

-mo —

l I I I l I I I I I I I 1 I I I I LL-ISO
-150 -100 -50 0 50

Distance East from Cpol (km)

Fig. 1. Sampling domain of the Darwin C-band polarimetric 
radar (CPOL). The concentric rings in this figure and all sub
sequent figures are 50 km apart. Only data from the shaded gray 
region (i.e., ranges 20-120 km) are analyzed in this paper. To 
better quantify the effects of the underlying surface type, the data 
for Fig. 12 are separated into oceanic (blue, —2380 knr), coastal 
(yellow, —4160 knr), and continental sectors (red, —7280 knr).

polarimetric radar retrievals, such as drop size distribution 
and precipitating water contents are analyzed separately in 
a paper in preparation.

Figure 1 shows the extent of the domain sampled by 
the CPOL radar. Only data from the highlighted gray 
region (radar ranges of 20-120 km) are analyzed in this 
paper. This is done to reduce errors resulting from limited 
sample size at close ranges caused by the “cone of si
lence” occurring at elevation angles greater than 42° and 
at large ranges due to beam spreading. We also found that 
the mean radar ETH near maximum range of 150 km is 
—1 km higher than the mean ETH within 120 km of ra
dar center. The radar ETH statistics has a small range 
bias due to the radar scanning geometry; however, this 
effect is quite small within our radar sampling domain.

Reflectivity data are gridded by constructing a series 
of the constant altitude plan position indicator (CAPPI) 
at every 0.5 km in height (with a horizontal bin size of 
2.5 km X 2.5 km) extending up to 20 km, using the Sorted 
Position Radar Interpolation (SPRINT) software. 
The gridded reflectivity data at a CAPPI level of altitude 
2.5 km are processed using the “Steiner” convective- 
stratiform classification algorithm (Steiner et al. 1995) to 
determine the occurrence of the convective and strati
form precipitation at individual radar pixels. The Steiner 
algorithm classifies the gridded reflectivity as convective 
if the reflectivity value is at least 40 dBZ or greater than 
a fluctuating threshold depending on the area-averaged 
background reflectivity (within a radius of 11 km around

the grid point). Each convective center has a radius of 
influence (ranging from 1 to 5 km) also depending on the 
surrounding background reflectivity (Steiner et al. 1995).

For each identified convective pixel at 2.5-km CAPPI 
level, the maximum height of the 5-dBZ echoes is 
computed to provide an estimate of the ETH. Specifi
cally, the ETH corresponded to radar echo height whose 
reflectivity is the closest to 5 dBZ, but with a reflectivity 
value within the range of 0-10 dBZ, and provided there 
are continuous (in the vertical) reflectivity fields be
tween the 2.5-km CAPPI level and this ETH. This pro
cedure filtered out any possible effects of detached cloud 
layers situated above the convective towers. The 5-dBZ 
radar ETH definition has been previously used by May 
and Ballinger (2007).

In most cases, the true cloud-top height will extend 
higher than the 5-dBZ ETH; however, using CloudSat 
data the difference between cloud-top heights and radar 
0- or 10-dBZ ETH has been found to often be within 
2 km (Casey et al. 2012). Selecting the lowest available 
reflectivity per convective column might appear to be 
a better proxy of cloud-top height. However, this will 
introduce artifacts because the radar sensitivity drops 
with range, leading to fewer signals detected at longer 
ranges. The radar detection sensitivity is 0 dBZ near its 
maximum range of 150 km, so the choice of 5-dBZ 
threshold is sufficiently high to allow for detection of 
echoes at any radar range considered in this study.

This study also makes use of cell-based analysis, such 
as cell lifetime, speed, direction of movement, and vol
ume. These parameters are derived using the TITAN 
radar analysis tool (Dixon and Wiener 1993). TITAN 
identifies convective cloud volumes based on radar re
flectivity and volume thresholds. It then tracks these cloud 
volumes (hereafter referred as simply as “cells”) in space 
at discrete times (every 10 min in this case). Here a min
imum volume requirement of 30 km3 and a reflectivity 
threshold of 35 dBZ are used to identify convective cells 
(e.g., May and Ballinger 2007). To reduce noise, filters are 
applied to the data. We only use information from cells 
that could be tracked over at least two consecutive radar 
scans. Thus, the analyzed cells had a minimum lifetime of 
10 min. Moreover, only cells that formed and decayed 
within the radar sampling domain are used in the analysis. 
This is achieved by rejecting any track that passed beyond 
a 140-km radius (the maximum radar coverage radius is 
150 km). Similar TITAN cell selection criteria have been 
used elsewhere (Goudenhoofdt et al. 2010). Overall, from 
a total of 50 485 cells that were detected by TITAN 
during the two seasons, these filters rejected —56% of the 
cells, leaving just over 22 000 cells in our analysis. How
ever, if one chooses to restrict the maximum radius to 
120 km, as has been done for the Steiner method, 4500
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Table 1. Distribution of the large-scale atmospheric regimes, convective cloud activity, and associated lightning strokes in our two-season
sample. The data ranges represent the 95% confidence intervals.

Regime
Tot days [Oct, Nov, Dec, 

Jan Feb, Mar, Apr]

Steiner pixels TITAN cells with lifetime >10 min

Counts 
per day

Lightning 
flashes 

per minute 
per pixel

Counts 
per day

Lightning 
flashes 

per minute 
per cell

Lifetime
(min)

Speed 
(m s”1)

Volume
W

Dry east (DE) 38 [18, 11, 4, 0, 2, 0, 3] 156—407 0.11-0.19 2-6 20.2-28.7 40.2-52.4 6.6-8.7 76-129
East (E) 25 [0, 7, 8, 0, 0, 0,10] 1210-1861 0.12-0.17 20-35 15.2-18. 2 41.3-47.23 3.6-4.4 84-120
Deep west (DW) 64 [1, 2, 3, 27, 1, 28, 2] 11 076-11 827 0.008-0.010 91-100 0.9-1.3 38.8-40.4 5.89-7.5 61-75
Shallow west (SW) 59 [0,12, 4,16, 18, 5, 4] 7957-8390 0.07-0.09 54-67 10.4-11.1 42.1-44.8 5.0-6.0 87-107
Moist east (ME) 175 [0, 19, 43,19, 35, 29, 30] 7261-7896 0.06-0.07 60-70 8.2-9.1 43.5-45.1 4.5-5.0 93-105

more TITAN cells are discarded. Importantly, the TITAN 
analysis tool does not require gridded radar data, so the 
interpolation of the observed conical scans into CAPPIs 
is not a concern, which allows for an investigation of 
up to the 140-km range.

A crucial difference between the Steiner and TITAN 
methods of convective cell identification is that the former 
is likely to capture small cells such as those in the early 
growth or decay phase as well as mature cells, while 
TITAN has been designed to find mostly mature, intense 
cells. This is because the Steiner method does not have 
a minimum volume or lifetime requirement and permits 
lower reflectivities in the analysis (Steiner et al. 1995).

Finally, the electrical properties of the convective 
clouds are estimated using GPATS lightning data. Similar 
to other lightning detection networks, the GPATS net
work uses GPS-synchronized time stamps of the ob
served lightning sferics signals from each station and 
locates the strokes using the time of arrival method. To 
study the response of lightning associated with convec
tive clouds, a lightning stroke was only used for the sub
sequent analysis provided there was at least one convective 
pixel occurring within a radius 10 km in distance and 
10 min in time of this lightning stroke. These criteria 
rejected —6% of strokes, from a total of 153 125 strokes 
detected within the radar domain over the two seasons.

In the subsequent analysis, the lightning occurrences 
are expressed in units of flashes per minute per pixel
cell. Several thousands of convective pixels had no light
ning stroke associated with them and these “0” flash rates 
are retained during the calculation.

3. Results

a. Basic convective cloud characteristics during the 
different large-scale atmospheric regimes

1) Mean regime characteristics

This section provides an account of the average cloud 
characteristics and associated electrical properties 
(Table 1), together with horizontal wind vectors, vertical

shear of horizontal winds (hereafter, vertical wind 
shear), and vertical profile of humidity profiles (Fig. 2) 
for the five large-scale atmospheric regimes identified 
by Pope et al. (2009a). The long-term thermodynamic 
profiles and the large-scale environment are described in 
Pope et al. (2009a). Note that their details, but not their 
broadscale characteristics, will differ somewhat from 
our results because of interannual variability. The ver
tical wind shear profile complement results from Pope 
et al. (2009a), as wind shear has long been known to have 
an impact on convective organization, strength, and 
propagation properties (e.g., Rotunno et al. 1988).

Table 1 shows the 95% confidence interval range of 
the number of Steiner-identified convective pixels and 
TITAN cells, together with the lightning flash rate per 
pixel/cell as a function of the large-scale atmospheric 
regime. As TITAN keeps track of cell splits and mergers 
during successive radar volume scans, cell identifica
tion can be complex. Here, all cells that had the same 
“complex track identification number' are treated as 
one cell. The complex track number remains the same 
even if the cell splits or merges during its lifetime. For 
the study period, 78% of the detected TITAN tracks 
have a simple structure free of any splitting or merging 
events. The remaining 22% of cells have a complex struc
ture, with a majority of them undergoing cell mergers. 
Merged cells are typically taller and larger than simple 
cells (Westcott 1994). The Steiner method treats each 
individual radar pixel independently.

Note that the 95% confidence interval of the con
vective occurrence frequency for the respective re
gimes does not overlap when using the Steiner method 
(Table 1). This is an initial indication that significantly 
different convective occurrence patterns do occur dur
ing the five large-scale regimes. Differences in convec
tive cloud properties such as cell volume, propagation 
speed, and lifetime are significant when one compares 
the results of the deep westerly (DW) regime (corre
sponds to the active monsoon period) against that of the 
other regimes.
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Fig. 2. The 2-yr mean profile of radiosonde measurements of (a) horizontal winds at 0.5-km vertical resolution, (b) corresponding 
vertical wind shear, and (c) relative humidity for the five large-scale atmospheric regimes [yellow: dry east (DE); black: east (E); blue: deep 
west (DW): green: shallow west (SW); red: moist east (ME)]. The length of vectors in (a),(b) corresponds to the magnitude of the vectors; 
the scale is given on the top right-hand corners. The north direction points upward in these figures.

The dry easterly (DE) regime may be viewed as the 
trade wind regime. It mainly occurs in October and 
November (Table 1). The winds are southeasterly in this 
regime at low altitudes (Fig. 2a), reversing to westerly at 
~8 km and back to easterly above a 16-km height. The 
upper-level (>15 km) easterly winds occur persistently 
in all regimes and are due to the presence of an upper- 
level jet. The DE regime has cells that typically lasted 
longer than other regimes. This could be due to the 
strongest low-level (0-3 km) and midlevel vertical wind 
shear (Fig. 2b). Robe and Emanuel (2001) and several 
earlier studies indeed suggested that strong shear in the 
lower levels produced more organized and longer lived 
convection. Both the Steiner and TITAN methods show 
that this regime has the lowest rate of convective activ
ity; however, the lightning flash rate per convective pixel 
or cell is the highest. Low convective cloud activity is 
consistent with the lowest relative humidity (Fig. 2c), 
which is due to a dry continental air mass being advected 
over Darwin (Pope et al. 2009a). The existence of higher 
lightning flash rates during premonsoon (and monsoon 
break) conditions, than during the active monsoon pe
riod, has been previously documented over Darwin us
ing lightning data from a separate lightning network 
(Holler et al. 2009; Labrador et al. 2009). Overall, the 
DE regime occurs —11% of the time in our two-season 
sample and contains only very few detectable radar

convective pixels (on average 312 pixels per day). We, 
therefore, choose not to show any further results from 
this regime from hereon.

The easterly (E) regime is typically seen as the tran
sition between the trade wind regime and monsoon 
onset. It occurs mainly in the early and late part of the 
wet season. For the study period, this regime is the least 
frequent and accounts for only 7% of our total sample. 
The E regime has a higher average number of both 
convective pixels and cells than the DE regime, but is 
still smaller compared to the other regimes. The large- 
scale synoptic environment advects an air mass from the 
Coral Sea over Darwin (Pope et al. 2009a), which cre
ates a moister environment than that of the DE regime 
(Fig. 2c). The horizontal wind vectors and vertical shear 
wind profile are similar to the DE regime except in the 
midtroposphere (8-15 km) where they are much weaker 
in the E regime (Figs. 2a,b). The lightning flash rate per 
pixel is moderately high in this regime and is consistent 
with premonsoonal lightning features (Holler et al. 2009; 
Labrador et al. 2009).

The DW regime is associated with typical monsoon 
conditions, and its occurrence peaks between January 
and March (Table 1). It accounts for 18% of the total 
sample. The large-scale synoptic environment indicates 
the presence of northwesterly winds at low levels (Fig. 2a) 
transporting an air mass of equatorial origin into the
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Fig. 3. (a) PDF of the maximum height of 5-dBZ echoes (ETH) for the respective large-scale atmospheric regimes 
using bin sizes of 1.0 km in height, (b) The lightning occurrence rate (strokes per number of convective pixels in each 
height bin) as a function of large-scale atmospheric regimes. The lightning flash occurrence varies significantly with 
increasing ETH, so a log scale has been used in (b). The gray shaded region in both figures represents the PDF 
obtained using data from all regimes, including the dry east regime.

region (Pope et al. 2009a). They also found that this 
regime produced the highest amount of rainfall consis
tent with the highest relative humidity of all regimes 
(Fig. 2c). Both the Steiner and TITAN methods reveal 
that the DW regime generates the highest convective 
area and cell counts per day, respectively. However, the 
mean volume of the convective cells in the DW regime 
is relatively small, —68 km3, compared to the other re
gimes with a mean cell volume of close to —100 km3. 
This may be partly because —90% of cells in this regime 
have a simple track structure, whereas the other two 
convective activity regimes [i.e., the shallow westerly 
(SW) and the moist easterly (ME) regimes described 
below] have only 67%-70% cells as simple. Also, the 
low and midlevel vertical wind shear is weakest in this 
regime, so the convection is predicted to be relatively 
short lived (e.g., Table 1) and less organized (e.g., 
Rotunno et al. 1988; Robe and Emanuel 2001). Consis
tent with previous studies, the DW regime is found to 
have the least amount of lightning discharges (Holler 
et al. 2009; Labrador et al. 2009).

The SW regime has previously been found to occur 
when the active monsoon region moves to the east of 
Darwin (Pope et al. 2009a). They found this regime to be 
associated with the largest mean convective available 
potential energy (CAPE) values of about 1100 J kg-1 
and potentially stronger updrafts. The SW regime occurs 
16% of the sample time. Table 1 shows that the SW 
regime has the second highest convective area per day 
and similar number of convective cells as the ME regime 
(described next). The SW regime is found to have the 
highest percentage of cells undergoing merger. Also, the 
electrical activity is consistently higher than in the other 
two frequently occurring regimes (DW and ME) regardless

of the data processing procedure. The wind vectors in 
the SW regime change fairly rapidly in the first 2 km, 
veering from westerly near the surface to southerly at 
—2 km (Fig. 2a). Between 2-8 km, the winds in the SW 
regime continued to be southerly and then strongly 
easterly above 15-km height. The rapid changes in the 
near-surface winds caused the low-level shear in the SW 
regime to be approximately 7 times more than in the DW 
regime (Fig. 2b). The relative humidity level is slightly 
less than that observed during the DW regime (Fig. 2c).

The ME regime can be viewed as the typical break 
monsoon period. This regime is the most frequent, oc
curring 48% of the sample time, and could be interpreted 
as the “default" state of the Darwin wet season. The 
convective area and cells numbers are similar to the SW 
regime but electrical activity seems to be slightly lower. 
The large-scale synoptic environment indicates the pres
ence of easterly wind anomalies transporting an air mass 
of equatorial origin, together with large region of con
vergence over Darwin (Pope et al. 2009a). The sounding 
data (Fig. 2a) highlight the presence of easterly winds 
extending throughout the troposphere with the lowest 
wind magnitude near the ground level and at —10 km. 
The low and midlevel vertical wind shear is moderately 
high in this regime, and therefore favors more organized 
convection compared to the DW regime.

2) Convective 5-dbz echo-top heights
AND ASSOCIATED LIGHTNING

This section shows the overall variation of the 5-dBZ 
ETH extracted using Steiner convective pixels and as
sociated lightning as a function of the large-scale at
mospheric regime. The diurnal features of these two 
cloud properties are in section 3b(2). Figure 3a shows
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the probability distribution function (PDFs) for ETFf 
using 1-km bins in height for the four regimes with suf
ficient samples: E, DW, SW, and ME. The shaded gray 
region in this figure and all subsequent figures is the 
average distribution obtained using data from all days, 
regardless of regime classification. Figure 3b shows the 
vertical profile of the lightning flash rate per pixel.

The ETH distribution for all convective pixels (gray 
shaded region) shows a broad peak between 8 and 
14 km (Fig. 3a). Each large-scale atmospheric regime 
shows a single peak occurrence in the ETH. There is no 
clear evidence of a multimodal distribution of convec
tive ETH as reported by previous studies (e.g., Liu and 
Moncrieff 1998; Johnson et al. 1999) even though a sig
nificant amount of cumulus congestus cloud is present in 
our analysis. Our analysis is unable to reproduce the 
trimodal distribution of Johnson et al. (1999) because 1) 
each individual convective cloud could have several 
ETH, which will smear out the less-dominant peak oc
curring near the tropopause layer [—15 km; our main 
goal here is to study the convective fractions, so ETH 
data are considered more suitable than cloud-top height 
(CTH)]; and 2) the shallow cumulus clouds with peak 
heights within 1-2 km are usually missed because they 
are typically nonprecipitating and so cannot be captured 
with our C-band radar due to minimum detectable signal 
and sampling issues. However, there seems to be some 
evidence of a multimodal peak in convective ETH when 
it is presented as a function of diurnal cycle (see Fig. 11).

Figure 3a shows that the E regime (black) has the 
peak occurrence at the lowest height of all regimes 
(—8 km), followed by the DW regime (—11 km). The 
deepest convective clouds form in the SW regime with 
a peak occurrence at —14 km and could be associated 
with stronger updrafts (e.g., Pope et al. 2009a). The 
mean distribution (gray shaded region) and the ME re
gime are mostly similar, since the ME regime is by far 
the most frequent (see Table 1). The TITAN method 
also produces the same dependence of ETH on large- 
scale regime except that the occurrence peak height is 
higher by 1-2 km (not shown).

The lightning occurrence profiles (Fig. 3b) show that 
the lightning rates increase strongly with convective 
ETH, with all but the DW regime showing the most 
lightning for the deepest clouds. The convective clouds 
in the E regime produce about 2-3 times more lightning 
than other regimes for all ETH up to a height of —15 km. 
Notably, the SW regime has a secondary peak in light
ning production rate associated with ETH around 10 km 
(Fig. 3b). In general, lightning is believed to be triggered 
when there is interaction between the upward flux of 
supercooled liquid water and the downward flux of graupel 
in the mixed phase (—10° and — 40°C) of thunderstorms

(Deierling et al. 2008). To maintain this process, suffi
cient CAPE to support vertical motions in excess of 
6-7 m s~x is required to supply supercooled liquid water 
in the mixed phase (van den Broeke et al. 2005). Large 
CAPE values potentially lead to stronger updrafts and 
higher ETH, so it is logical to expect the lightning flash 
rates to increase with ETH.

Figure 4 provides the spatial distribution of the aver
age ETH, convective cloud occurrence frequency, and 
associated lightning flash rates. All data in this figure are 
interpolated to a 5 km X 5 km grid. We notice that the 
average ETH (top panels) is slightly higher beyond the 
ranges of 120 km (not shown) due to the beam spreading 
effect. Small size convective cells (which are typically 
shallow in height) with a narrow horizontal cross- 
sectional area become less frequent as the horizontal 
distance between adjacent beams widen at farther ranges 
because they are likely to be missed during the SPRINT 
interpolation. As a result mostly wider, taller cells con
tribute to the mean ETH near the maximum sampling 
range.

During the E regime (left column) a maximum in 
convective clouds is found over the ocean. The oceanic 
clouds in this regime generally have a higher mean ETH 
of —10.5 km, compared to those occurring over land, 
whose average height is —8 km. The lightning occur
rence peaks tend to be collocated with regions of higher 
average ETH, with a significant proportion occurring 
along the coastline. Data from lightning networks have 
also shown significant lightning along the top end coast
line of Darwin (e.g., Labrador et al. 2009).

During the DW regime the convective cloud occur
rences are found to be larger over the western half of 
the domain, with the majority of them occurring in the 
Beagle Gulf (see Fig. 1 for location) and its coastal 
boundary regions. This region has been shown to have 
maximum precipitation during Darwin monsoon periods 
(May et al. 2012). The mean ETH is —10 km, which is 
low compared to the other convectively active regimes 
(SW and ME), but convective cloud occurrence rate, 
especially over the ocean, is highest in this regime. This 
may be because during the DW regime, convection is 
embedded in a large-scale ascending region associated 
with the monsoon trough (May et al. 2012). The light
ning locations are generally widespread and low in oc
currence, with a maximum lightning occurrence being 
collocated with the maximum occurrence of convective 
cells.

A comparison of the spatial maps of the SW regime 
against the DW regime suggests that the peak convec
tive occurrence locations show some tendency to shift 
eastward, from the western half in the DW regime to the 
region within 50 km surrounding the radar center. This
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is consistent with the conjecture that during the SW 
regime, the active monsoon region has moved to the east 
of Darwin (Pope et al. 2009a). The mean ETH is clearly 
the highest of all the regimes. The lightning occurrence 
rate is also the higher in this regime compared to the 
DW regime, with the maximum lightning occurrence 
located mainly over the ocean. Possible reasons for the 
higher lightning occurrence over the ocean than the land 
are discussed in section 3b. A closer examination of ra
dar reflectivity loops and lightning occurrence reveals 
that the observed lightning occurrence peak is due to 
a significant number of events, not just a few extreme 
events.

During the most common regime (ME), maximum 
convective cloud occurrences are on the western part of 
the Tiwi Islands, consistent with the frequent occurrence 
of Hector storms (e.g., Carbone et al. 2000). Early storms 
typically occur over the eastern part of the Tiwi Islands 
and propagate westward during the break monsoon con
ditions. Carbone et al. (2000) explains that these storms 
intensify as they approach the west coast due to cell 
merger, and so more convective pixels are detected by 
the radar on the western part of Tiwi Islands. However,

these Hector storms do not seem to be as electrically 
active as storms forming along the top end coastline. 
Focusing only over the Tiwi Islands, the lightning flash 
rate per convective pixel seems to the highest along 
the west coast region where the cell merger is most likely 
to occur. This is consistent with the electrical activity 
associated with typical Hector storms (Carey and 
Rutledge 2000). They found no significant lightning 
during the developing stage of the Hector storms and the 
maximum flash intensity was associated with the cell 
merger during the mature phase. The mean ETH shows 
moderate dependence on the underlying surface, with 
ETH slightly higher over the mainland than over ocean 
and Tiwi Islands. The convective activity is minimum 
northeast of Darwin in this ME regime.

Overall, the results shown in Figs. 3 and 4 indicate that 
convective cloud occurrence, ETH, and associated 
lightning depend both on the large-scale atmospheric 
conditions (as exemplified by the Pope et al. 2009a re
gimes) and the underlying surface. In the next sections, 
we investigate the effects of these two factors on other 
properties of convective cells such as cell lifetime, 
propagation parameters, volume, and cell genesis time.
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Fig. 5. As in Fig. 3a, but showing the PDFs of TITAN (a) cell 
lifetime using a bin size of 10 min in time and (b) cell speed using 
a bin size of 1 m s-1 for the respective large-scale atmospheric 
regimes. As discussed in the text, only TITAN cells with lifetimes > 
10 min (and cells that formed and decayed within 140 km of the 
radar center) are used in this figure and all subsequent figures.

These cell properties are derived using the TITAN 
analysis tool.

3) Convective cell kinematics

The aim of this section is to examine the variation of 
convective cell kinematics (i.e., cell lifetime, speed, di
rection, and displacement) obtained using the TITAN 
tool and their spatial distribution in the four large-scale 
atmospheric regimes. Results for the DE regime are 
again not presented because on average this regime had 
two TITAN cell tracks per day. In all four regimes, the 
cells are mostly short lived with a mode occurrence 
lifetime of 20 min and a strongly positively skewed 
duration frequency (Fig. 5a). Longer-lived cells, such 
as those with lifetime exceeding 100 min (—5% of all 
TITAN cells), are found to be least frequent in the DW 
regime.

In contrast, the cell speed varied significantly during 
the respective regimes (Fig. 5b). The easterly regimes 
(E and ME) exhibit a much narrower distribution of cell 
speed with a peak occurrence near 3 m s~x. However,

the westerly regimes (SW and DW) are characterized by 
a broader distribution, with 30% (15%) of the cells in 
the DW (SW) regime having cell speeds exceeding 
10 m s-1. This greater cell speed in the westerly regime, 
particularly the DW regime, is because the steering flow 
speeds (wind speed at 700 hPa or ~3 km, see Fig. 2a) 
are larger in those regimes.

Figure 6 shows spatial maps of the cell track distribu
tion and their average displacement, lifetime, and speed, 
as a function of regime. The cell displacement is calcu
lated as follows. First, the coordinates of the cell center at 
first detection (f = 0 h) are grouped into 20 km X 20 km 
bins with respect to radar center. A 20 km X 20 km bin 
size is chosen to give at least 5 TITAN tracks per bin. 
Then for all cells in a bin the average location of the cell 
center at decay (t = termination of cell) is calculated. The 
average displacement vector is then defined as the position 
of cell decay relative to its onset and is shown as an arrow 
for each bin in the third panels of Fig. 6.

The spatial distribution of the TITAN tracks (top 
panels in Fig. 6) is similar to the distribution of con
vective pixels (second panels in Fig. 4). The most no
ticeable difference occurs in the ME regime, with the 
western part of Tiwi Islands showing comparatively less 
TITAN tracks than convective pixels. This can be ex
plained since the TITAN occurrence maps show a given 
track only once at cell onset. As indicated above, the 
western island maximum found by the Steiner method 
represents Hector storms, which are usually born on the 
eastern part of the Tiwi Islands and then they propagate 
westward where the sea-breeze interaction makes them 
more intense (Carbone et al. 2000).

According to the bottom three panels in Fig. 6, cells 
tend to propagate for larger distances in regions located 
on the windward side of the incoming large-scale at
mospheric circulation. For example, cells located in the 
northwest half of the domain in the DW regime and 
those in the southeast half in ME regime propagated for 
longer distances since they last longer and/or propagate 
faster. The steering flow mainly controls the direction of 
propagation of the TITAN cell, but it cannot explain the 
gradual drop in the cell propagation distance as they 
move from the windward side to the leeward side. The 
hypothesis that this gradual drop in cell propagation is 
an artifact because fast-moving and long-lived cells are 
more likely to be filtered out from the leeward side by 
our cell selection criteria (since they are more likely to 
propagate beyond 140 km from the radar center) was 
investigated and rejected. A similar result is obtained 
when we used all cells, even those that extended beyond 
140 km from the radar center.

To further investigate this, we calculated spatial var
iation of the percentage of cells rejected compared to all
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that the bins contained <5 TITAN tracks. The length of vectors in the third row represents the mean ground displacement of the cells.

cells when using a 140-km maximum radius requirement 
(provided the cell lifetime was at least 10 min). The 
results of this analysis are shown in the second panels of 
Fig. 6. It shows that our filters rejected less than 2% of 
cells in the circular region of radius 100 km bounded by 
the second concentric ring. Importantly this region does

not show any spatial gradient in the cell-rejection fre
quency, but we still observed longer-propagating cells 
on the windward side compared to the leeward side in 
this inner region. Analysis of the spatial variation of the 
ratio of merged cells to all cells (results not shown) in
dicated that cell mergers on the windward side tend to
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Fig. 7. As in Fig. 3a, but for the PDFs of TITAN cell volume using 
a bin size of 20 km3.

be higher than on the leeward side. This result supports 
the observations of longer-lived cells (e.g., Westcott 
1994). High-resolution 3D winds and gridded thermo
dynamic profiles for the region around Darwin would be 
needed to further understand the salient cloud physics 
causing this effect, which will be the subject of further 
investigations.

4) Convective cell volume

The aim of this section is to examine the variation of 
convective cell volume and its spatial distribution with 
a large-scale atmospheric regime.

The SW and ME regime show a similar distribution of 
TITAN cell volumes (Fig. 7), with both the DW and E 
regimes deviating from the mean distribution more 
significantly. The proportion of cells with a small volume 
of 30 km3 is —15% for the SW and ME regimes, while it 
is much larger (—22%) for the DW regime and smaller 
(—11%) for the E regime. Bigger volume cells are most 
frequent in the E regime, though results are drawn from 
a smaller number of events. Within the convectively 
active regimes (DW, SW, and ME), cells with a large 
volume are more frequent in the SW regime (55% of the 
cells had volume >60 km3) and ME (51%) regimes 
compared to the DW regime (37%). An interesting

feature of the SW and ME regimes is that the cells over 
land have a larger volume compared to those occurring 
over ocean (Fig. 8). In contrast, in the DW regime the 
cell volume shows little dependency on the underlying 
surface. The drop in cell volume at the far southeast of 
Darwin could be an artifact associated with increase in 
the rejection of TITAN cells by our filters (second 
panels Fig. 6). Overall, this points out that the convec
tive clouds in the DW regime are embedded within the 
large-scale monsoon trough.

Overall, the variability in cell volume is linked to both 
the large-scale atmospheric circulations and the nature 
of the underlying surface. For example, cell volume is 
largest in the E regime, smallest in the DW regime, and 
intermediate in the SW and ME regimes. Comparing the 
three most frequent regimes, they all, except for the DW 
regime, have larger cells over the continent than over 
the ocean. Since cell volume (Fig. 8) reveals a similar 
response as the cell area (results not shown here) and to 
some extend as the ETH (top panels Fig. 4), it is fair to 
assume that cells with larger volume will have a greater 
mean ETH and a wider horizontal extent.

b. Effects of the large-scale regime on the diurnal 
cycle of convection

Having identified significant differences in basic cloud 
cell characteristics for the four large-scale regimes used 
in this study, this section focuses on the diurnal cycle of 
cell characteristics, in particular convective ETH oc
currence and associated lightning, as they are indicative 
of the intensity and microphysical characteristics of the 
convective systems.

1) Convective cell onset time

In this section we examine variation in cell onset time 
by binning the onset times with respect to the Darwin 
local time (LT = UTC + 9 h, 30 min). The distribution 
of cell onset times (Fig. 9) shows that most of the cells 
are triggered during the day with a secondary peak oc
curring in the early morning period. For the DW regime, 
the daytime peak of the cell onset occurs the earliest,

Fig. 8. As in Fig. 6, but for the spatial maps of average cell volume per 20 km X 20 km bins.
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around midday, followed by the SW regime at 1400 LT 
and around 1500 LT for the easterly regimes.

The spatial maps of the cell onset times (Fig. 10) show 
well-defined differences in the dominant local time of 
the onset of convective cells with respect to the un
derlying surface. Some caution must be exercised when 
interpreting the results shown in Fig. 10, as the colors 
only represent the modal local time of the onset of 
convective cell development. Obviously some cells will 
be born outside the modal local time period for a given 
underlying surface. Over the ocean, the cells are trig
gered mainly in the early morning and in some cases 
around midnight, regardless of the regime type. Over 
land, the cells are predominantly triggered in the after
noon except for the DW regime. In the DW regime, the 
triggering of the cells within —60 km from the coastline 
happens around midday, while for the remaining land 
region it still occurs in the afternoon. These features in 
the diurnal cycle of cell onset time with respect to 
different underlying surface types are consistent with 
earlier research (Liu and Zipser 2008 and references 
therein).

In all regimes except the DW regime, convective cells 
over land are likely initiated by sea breezes whereas 
ocean cells are predominantly triggered by the land

breeze. Thus, the cell onset times are strongly dependent 
on diurnal cycle and on the underlying surface, in at least 
three out of four regimes. In contrast, in the DW regime 
(or monsoon period) with extensive cloud cover, radia
tive heating of the land is less effective resulting in 
changes to the mechanisms that trigger convection (May 
et al. 2012).

2) The diurnal cycle of convective ETH

Figure 11 shows the evolution of ETH occurrence 
frequency as a function of time of day and height for 
each of the large-scale regimes. The ETH occurrences 
are calculated separately for each bin of 1 h in local time 
and 1 km in height, and then normalized by the number 
of days in each regime. For clarity, the counts are then 
further divided by the peak occurrence value in each 
panel (peak values given on the bottom right-hand cor
ner). The density of points as a percentage of the maxi
mum occurrence is presented using a color scale with 
white indicating that no data is recorded in this bin.

In the E regime, the convective echo occurrence is 
highest in the afternoon and in the early morning period 
(Fig. 11). It appears that, especially in the afternoon 
period, the clouds are generally shallow during the early 
growth phase and progressively develop into deeper 
clouds in the mature stage. This diurnal cycle is consis
tent with that of the nonprecipitating ice clouds over 
Darwin during that same regime, as characterized in 
Protat et al. (2011). This consistency suggests that in the 
E regime, nonprecipitating ice clouds are predominantly 
convectively generated. At all times, except for the af
ternoon period, mean ETH (black curve) during the E 
regime is lower than the mean values for all regimes 
(black-white dashed curve). The electrical activity in the 
E regime is semidiurnal and follows the convective echo 
occurrence frequency, with the lightning flash rate peaks 
occurring fewer hours prior to peaks in convective ETH 
occurrence (white curve).

The DW regime shows a prolonged period of occur
rence of convective clouds from midnight through the 
morning with a peak around midday, and a clear
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Fig. 10. As in Fig. 6, but for the spatial maps of the dominant local time period at the onset of TITAN cells per 20 km X 20 km bins.
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Fig. 11. The time-height distribution of the frequency of oc
currence of 5-dBZ echoes at the top of convective clouds identified 
using the Steiner classification (from top to bottom) for the E, DW, 
SW, and ME. A bin size of 1 h in LT and 1 km in height is used 
in these plots. The echo counts per bin are first divided by total 
number of days of respective regime, and then expressed as a per
centage of the highest bin echo count per panel. The highest count 
is stated on the bottom right-hand corner in each panel. The black 
curves are the mean diurnal variation of 5-dBZ cloud height with 
the solid curve for each regime and the black-white dashed curve 
calculated using data from all regimes, including the dry east re
gime. The solid white curve is total lightning counts.

occurrence minimum in the evening (Fig. 11). Typically 
during monsoon conditions, which the DW regime rep
resents, there is a large proportion of stratiform clouds 
(May and Ballinger 2007). Hence, the convective ETH 
diurnal cycle is expected to deviate from that of rainfall,

which often shows a maximum in the afternoon and 
evening. Overall, the average ETH of —10 km is gen
erally lower than in the all-regime average. The DW 
regime is the least active in terms of lightning and this 
could be due to insufficient updraft speeds within the 
convective core to produce lightning (e.g., van den 
Broeke et al. 2005). Unlike the E regime, the frequency 
of occurrence of nonprecipitating ice clouds in the DW 
regime in Protat et al. (2011) is very different from the 
convective ETH statistics obtained here. The maximum 
in nonprecipitating ice cloud occurrence occurs later 
than the convective ETH occurrence maximum, be
tween 1500-2000 LT (Fig. 2d in Protat et al. 2011). This 
comparison suggests that during the DW regime, thick 
nonprecipitating anvils and cirrus decks produced by 
deep convection are much longer lived than during other 
regimes. During the DW regime, the diurnal variation in 
atmospheric temperature is weak due to widespread 
cloud cover reducing the daytime heating of the land 
(May et al. 2012). This largely explains the lack of a 
strong evening peak in the occurrence of convection 
during this regime.

During the SW regime the average ETH is higher than 
the mean values for all regimes at all times of the diurnal 
cycle, with two peaks: one in the morning and one in the 
afternoon. We previously have shown that the SW re
gime also contains the tallest convective ETH (Fig. 3a) 
and with moderate cell volume (Fig. 7) possibly due to 
stronger updrafts and increased occurrence of cell 
merging. The peak in nonprecipitating ice cloud oc
currence (Protat et al. 2011) is shifted to a later time 
(2000-2400 LT), suggesting again the production of ex
tended anvils by deep convection associated with the 
SW regime, as is the case for the DW regime as well. The 
SW regime is found to have the second highest lightning 
activity, with the majority of lightning strokes generated 
by the early morning storms. Again the peak in lightning 
flash rates tends to occur few hours ahead of the peak in 
convective ETH occurrence.

During the most frequent ME regime, the results re
veal that the early phase of storm development occurs at 
—1500 LT with a peak height of 9 km (Fig. 11). These 
cells mature within a few hours, becoming towering cu
mulonimbus clouds with a peak occurrence height of 
14 km. This diurnal cycle is consistent with that of the 
nonprecipitating ice clouds (Protat et al. 2011) in this 
regime. This suggests that thick anvils and cirrus decks 
produced by deep convection are shorter lived than 
during the DW and SW regimes. From the evening 
through the night the convective systems gradually de
cay causing a gradual drop in ETH. This drop is also 
found in the nonprecipitating ice cloud statistics (Protat 
et al. 2011). The infrared satellite observations analyzed



April 2013 KUMAR ET AL. 1371

-C
cn

*iuI

<uI

E
j:

X
.g1<DI

Oceonic

Coostol

Continental

0.4 „ 
"i

0.3'5.

0.21

2O
0-1:

s
c

ai
0.3 "5.

0.2

0.1

8:C

0.3‘5.

0.23
a;

o,!

0.0 "
0.4 „

0.3 "E.

0.2

0.1

0.0 1
0 5 10 15 20 0

Local time (hrs)
5 10 15 20

Local time (hrs)

80

20

Fig. 12. The time-height distribution of the frequency of occurrence of 5-dBZ echoes above convective clouds 
identified using Steiner classification for the (a) DW and (b) ME regimes, (from top to bottom) All echoes, echoes 
located above the oceanic region, coastal region, and continental regions. All panels are as in Fig. 11, but the count 
has been normalized by respective area of each underlying surface type. The three underlying surface types are 
highlighted in Fig. 1

by Pope et al. (2009b) confirm a mesoscale convective 
system genesis time near 1500 LT during monsoon break 
periods, and these usually decay within approximately 
3 h. The lightning flash rates are highest when the ETH 
reached the peak heights in the evening period.

A shortfall in Fig. 11 is that the responses in ETH may 
be affected by the complex topographic environment 
around Darwin. We attempt to rectify this by further 
splitting the time-height pdfs of ETH into three groups 
of different underlying surface types, namely, oceanic,

coastal, and continental. The results are shown in Fig. 12 
and the area covered by the three surface types is shown 
in Fig. 1. In the DW regime (Fig. 12a), the peak occur
rence in convective clouds occurs earliest over the oceanic 
surface in the early morning period and progressively 
shifts inland, peaking over the continental surface near 
midday. This progression of convective cloud activity 
from the oceanic region through coastal and then over 
land is consistent with the picture that convection in the 
DW regime is embedded in the large-scale forcing by
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the monsoon trough. In contrast, convection in the ME 
regimes seems to be primarily dependent on condi
tioning of the atmosphere by land and sea-breeze pro
cesses. For example, the majority of convective cloud 
activity occurs above the oceanic region in the early 
morning period, with peak heights at 14 km. In contrast, 
during the afternoon and evening periods, the convec
tive cloud occurrence is highest above the coastal (bi- 
modal peak height of 9 and 14 km) and continent (peak 
height of 14 km) regions, respectively. There is little 
evidence to suggest that the early born coastal convec
tion is progressing over the continent since storms in 
the ME regime mainly propagate toward the ocean (see 
Fig. 6). Results for the E and SW regimes are not shown 
because they exhibited less noticeable differences in the 
convective cloud occurrence over the three underlying 
surfaces.

Overall, the results shown in Figs. 11 and 12 indicate 
that the diurnal cycle of convective cloud occurrence 
and their top heights, and spatial location of the con
vective clouds, contrast considerably among the four 
large-scale atmospheric regimes. First, all the regimes, 
except the DW regime, show intense convective activity 
in the late afternoon, presumably initiated by the sea- 
breeze circulation that forms on the top end coastline. 
The results also indicate that sea-breeze effects are less 
important during the DW regime. Second, the DW re
gime clearly shows oceanic characteristics, while the ME 
regime demonstrates much more continental charac
teristics. Third, the SW regime (and the E regime, though 
results are drawn from a smaller number of events) show 
high convective activity after midnight and in the early 
morning, thus showing that convection in this regime 
exhibits somewhat oceanic characteristics. Finally, the 
comparison of the diurnal cycle nonprecipitating ice 
clouds and convective cloud towers indicate that the 
thick anvils and cirrus decks produced by deep convec
tion are shorter lived during easterly regimes (E, ME) 
and longer lived during the westerly regimes (DW, SW).

Higher lightning flash rates after midnight (vs after
noon or evening), particularly in the E and SW regime, 
and over the coastal boundary region (vs continent) do 
not seem to be consistent with the traditional picture of 
having more lightning over land and in the afternoon 
period. The complex topography of coastlines, islands, 
and oceanic areas within our sample area combined 
with the distinct wet regimes may be contributing to
ward this discrepancy. On the other hand, since the 
Darwin site with its Doppler radar pair can provide 
higher-resolution 3D wind data, it will offer an oppor
tunity in the future to derive upward mass fluxes and to 
check consistency with lightning activity (e.g., Deierling 
et al. 2008). The question is as follows: for a given mass

flux rate, do convective cells produce more lightning 
when located over land (vs sea) or in the afternoon pe
riod (vs the early morning period)? This is the subject of 
ongoing investigations.

4. Conclusions and summary

Polarimetric weather radar data collected over two 
wet seasons (October 2005-April 2006; October 
2006-April 2007) at the tropical low-latitude station of 
Darwin, northern Australia, are used to study the vari
ability of convective cloud properties with both the 
large-scale state of the atmosphere, the diurnal cycle, 
and the underlying surface type. The properties of con
vection studied here include the frequency of convective 
cloud occurrence, 5-dBZ echo-top heights (ETH), ki
nematics (lifetime, speed, and direction of propagation), 
cell structures, and volumes. Both the spatial and diurnal 
variability of these tropical convective cloud properties 
are studied as a function of the identified main large- 
scale atmospheric states in this area.

A summary of the key findings is as follows:

1) The most frequent ME (break) regime shows the 
highest convective activity from afternoon to mid
night and a secondary occurrence peak in the early 
morning. These convective clouds occur most fre
quently on the western part of Tiwi Islands, which 
is consistent with the signature of the well-known 
Hector storms. In the afternoon the convective clouds 
are initially shallow with a modal height of ~9 km, 
and within a few hours grow into deeper convective 
towers with a modal height of —14 km. The ETHs 
are higher and the cloud cell volumes are larger over 
land than sea. It is also very clear from the results that 
the land cells in this regime are predominantly ini
tiated in the afternoon by sea-breeze processes whereas 
ocean cells pop up in the early morning due to land 
breeze effects. Overall, the convection in the ME 
regimes seems to be well organized and shows char
acteristics similar to continental convection. Since this 
regime occurred for nearly 48% of the wet season, its 
convection patterns could be a fair representation of 
the default climatology of Darwin.

2) In contrast, the DW regime, which corresponds to 
the active monsoon period, exhibits the highest over
all probability of generating convective cells. It has 
a peak convective cloud occurrence over the coastal 
boundary region from midnight to early afternoon. 
The evening convective activity is least frequent in 
this regime and is thought to be due to the presence 
of continuous cloud cover reducing daytime heat
ing that prevents the establishment of sea-breeze
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convergence. The vertical wind shear in the low levels, 
convective ETH, cloud cell volumes, and lightning 
activity are all smaller in this regime compared to 
the other convectively activity regimes (SW and ME 
regimes). Also, the effect of the underlying surface 
types on most convective cloud properties is the 
weakest in the DW regime. Overall, clouds in this 
regime exhibit oceanic characteristics, with convec
tion being embedded in the large-scale forcing of the 
monsoon trough.

3) In the SW regime, the peak convective occurrence 
location shifts eastward compared to the DW regime. 
This observation supports the hypothesis that these 
two regimes are connected to the eastward propa
gation of the monsoon trough. Another feature in 
the SW regime that matches with the DW regime is 
the increase in occurrence of convective clouds in the 
early morning period. However, unlike the DW re
gime, the effect of the underlying surface on the 
convective cloud properties is somewhat strong in 
the SW regime. For example, the land cells predom
inantly initiate in the afternoon and have a larger 
volume compared to those that form in the early 
morning over the ocean. Another contrasting feature 
is that the convective cloud activity in the SW regime 
is moderately high in the afternoon. Overall, this 
indicates that the SW regime are regulated by a 
mixture of large-scale forcing that are important for 
the DW regime and the sea-breeze effects that dom
inate the ME regime.

4) The E regime behaves in a similar manner to the SW 
regime. Like the DW regime, the E regime has the 
highest convective cloud activity in the early morning 
period. While the observed secondary peak in con
vective cloud activity in the evening period can be 
attributed to the sea-breeze effects, the effect of the 
underlying surface on the convective cloud proper
ties is moderate. Contrary to the SW and ME re
gimes, the E regime has somewhat higher ETHs and 
larger cloud volumes over ocean than land. The con
vective clouds in this regime have one of the highest 
tendencies of producing lightning flashes, and most 
of these electrically active clouds are located at the 
top end of the Darwin coastline.

The main purpose of the study was to use the complex 
meteorological and topographic environment around 
Darwin to study the relative influence of the large-scale 
atmospheric conditions, as represented by a set of syn
optic regimes, and the underlying surface types on the 
basic characteristics of convective systems and their di
urnal evolution. The picture emerging from this study 
shows an intricate interplay between the large-scale

regime and surface-type influences on the properties of 
convection. To first order, the large-scale regime de
termines much of the convective evolution, as exem
plified by the rare occurrence of convection in the E and 
DE regimes, and the widespread occurrence of rela
tively weak convection in the DW regime. However, 
complex topography, such as the presence of coastlines, 
is a major secondary factor in determining the structural 
characteristics of convection. For example, during the 
ME regime, much of the convection is triggered along 
sea-breeze fronts either over the Tiwi Islands or the 
mainland. This indicates that the large-scale state does 
not allow convection to occur spontaneously over the 
ocean, but does allow for more organized forms of con
vection. This picture is likely typical not only for the 
north of Australia, but the entire Maritime Continent, 
where the existence of numerous islands of varying size 
can trigger sea-breeze convection even in large-scale 
conditions unfavorable for widespread convection over 
oceanic areas. In contrast, during the DW regime, the 
surface influence becomes negligible, as the large-scale 
upward motion associated with the monsoon trough 
provides sufficient forcing to allow widespread convec
tion with large areas of long-lived stratiform cloud, 
which in turn suppresses the daytime heating of the land.
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[1] There is no objective definition to separate cumulus congestus clouds from the shallow 
cumulus and deep clouds. This has generated misinterpretation about the role of congestus 
clouds to promote deep convection through the potential of moistening the middle 
troposphere. In this study, an objective identification for the different tropical cumulus 
modes is found by examining the occurrence frequency of the cloud cell top heights (CTHs) 
and near-ground (at 2.5 km height) rainfall properties of these cells using a three-season 
database of the Darwin C-band polarimetric radar. Four cumulus modes were identified, 
namely a shallow cumulus mode with CTH in the trade inversion layer (1-3 km), a 
congestus mode with tops in the highly stable middle troposphere (3-6.5 km), a deep 
convective mode with tops in the region of free convection (6.5-15 km), and an 
overshooting convection mode with tops in the tropical tropopause layer (CTH >15 km).
The study also investigates the connections between these cumulus modes during heavy 
rainfall events. The congestus mode occurs predominantly from ~10h prior to the peak 
rainfall event to ~2 h past the event. The deep cloud populations (Modes 3 and 4) have their 
maxima at and shortly after the time of the rainfall peak, with maximum occurrence just 
below the tropical tropopause layer. A comparison of the heavy rainfall events occurring in 
morning (oceanic) conditions against the afternoon (continental) conditions revealed a 
higher ratio of the shallow to the deep cloud population and a shorter transition time from 
the shallow to the onset of deep population in the morning-oceanic conditions than the 
afternoon-land conditions. It is also found through the analysis of the large-scale moisture 
budget data set that for both the morning and afternoon events, the moistening peaked 
before the peak in the congestus populations.

Citation: Kumar, V. V., C. Jakob, A. Protat, P. T. May, and L. Davies (2013), The four cumulus cloud modes and their 
progression during rainfall events: A C-band polarimetric radar perspective, J. Geophys. Res. Atmos., 118, 8375-8389, 
doi:10.1002/jgrd.50640.

1. Introduction
[2] Progress in simulating clouds in general circulation 

models depends substantially on improvements in the cumu
lus cloud parameterizations and their coupling to boundary 
layer and cloud processes [Jakob, 2010]. Cumulus clouds 
have historically been thought of as primarily consisting of 
two modes: shallow cumulus, with cloud top heights near 
the trade inversion layer, 1-2 km above the surface, and deep
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cumulonimbus clouds, with cloud tops near the tropopause 
[Malkus and Riehl, 1964]. Johnson et al. [1999] provided 
observational evidence of a distinct third cumulus cloud 
mode, the midlevel cumulus congestus clouds, with cloud 
tops near the 0°C melting level. Because of their small cell 
size and their transitional nature from nonprecipitating to 
precipitating convection, it is relatively difficult to observe 
congestus clouds with remote sensors [e.g., Miller et al., 
1998; Melnikov et al., 2011]. Yet, they have been implicated 
in playing an important role in the transition from shallow to 
deep convection through the potential of moistening the 
middle troposphere [e.g., Kuang and Bretherton, 2006; 
Waite and Khouider, 2010], although there is still some 
ambiguity if the moistening itself is vital to trigger deep 
convection [e.g., Hohenegger and Stevens, 2012]. It is the 
goal of this study to further investigate the role of congestus 
clouds in the transition from shallow to deep convection by 
providing an improved analysis of radar observations of this 
transition at Darwin, Australia, and by directly linking the 
radar observations to the large-scale dynamical state of the 
tropical atmosphere.
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[3] There has been ongoing improvement in observing 
congestus clouds from radar observations with a focus on 
refining the criteria for their identification. Early studies 
identified congestus clouds as any precipitating convective 
cloud with cloud top heights (CTHs) between 5 and 9 km 
[Johnson et al., 1999], while later studies included the 
criterion of the existence of a continuous radar echo from the 
near surface to the CTH [Jensen and Del Genio, 2006]. 
However, none of these studies provide a clear justification of 
choosing a 9 km CTH threshold. Early field campaigns, such 
as Global Atmospheric Research Program Atlantic Tropical 
Experiment [e.g., Houze and Cheng, 1977] and Tropical 
Ocean-Global Atmosphere Coupled Ocean-Atmosphere 
Response Experiment [e.g., Rickenbach and Rutledge, 
1998], contained evidence of weak bimodality in cumulus 
occurrence. However, in these studies, cloud top peaks 
occurred near 2-3 and 6 km, with no evidence of a 
maximum at 9 km. Recent radar echo top analyses at Darwin 
using long-term data sets spanning several wet seasons 
showed limited support of multimodal distribution [e.g., May 
and Ballinger, 2007; Kumar et al, 2013]. As there is still no 
agreed “definition” of congestus occurrence derived from 
radar observations, a first aim of this study is to develop a more 
objective identification of congestus and deep clouds. This 
will be achieved by a careful analysis not only of CTH 
occurrence frequency but also of the radar retrieved rainfall 
properties taking advantage of the polarimetric capabilities 
of the research radar deployed at Darwin (C-band polari
metric (CPOL) radar) [Keenan et al., 1998].

[4] Once a method of identifying congestus and deep clouds 
has been established, a major motivation of this paper is to 
study the progression of different cumulus modes through 
the storm life cycle. Specifically, the goal here is to better 
comprehend the role of cumulus congestus clouds in 
preconditioning the atmosphere for deep convection. Several 
studies have found that the occurrence frequency of congestus 
clouds increases prior to peak rainfall events associated with 
deep convection [Mapes et al., 2006; Chen and Del Genio, 
2009; Tromeur and Rossow, 2010; Del Genio et al., 2012]. 
Kikuchi and Takayabu [2004] performed a composite analysis 
of CTHs and thermodynamic profile as a function of the life 
cycle of the Madden-Julian oscillation, which revealed that 
the three cumulus cloud modes developed in stages. Initially, 
the weakening of the trade inversion layer corresponds to the 
shift from shallow cumulus to congestus cumulus. In the next 
stage, the cumulus congestus clouds moisten the atmosphere 
below the 0°C level, preconditioning the atmosphere for deep 
convection [Kemball-Cook and Weare, 2001; Lin and 
Johnson, 1996]. However, recently Hohenegger and Stevens 
[2012], using 1 month of satellite observations, found the 
transition time from congestus to deep convection to be much 
shorter (2 h over land and 4 h over the ocean) than the 
time needed (10 h and longer) for congestus clouds to 
sufficiently moisten the atmosphere. Their results do not 
support the idea that congestus moistening itself enhances 
the formation of deep convection. Rather, they suggested 
that dynamical processes, potentially related to the 
heating from congestus clouds, are likely an important 
ingredient in promoting the transition to deep convection. 
This study will further investigate this link by relating the 
observed cloud behavior to the large-scale state of the 
atmosphere around Darwin.

[5] In this paper, we use three wet seasons (573 days) of 
Darwin CPOL radar observations to investigate the statistical 
properties of cumulus congestus clouds, deep convective 
clouds, and overshooting convection, and their progression 
during rainfall events. In section 2 of this paper, the CPOL 
database is described. In this section, we also compare the 
CTH frequency derived from CPOL with concurrent CTH 
retrievals from a Darwin MilliMetre Cloud Radar (MMCR) 
[Moran et al., 1998] to estimate the percentage of congestus 
clouds which could not be detected by the CPOL radar. 
Section 3 describes the statistical properties of the identified 
convective clouds as a function of CTH. This section will 
provide an objective method to identify cumulus modes, 
including congestus. Section 4 then focuses on the temporal 
evolution of the convective cell characteristics around heavy 
rain rate events to investigate the evolution of the cumulus 
modes throughout the storm life cycle. Section 5 investigates 
the potential connection of cloud growth to dynamical 
processes by analyzing moisture and heating tendencies 
around the rain events identified in section 4. We summarize 
our findings in section 6.

2. Data Sets and Method
2.1. The Darwin C-Band Polarimetric (CPOL) Radar

[6] The study primarily uses three wet seasons of data 
(October 2004-April 2005, October 2005-April 2006, and 
October 2006-April 2007) from the Darwin CPOL radar. 
The CPOL radar (12.25°S, 131.04°E) collects a three
dimensional volume of data out to a range of 150 km once 
every 10 min. Each volume consists of a series of 16 conical 
sweeps at elevations ranging from 0.5° to 42°. The radar 
transmits alternate linear horizontal and vertical polarization 
pulses, which give access to key polarimetric variables such 
as the horizontal reflectivity (Zh), the differential reflectivity 
(Zdr), and the specific differential phase (Kdp) [e.g., Zrnic 
and Ryzhkov, 1998].

[7] Next, the data are gridded by constructing a series of the 
constant altitude plan position indicator (CAPPI) at every 
0.5 km in height (with a horizontal bin size of 2.5 km x 2.5 km) 
extending up to 20 km, using the Sorted Position Radar 
INTerpolation software. To minimize any issues that might 
occur during the interpolation from PPIs to CAPPIs, only data 
in the range 20-100 km and at heights greater than 2.5 km are 
analyzed. Furthermore, as the focus of this study is on the 
development of convective clouds in the transition from 
shallow to deep modes, the stratiform pixels are also excluded 
from the analysis.

[8] The individual radar pixels at a CAPPI level of 2.5 km 
are characterized as convective or stratiform using an 
algorithm by Steiner et al. [1995]. The Steiner algorithm 
classifies the gridded reflectivity as convective if the reflec
tivity value is at least 40 dBZ or greater than a fluctuating 
threshold depending on the area-averaged background reflec
tivity (within a radius of 11 km around the grid point). Each 
convective center has a radius of influence (ranging from 1 
to 5 km) also depending on the surrounding background 
reflectivity [Steiner et al., 1995]. This method of identifying 
the convective and stratiform radar pixels has been used in 
previous studies over the Darwin region [e.g., May and 
Ballinger, 2007; Kumar et al., 2013; Penide et al., 2013].
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[9] All radar pixels in the vertical column above the 
altitude of2.5 km are assigned the same Steiner classification 
as that at the 2.5 km CAPPI level. This assumption is reason
able since the vertical shear of horizontal wind between the 
heights of 2.5 and 12 km in convectively active Darwin wet 
season regimes is small, typically on the order of 10-4s-1 
[e.g., Kumar et ah, 2013]. Furthermore, as explained later, 
CTH values are calculated per cloud cell (i.e., several 
adjoining convective radar pixels) not per single vertical 
radar column. So the tilt of the convective core due to wind 
shear is expected to have a minimal effect on the cell-based 
CTH retrievals.

[10] From this gridded reflectivity data, CTH is calculated 
using the following two methods. First, the algorithm 
identifies convective cells occurring at the 2.5 km CAPPI 
level. Specifically, once a convective radar pixel is detected 
at 2.5 km height, the algorithm then searches in all directions 
in the horizontal plane from this convective pixel for any 
connected convective pixels and stops when no convective 
pixel is found (radar pixel classified as stratiform or clear 
air). The procedure is repeated in all directions, defining the 
contours of each convective cell. Some cells, typically those 
with low CTH, could have a sectional area of a size equal to 
one radar pixel with an area of 6.25 km2 (2.5 km x 2.5 km). 
The next area size for two pixels is 12.5 km2 and so on. 
Second, for each identified convective cell, the maximum 
height of the 0 dB echo at any of the pixels in the cell is 
computed to provide an estimate of a single CTH for that 
convective cell. Specifically, the CTH corresponds to the 
radar echo height whose reflectivity is the closest to OdB, 
but with a reflectivity value within the range of —5 to +5 dB, 
and provided there is a vertically continuous reflectivity 
greater than OdB between the 2.5km CAPPI level and this 
CTH. This procedure filtered out any possible effects of 
detached cloud layers situated above the convective towers.

[11] This definition of CTH is similar to the definition of an 
echo top height (ETH) used in previous studies [e.g., Kumar 
et ah, 2013], except that in those studies ETH was calculated 
for individual convective column instead of the whole 
convective cells used here. Using the common single-column 
ETH, a convective cell will have a distribution of ETHs and 
pixels from the same cell will potentially be classified in 
different cumulus cell categories, which complicates the 
use of this definition in studying the transition to deep 
convection. Using the same reasoning, the 0 dB height per 
cell is taken as the maximum height reached by any near- 
0 dB pixel in the cell, and not an average of all near-0 dB 
ETHs in that cell. In summary, throughout the paper, with 
the exception of Figure 1, one CTH per convective cell is 
used in the analysis. The reasons for the exception will be 
explained when introducing the figure.

[12] The choice of the 0 dB level as cell threshold is a com
promise. The minimum detectable reflectivity (Aniin) above the 
noise level as a function of CPOL range (R in km) is Rmm 
(dB) = — 41.25 +20 log(R). May and Ballinger [2007] and 
Kumar et al. [2013] used 5 dB echo top height criteria mainly 
because they choose to use a large domain around the radar. 
Here, we use CPOL data only up to a range of 100 km 
(Rmm- 1.25 dB), so the OdB threshold is sufficiently high
to allow for detection of echoes at radar ranges considered in 
this study. The OdB top height criteria also ensure that the 
radar-determined CTH is even closer to the true CTH.

CPOL
- 10 -

Pt. 1

50 100 150 200 250 300 350
Cloud Count

Figure 1. Distribution of cloud top height (CTH) occur
rence frequency over the Darwin Atmospheric Radiation 
Measurement (ARM) site, 25 km from the Darwin C-band po- 
larimetric (CPOL) radar center. The black and grey curves are 
the CTH frequency computed using the MilliMetre Cloud 
Radar (MMCR) and the range-height indicator (RHI) scan of 
CPOL, respectively. A bin size of 0.5 km in height is used in 
this figure and all subsequent figures.

[13] Apart from the CTH information per cell, we also 
make use of radar reflectivities, drop size distributions 
(DSD) parameters, and rain rate retrievals from the 2.5 km 
CAPPI level bounded by the respective convective cell area. 
As for CTH, we define only one value per cell rather than 
using individual pixel values. This is done by calculating 
the cell mean reflectivity, rain rate, drop size diameter (Z)0), 
and number concentration of small hydrometers (/Vn.) at each 
vertical level. Descriptions of the algorithm used to retrieve 
drop size distributions (DSD) parameters and rain rates from 
the polarimetric radar variables are given in Bringi et al. 
[2009]. It assumes a normalized gamma DSD form [Testud 
et al., 2001] described by the median volume diameter (D0) 
and the “generalized” intercept parameter (Nw). For simplic
ity, Nw can be thought as the number concentration of small 
hydrometers. Nw is the same as the intercept parameter of 
an exponential DSD with the same D0 and liquid water 
content as the gamma DSD. This algorithm uses a 
multiparameter approach to take advantage of the comple
mentary information contained in the polarized backscattered 
signals. First, D0 is retrieved from the differential reflectivity 
using polynomial fits (e.g., D0 =f(Zdr)), then Nw is estimated 
using a power law of the form Z,'/Nw = c.(D0)d, and finally, 
the rain rate is estimated using either a function of the form 
R=f(Kdp), R-f(Zh.Zdr). or R~ f\Zh) depending on various 
thresholds and a decision tree [Bringi et al., 2009].

2.2. Cloud Radar Data and its Comparison to CPOL
[14] A major objective of this paper is to study the features 

of cumulus congestus clouds. These clouds have been 
typically studied using data from a millimeter-wavelength 
MMCR, except in Johnson etal. [1999], where C-band radar 
measurements were used. Millimeter-wavelength radar has 
been preferred to study congestus clouds because some of 
the clouds in this mode could be nonprecipitating and thus 
will be missed by a centimeter-wavelength radar. Darwin 
hosts both a vertically pointing MMCR with a wavelength 
of 8.6mm [Moran et al., 1998] at the U.S. Department of 
Energy’s Atmospheric Radiation Measurement (ARM)
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[Stokes and Schwartz, 1994; Ackerman and Stokes, 2003] site 
and the scanning CPOL (5.3 cm) operating over the wet 
season, thus offering the potential of estimating the congestus 
cloud fraction which will be missed by the C-band radar.

[15] The best way to achieve a reasonable space-time 
overlap between the vertically pointing MMCR and scanning 
CPOL radars is to use the data from the range-height indica
tor (RHI) scanning mode of the CPOL radar. CPOL performs 
RHI scans over the MMCR site lasting for approximately 
10 s using 70 different elevations ranging from 0.02° to 
45.8°, once every 10 min. Thus, RHI scans have a much finer 
vertical resolution (10 m near the surface and ~15 m at 
maximum elevation) than the PPI mode, which uses 16 
elevations and has a vertical resolution on the order of few 
hundreds of meters. The RHI scanning routine on CPOL 
commenced only in October 2005; only 2 years of statistics 
is used in the comparison of the two radar results.

[16] The reflectivity data from the RHI scans are averaged 
over three adjacent range gates centered on the MMCR site 
(25 km) [e.g., Bringi et al., 2009]. Then, height profiles are 
constructed using the radar beams at the 70 different 
elevation angles. In comparison, the MMCR radar does a 
continuous vertical sounding with a temporal resolution of 
35 s and a fixed height resolution of 90 m. We time-match 
the two radars by selecting only the MMCR scans closest 
to the RHI scan times. RHI scans which had no echo 
detection at the MMCR location, and vice versa, were still 
kept to build the time-matched array. Apart from inevitable 
instruments problems, it is fair to assume that both radars 
over the time-matched interval observe the same type of 
clouds. Next, the column ETH is computed using the 
reflectivity profiles from both radars, using the same criteria 
defined in Jensen and Del Genio [2006]. Specifically, ETH 
is computed as the maximum height reached by the radar 
echo, provided there is a continuous echo from cloud base 
to the ETH. Note that the starting cloud base height for both 
radars is required to be less than 2 km. Because of this 
requirement, the cloud data used in this analysis are likely 
mainly convective in nature [e.g., Jensen and Del Genio, 
2006]. At the ETH, the CPOL reflectivity is required to reach 
0 dB, but for the MMCR, the reflectivity at the ETH is set to 
the lowest available reflectivity per column, which was
typically---- 20 dB. Even though the minimum reflectivity
that could be measured by CPOL at the range of 25 km is 
Rmin = — 13 dB, well below the 0dB ETH requirement, 
0 dB ETHs are preferred so that the radar comparison 
remains relevant for all CPOL ranges (20-100 km ) used in 
the rest of this study.

[17] Figure 1 shows the cloud count from MMCR (black) 
and CPOL RHI (grey) radars in CTH bins of 0.5 km. There 
are several interesting similarities and differences in the two 
CTH profiles. As one would expect, the MMCR detects 
significantly more clouds below 4 km, owing to its ability 
to see nonprecipitating cloud particles. Above 8 km the top 
heights from the CPOL radar are approximately 2 km lower 
than those obtained from the MMCR. Again, this is likely 
because the MMCR can detect much lower reflectivities 
(the modal reflectivity value is near —20 dB), whereas the 
CPOL reflectivities at the ETH are set to be 0 dB. So the true 
cloud top height for deep clouds is likely within 2 km of the 
0dB cTh of CPOL, consistent with those estimated by 
previous studies [e.g., Kingsmill and Wakimoto, 1991;

Casey et al., 2012]. Interestingly, in the range of congestus 
cloud top heights between 4 and 8 km, the radars agree well.

[18] Overall, CPOL detects 67% of the clouds detected by 
MMCR; most of the missing clouds are in the shallow 
cumulus mode below 4 km. At the heights of 4 and 8 km, 
the ratio of CPOL detection to MMCR detection is 50% 
and 82%, respectively. However, such direct comparison 
for a given height is thought to be less useful due to the 
difference in the sensitivity of the two radars. Instead, we 
estimate the CPOL efficiency using the following procedure. 
The first local minimum (Pt. 1, 4.0 km in CPOL and 5.5 km 
MMCR) in both curves is assumed to be the breakpoint height 
of the shallow clouds, and comparing the total cloud counts 
below this level from both radars gives a detection efficiency 
of 30% on CPOL compared to MMCR. Similarly between 
Pt. 1 and Pt. 2 (possibly the congestus fractions), the CPOL 
efficiency is 64%, and above Pt. 2 it is 127%. The CPOL radar 
detects more of the deeper clouds compared to MMCR since 
the millimeter-wavelength signals are often attenuated during 
periods of moderate and heavy rain rates associated with deep 
clouds [e.g., Kumar andRamachandran, 2004].

2.3. The Large-Scale Atmospheric State
[19] It is a goal of this study to connect the cloud evolution 

in the transition from shallow to deep convection to the 
dynamical evolution of the large-scale atmospheric state. 
To do so, we require reliable estimates of the large-scale state 
concurrent with the radar observations. Jakob et al. [2011] 
have derived such a data set for the Darwin region for the 
same wet seasons for which radar observations are available 
in this study.

[20] The data set is constructed by applying the variational 
budget analysis algorithm of Zhang and Lin [1997]. This algo
rithm usually requires an array of atmospheric sounding data, 
as well as observations of surface precipitation and top of the 
atmosphere radiation, to optimally estimate all terms of the 
vertically resolved heat, moisture, and momentum budgets. 
In the absence of a radiosonde array, Xie et al. [2004] pro
posed to use results of numerical weather prediction analyses 
as a surrogate. To test this approach in the Darwin region, 
Jakob et al. [2011] applied this approach to the Tropical 
Warm Pool International Cloud Experiment [May et al., 
2008] data set and showed that the use of soundings extracted 
from the operational analyses of the European Centre for 
Medium-Range Weather Forecasts provided a very close 
approximation to budget estimates using a full sounding array. 
They then applied the method to three full seasons of data 
using surface precipitation rainfall, calculated from the 
CPOL radar as a key constraint to the moisture budget. The 
resulting large-scale data set used here includes vertical 
profiles of heat and moisture budgets as well as thermody
namic and dynamic variables at 40 hPa vertical and 6 h tempo
ral resolution. The spatial domain of the large-scale data set is 
shown in Xie et al. [2010] and is comparable to the CPOL 
domain with a radius of 100 km.

3. The Statistical Rain Properties of Individual 
Convective Cells

[21] In this section, the CPOL observations are used to 
study in detail the near-surface (at a fixed height of 2.5 km) 
characteristics of two of the three cumulus cloud modes
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identified in Johnson el al. [1999]: congestus and deep 
clouds. As will be shown, the deep cloud mode is found to 
comprise two distinct types of cloud with very different 
properties. The shallow cumulus mode cannot be included 
here because many shallow cumulus clouds do not produce 
sufficiently large droplets to be detected by the C-band radar 
(cf. Figure 1). Another limitation is that at the maximum 
range of the radar used here (100 km), the first conical scan 
of elevation 0.5° has a minimum detection height of 1 km, 
hence missing the very shallow cumulus clouds forming at 
further ranges.

[22] A total of 640,419 convective cells were identified 
over the three seasons, and their frequency of occurrence in 
0.5 km bins of CTH is shown Figure 2a. An overall 
occurrence peak is evident at 7 km, with no clear evidence 
of a distinct third peak associated with the deep clouds. 
Instead, there is a near-constant reduction in the number of 
clouds with CTF1. Thus, at face value, there is limited 
evidence supporting the cumulus trimodality theory [e.g., 
May and Ballinger, 2007; Kumar et al., 2013]. Note that in 
our data set, a third occurrence peak associated with deep 
clouds becomes noticeable on many afternoons associated 
with sea breeze convergence [Kumar et ah, 2013] and during 
heavy rainfall events (see below).

[23] Instead of focusing purely on numbers, we investigate 
the convective rainfall properties as a function of CTF1. The 
solid lines in Figures 2b and 2c, respectively, show the mean 
cell area and convective area fractions at 2.5 km height as a 
function of CTF1. Convective area fraction is the ratio of 
the total area covered by all convective cells belonging to a 
certain CTF1 bin divided by overall total convective area. 
FI cnee, the area fraction response is proportional to the 
product of mean cell area (solid line in Figure 2b) and total 
number of cells (Figure 2a). Thus, it follows from here that 
the increase in convective area fraction below 7 km is mainly 
due to the rapid increase in the number of cells (Figure 2a), 
since the mean cell area is constant for these cumulus 
congestus clouds. In contrast, the convective area fraction 
with cells with CTF1 between 7 and 13 km is remarkably 
constant. This is because even though the cell numbers 
reduce with increasing CTF1 in this region (Figure 2a), then- 
cross-sectional area at 2.5 km height grows wider as they 
become taller (solid line in Figure 2b). The deepest convec
tive cells (CTF1 > 13 km) have the largest convective area 
fraction, though only 1% higher than that from clouds with 
a CTF1 between 7 and 13 km. This largest contribution of 
deeper convective clouds is linked to a rapid increase in the 
mean horizontal area of cells (solid line in Figure 2b) with 
CTF1 > 13 km (Figure 2a).

[24] The convective rain accumulation fractions (dotted 
line in Figure 2c) increase almost linearly with increasing 
CTF1 up to a CTF1 of 17 km. This parameter is the ratio of 
the total rain accumulation associated with a given CTF1 
bin divided by overall total convective rainfall. The rain 
accumulation fraction response is related to the product of 
the number of convective cells (Figure 2a), mean cell area 
(solid line in Figure 2b), and the mean cell rain intensity 
(dotted line in Figure 2b). Thus, the almost linear behavior 
in convective rain accumulation fraction is caused by two 
of the three controlling variables, the cell raining area and 
cell rain intensity, both of which increase somewhat 
exponentially with CTF1.
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Figure 2. (a) The same format as Figure 1 except the CTF1 
is computed using gridded (CAPPI) CPOL data, (b) Average 
cell area (solid) and cell rain rate (dotted) using data from 
2.5 km CAPPI levels bounded by the convective cell area, 
as a function of CTF1. (c) The same format as Figure 2b 
and shows the fraction (total at a given CTF1 divided by 
overall convective total) contributed by each CTF1 bin.

[25] The behavior of mean cell rain intensity as a function 
of CTF1 (dotted line in Figure 2b) perhaps reveals the most 
convincing evidence of the different cumulus categories. 
Specifically, the rain intensity at 2.5 km increases at a rate 
of 1.9mmh-1 km-1 with increasing CTF1 when CTF1 is be
low 7km. It increases at the much lower rate of 0.4mmh-1 
km-1 when CTF1 is between the 7 and 15 km, and then again 
displays a very large increase at a rate of 4.3 mmh-1 km-1 
when CTF1 is above 15 km. This behavior is intriguing, 
suggesting the possibility of three (instead of the usual two) 
modes of precipitating convection in addition to the shallow 
mode (undetectable in this study). This hypothesis is further 
explored below using the radar reflectivity and all 
DSD parameters.

[26] Figure 3 shows the probability distribution function 
(PDF) of radar reflectivity at 2.5 km in 0.5 km bins of CTF1.
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Figure 3. PDF of reflectivity using a bin size of 1 dB and as a function of CTH. One mean reflectivity was 
obtained per convective cell using reflectivity pixels that are bounded by the respective convective cells at 
the 2.5 km CAPPI level. The white curve is the overall mean reflectivity at each CTH level, and the black 
curve is the modal reflectivity. The dashed horizontal lines correspond to the breakpoints in the reflectivity 
trend indicating the lower (6.5 km) and the upper (15 km) CTH boundary for the ‘‘normal deep convection.”

Recall from section 2 that each cell is assigned one reflectiv
ity value, which is the mean of the radar reflectivity pixels 
from the 2.5 km CAPPI level belonging to that cell. The 
evolution of the 2.5 km reflectivity distributions with CTH 
clearly indicates the presence of two separate inflection 
levels: one at 6.5 km and another at 15 km (marked by 
horizontal lines). Cells with CTH below 6.5 km have a broad 
distribution in reflectivity at 2.5 km height with the smallest 
modal (black curve) and mean (white curve) reflectivities of 
all CTH classes. With increasing CTH, the reflectivity 
distribution at 2.5 km height becomes narrower with the 
mode-mean reflectivity values strongly increasing. The 
broad distribution in reflectivity PDFs in cells with lower 
CTH is thought to be because it is made of a mixture of 
nongrowing terminal congestus clouds with mainly lower 
reflectivities and growing transient congestus cloud with 
predominantly higher reflectivities. This hypothesis is being 
further explored in a separate study. When cell CTH is 
between 6.5 and 15 km, the 2.5 km reflectivity distribution is 
nearly constant with some narrowing with CTH evident. The 
modal and mean reflectivities are both around 38 dBZ, though 
the lower reflectivity cells do become also frequent with 
increasing CTH. In contrast, above 15 km the response in 
reflectivity with increasing CTH is similar to cells with CTH 
below 6.5 km, except that the distributions are much narrower 
and have much higher modal and mean reflectivities.

[27] Figures 1-3 together with the three-season average 
temperature lapse rates (Figure 4) support the existence of 
four different cumulus cloud modes:

[28] 1. Mode 1 (not studied here) consists of shallow 
cumulus clouds and is the most dominant cloud type. 
The CTHs of these clouds are in the trade inversion layer 
(1-3 km), which had a high static stability of the lapse rate 
ranging from —6 to — 5Kkm-1.

[29] 2. Mode 2 represents the congestus cloud category, 
and the CTH of these clouds is between 3 and 6.5 km. Its 
minimum boundary height of 3 km is marked by an increase 
in midlevel stability, which reached the maximum stability at 
the melting level (ML) of 5 km. The relative humidity also 
increases from 3 km to the ML and from thereon decreased 
steadily with height (not shown).

[30] 3. Mode 3 is denoted as the “normal” deep convective 
cloud mode with top heights between 6.5 km and the level of 
zero clear-sky radiative heating (—15 km).

[31] 4. Mode 4 represents overshooting deep convection 
and with tops in the tropical tropopause layer (TTL; CTH 
>15 km). As these clouds penetrate through the strongly 
stable tropopause, they represent the most vigorous convec
tion, as indicated by their high reflectivity at 2.5 km.

[32] We continue the investigation of the hypothesized 
modes of convection by exploring the distributions of rain 
rate and key DSD parameter retrievals at 2.5 km in the same 
manner as the reflectivity. Figure 5 shows the distributions of 
cell rain rate, D0, and Nw at 2.5 km confirming the existence
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Figure 4. Average (solid) and median (dashed) tempera
ture lapse rates associated with the convective cells. Prior to 
data processing, each convective cell is tagged with the 
nearest radiosonde profile, provided the sounding is within 
±3 h of the convective cell identification time. Thus, an 
individual sounding profile may be used several times and 
some convective cells had no sounding data. The signifi
cances of Modes 1-4 have been explained in the text.
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Figure 5. The same format as Figure 3 and shows PDF of (a) rain rate using a bin size of 1 mm h_1, (b) D0 
using a bin size of 0.05 mm, and (c) log,o(Vn) using a bin size of 0.15. The white curve is the overall mean 
of the rainfall properties in each CTF1 bin.

of the three precipitating cumulus modes proposed 
earlier. The congestus mode displays strongly positively 
skewed rain rates at 2.5 km height, with the mean rain 
rate increasing as the cells grow higher (Figure 5a). 
They also typically have a small median volume diameter 
(D0) and small concentrations of small hydrometeors (Nw) 
at 2.5 km height compared to the other two deeper cloud 
modes. The deep convective mode had the largest range 
in rain rate distribution at 2.5 km height. Flowever, as is 
the case with reflectivity, the rate of increase in rain rate 
with increasing CTF1 is small. For the overshooting 
mode, the rain rate and DSD parameter distributions at 
2.5 km height are narrow. The mean rain rate increased 
steeply as the cells grow taller into the TTL layer. 
Another notable observation is that rain rates of intensity 
greater than 30mmh-1 occurred almost exclusively with

Mode 4, highlighting the potential importance of this 
mode for extreme convective rainfall.

[33] Flaving focused on the 2.5 km only so far, next we 
investigate vertical profiles of reflectivity for different CTF1 
classes by calculating the reflectivity lapse rate for some 
selected CTF1 levels (Figure 6a). The reflectivity lapse rate 
is defined as the vertical gradient of reflectivity [e.g., Zipser 
and Lutz, 1994]. Recall from our method of calculating 
CTF1, the maximum reflectivity value at the top of the cell 
will be near OdB. Also, to aid the discussion, the relative 
humidity profiles associated with the different CTF1 classes 
are shown in Figure 6b. Again, even the vertical profile of 
reflectivity (Figure 6a) clearly shows the presence of the 
three separate precipitating cumulus cloud modes. The 
congestus mode (black and grey in Figure 6a) has the largest 
reflectivity lapse rate of approximately 7 dBkm-1. A broad
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Figure 6. (a) Vertical profile of reflectivity lapse rate (defined as vertical gradient of reflectivity) within 
the convective cloud from the altitude of 2.5 km to CTH. The lines represent the lapse rates for selected 
CTH types, (b) Vertical profile of relative humidity associated with clouds in each CTH bin. The sounding 
profiles are selected in the same manner as temperature lapse rates in Figure 4. Note that an individual 
sounding profile is attributed to several different CTH types occurring within the 6 h window. However, 
by calculating a mean profile of several thousand cases of a particular CTH type, the underlying signature 
will likely be revealed.

peak in lapse rate occurs in the region from roughly 1.5 km 
below the CTH to CTH. In contrast, cells in the deep 
convective mode (light blue-dark blue) have a much 
narrower peak in lapse rate at ~1.5 km below the CTH and 
a second peak of approximately 3.5 dBkm-1 occurs near 
the ML. The overshooting deep convective mode (light red- 
dark red) also had a maximum at the ML and then lapse rate 
increased steadily in the TTL. Overall, all CTH classes seem 
to suffer a large loss in vertical momentum as they penetrate 
past the highly stable “ML lid.” The consistent peak in lapse 
rate at-1.5 km below the CTH, which for Mode 2 clouds and 
shallow clouds in Mode 3 is mixed with the ML peak, is 
an indication that the vertical momentum of cumulus cells 
is reducing rather abruptly as the convective mass flux 
detrains into stratiform anvils as they approach their 
equilibrium heights.

[34] It is clear that the maximum reflectivity lapse rate is 
the largest in cells with lower CTH and this amplitude 
decreased gradually with increasing CTHs. This result is 
likely a direct consequence of weaker vertical velocities in 
shallow cells compared to deep convective cells [e.g., 
Zipser and Lutz, 1994]. However, the atmosphere is found 
to be drier when there are shallow cells (Figure 6b), and 
dry air entrainment into clouds will also limit the vertical 
extent of convection [e.g., Redelsperger et ah, 2002]. 
Similar arguments can be made about deep and overshooting 
convection; they are growing higher because they either have 
strong updraft speed and/or the middle atmosphere is moist. 
Interestingly, it is the Mode 3 “weaker” deep convection that 
occurs in the highest relative humidity, while the stronger 
Mode 4 convection occurs at intermediate relative humidity, 
indicating that the relationship between the depth of convec
tion and middle tropospheric humidity is far from simple. Of 
course, this relationship is potentially affected by the coarse 
temporal and spatial resolution of radiosounding data. It is 
well known that strong convection in the Darwin area occurs 
near coastlines and over islands [e.g., Schafer et ah, 2001] 
and processes associated with the development of convection

in complex terrain are likely factors in determining the CTH. 
We will investigate this further in the following section.

4. The Life Cycle of Convective Rainfall Events
[35] The characteristics of convective clouds during heavy 

rainfall events (hereafter referred as storms) are known to 
depend on a number of variables, such as the large-scale 
atmospheric state, local time, the underlying surface type, 
and internal storm dynamics [e.g., Simpson et al, 1993; 
Pope et ah, 2009b; May et ah, 2012; Kumar et ah, 2013]. 
In this section, a composite method is used to identify peak 
convective rainfall events and to examine variations in 
convective cell characteristics several hours prior and after 
the peak rainfall time. This will provide some insights into 
the evolution of the convective modes identified in section 
3 around main rainfall events including insights into the 
transition from shallow to deep convection.

4.1. Heavy Rainfall Events and Their 
Temporal Evolution

[36] To identify isolated heavy rainfall events in the CPOL 
data, two selection filters operating in sequence were used 
here. The first pass includes the computation of the 10 min 
domain-mean convective rain rate (DMCR) using data at 
the 2.5 km CAPPI level over the three seasons. Specifically, 
the DMCR is the sum of rainfall at all convective rain pixels 
(2.5 km x 2.5 km) divided by the constant radar coverage area 
of 43,982 km2. The hourly running average DMCR values 
are calculated using the 10 min radar measurements, and this 
is done to remove short-timescale variations in DMCR. 
Rainfall events are then found by requiring the hourly 
running average DMCR peak to be larger than the three- 
season median DMCR of value 0.05mmh-1, and DMCR 
values to decrease on either side of this peak. Once each peak 
is identified, the hourly running average DMCR values on 
either side of the peak are scanned to determine the local 
minima. The local minima must be below the three-season
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Figure 7. Diurnal variation of radar rain rate (curve) and count of identified rain events (line). The shaded 
grey region highlights our AM (00:00 A.M.-08:00 A.M.) and PM (12:00 P.M.-08:00 P.M.). These local 
time intervals are analyzed separately in the subsequent figures.

median DMCR and must be at least 1 h in time away from the 
peak DMCR. This way all events will have a lifetime of at 
least 2 h. As our focus is on the transition from shallow to 
deep convection, it was also ensured that only the first peak 
from multipeak rain events was selected for the analysis. A 
total of 371 events were selected using this first pass.

[37] The second pass keeps only those events that fall in 
the heavy rainfall category determined using the 6-hourly 
CPOL domain mean rain rate. Note that the 6-hourly domain 
mean rain rates were calculated using both stratiform and 
convective 10 min radar rain rate data. The lower limit of 
the heavy rainfall category is found to be ~0.4 mm h_1, 
which corresponds to the upper tercile of the 6-hourly do
main mean rain rates after periods without rain are excluded.

[38] This second pass just keeps 144 events from the initial 
total of 3 71 events, and the histogram of the diurnal variation 
of this final set of events is shown in Figure 7 (line). Also 
shown in this figure is the three-season average convective 
rain intensity (curve). The rain intensity response is 
reminiscent of the typical tropical maritime continent 
climate, with a strong afternoon and weak morning peak 
associated with land and oceanic underlying surface types, 
respectively [e.g., Liu and Zipser, 2008]. The histogram of 
the storm events also follows the rain intensity variation, with 
a dominant occurrence peak in the afternoon.

[39] Figure 7 confirms that rainfall in Darwin, when 
averaged over long times, shows a semidiurnal variations 
often associated with the underlying surface [e.g., Kumar

el ah, 2013; May et ah, 2012]. For this reason, the convec
tive cell characteristics during the rainfall events will be 
studied separately for the two broad local time categories: 
00:00A.M.-08:00A.M. (hereafter AM class with 39 
events) and 12:00 P.M.-08:00P.M. (hereafter PM class with 
78 events). The spatial distribution of convective rain intensity 
for these events is calculated using radar data from within 1 h 
on either side of the peak rainfall events and is shown in 
Figure 8. It is evident that the AM and the PM class strongly 
separate by the location of the highest rain intensity over ocean 
and land, respectively. We also find that nearly 60% of rainfall 
events in the PM class and 40% of events in the AM class 
occur in the most commonly observed moist easterly regime 
associated with the buildup and retreat of the Australian 
monsoon as well as monsoon breaks [Pope et ah, 2009a; 
Kumar et ah, 2013]. The second highest occurrence (nearly 
30%) of rainfall events in the AM class is during the deep 
westerly “monsoon” regime and that in the PM class is in 
the shallow westerly regime, both of which are typical for 
monsoon conditions.

4.2. The Composite Life Cycle of Convective 
Cell Properties

[40] Figure 9 shows the results of a composite analysis of 
the radar data 12 h on either side of each peak DMCR event. 
The DMCR amounts are shown in Figure 9a. Figure 9b 
shows some of the components that constitute the DMCR 
including the total number of convective cells (black), the

(a) AM events
>N

'w
4 I

c ^

3 c V4=

I

Figure 8. Spatial map of mean convective rain intensity within 1 h on either side of convective rain events 
that were identified to occur within (a) 00:00 A.M.-08:00 A.M. and (b) 12:00P.M.-08:00P.M. The 
concentric rings are 50 km apart.

(b) PM events
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Figure 9. Composite responses of CTH for up to 12 h on either side of convective ram accumulation 
peaks to define controls (f = 0). A bin size of 10 min in time was used in this figure, (a) Composite of the 
10 min domain average convective rain rate, (b) Composite of the total number of cells (black), average rain 
intensity (red), and average convective cloud area (green), (c) Composite of cloud top counts using a bin 
size of 0.5 km in height, (d and e) The same as Figure 9c except only using control times which are within
AM and PM periods, respectively.

average cell area at 2.5 km (green), and the average cell rain 
rate (red). Figures 9a-9c show the results using all rainfall 
events (144 in total), while Figures 9d and 9e show the AM 
(39 events) and PM (78 events) classes separately.

[41 ] As is evident from Figure 9b, rainfall events start with 
a small number of small cells of medium intensity approxi
mately 10 h before the peak in DMCR. From thereon, the cell 
number steadily increases up to its peak coincident with the 
DMCR peak. In contrast, cell size and intensity remain 
constant until a distinct increase roughly 5 h before the peak. 
Rain intensity peaks about 1 h before the DMCR peak, while 
cell size continues to grow peaking at the same time as 
DMCR. In other words, it is the rain area (determined by both

the number and size of the cells) that determines the timing of 
the rainfall peak, not the rain intensity. This feature is most 
clearly defined in the PM class (not shown) with a lag time 
of 40 min between the intensity and DMCR peaks.

[42] Figure 9c shows the distribution of CTF1 in bins of 
0.5 km and as a function of storm time. Figure 9c reveals 
two dominant cell populations. The first of these has CTF1 
from 5 to 8 km (Mode 2), while the second shows CTF1 
between 10 and 15 km (Mode 3) and, while less frequent, 
evidence of overshooting convection (Mode 4). Cell counts 
for Mode 1 (not shown because CPOL does not detect most 
of the shallow cumulus clouds) actually peaked shortly 
before the peak in Mode 2 and remained higher throughout
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Figure 10. Mean vertical profile of relative humidity using 
radio sounding data during the interval 0-6 h preceding the 
onset of the 39 AM events (dashed red curve) and 78 PM 
events (dashed black curve). The solid red and black curves 
are background mean profiles obtained using all the 3 year 
radio sounding profiles between 00:00 A.M.-08:00 A.M. 
and 12:00 P.M.-08:00 P.M., respectively.

the heavy raining time. The shallower cloud population 
(Mode 2) occurs predominantly (more than 100 cells per 
bin) from -8-10 h prior to the peak rainfall event to ~2h 
after the event, with its peak frequency leading the peak 
rainfall by about 2 h. One notable feature in Figure 9c is that 
the increase in cell size and intensity noticed above coincides 
with a rapid growth in cloud depth about 5h before the 
DMCR peak. The deep cloud population (Modes 3 and 4) 
has a maximum occurrence just below the TTL and maxima 
at and shortly after the time of the rainfall peak. The onset 
time of the deep cloud population lags that of the shallower 
one by 4 h, with a more uniform decay of both deep and 
shallow clouds 2-3 h after the peak rainfall. From the above 
results, we can identify roughly three stages of the storm 
development—a buildup phase (-5-10 h before the peak 
rainfall), a mature phase (5 h before to 1 h after the peak), 
and a decay phase (from 1 h after the rainfall peak).

[43] The distribution of CTF1 in the PM class (Figure 9e) is 
mostly similar to that observed in Figure 9c (all 144 events), 
since the PM class had 54% of rainfall events (see Figure 7). 
Notable features in the AM class (Figure 9d) which are some
what different when compared to all events (Figure 9c) and 
PM statistics (Figure 9e) included the following: the ratio 
of the deep to the shallow population is higher (80% versus 
30% in the PM class) and the lag time between the onset of 
the shallow to the onset of the deep population appears to 
be shorter. Also, the mode heights of the two dominant cell 
populations are lower in the AM class than in the PM class, 
and there are relatively less overshooting deep convective 
cells in the AM class.

[44] It seems intuitively consistent that in the AM class 
(oceanic) there is a faster transition time and higher deep to 
shallow cloud cell population ratios than for the PM class

(continental) since the atmospheric moisture content is 
expected to be higher over ocean than land. Figure 10 shows 
that in the hours preceding the onset of heavy rainfall events 
in both classes, the relative humidity is higher in the middle 
troposphere (6-14 km; dotted lines in Figure 10) than in the 
background averages (solid lines). The feature of higher 
midlevel tropospheric moisture preceding deep convection 
has been documented in several studies [e.g., Sherwood 
and Wahrlich, 1999; Mapes et al., 2006]. It is also evident 
from Figure 10 that the relative humidity associated with 
the AM events is higher in the middle troposphere, ranging 
between 50% and 60%, compared to that with the PM events 
with means between 25% and 50%. The presence of more 
moisture in the middle troposphere preceding the AM events 
compared to PM events will allow deep convection to form 
rather easily and quickly after shallow convection. An 
important question is what the source of this moistening 
preceding the onset of deep convection in both classes is. 
This will be further explored in section 5.

[45] Next, we explore the associated composite life cycle 
of convective cell microphysics around the rainfall peak 
using rain rate, mean drop diameter D0, and drop concentra
tion Nw retrieved at the 2.5 km CAPPI level from the dual
polarization radar observations (Figure 11). The objective 
here is to investigate the role played by convective-scale 
microphysics in the temporal evolution of rainfall over the 
composite life cycle shown in Figure 9, as well as in 
differences between AM and PM events. The “all events” 
plot is not shown, as it exhibits features very similar to the 
PM class (Figure 11, right). To help with the interpretation, 
we also show selected contours of normalized CTF1 
occurrence frequency (black curves) from Figures 9d (AM 
class) and 9e (PM class). Note that the total CTF1 count is 
divided by the number of events in each class.

[46] Looking at Figure 11 (right), it appears clearly that the 
three main steps identified for the life cycle of convective 
cloud tops are all associated with major changes in convec
tive-scale microphysics. In the buildup phase (-5-10 h 
before the peak rainfall), the D0 and Nw at 2.5 km progres
sively increase as cloud top height increases over time, from 
about Z)0 = 1.2 mm (and logl0(A,v) = 3.8) at t=— lOh for 
shallow congestus cloud top heights (below 7 km) to 
D0= 1.6mm (and logl0(A,v) = 4.3) at f=—5h for deep 
convective cloud tops reaching 10 km. The AM events 
(Figure 11, left) results are very different in that buildup 
phase, which are characterized by a large decrease in D0 
associated with deep convective cloud tops reaching 7 to 
12 km (unlike the PM events) and an increase in mean Nw 
(like the PM events). Interestingly, this decrease in mean 
drop diameters in deep convective storms is also associated 
with a large reduction of rainfall rate at 2.5 km associated 
with the AM event when compared with the PM events 
(not shown). This indicates that breakup and evaporation 
processes play a more important role in rainfall production 
within the AM events, while coalescence is probably more 
efficient within the PM events.

[47] In the mature phase (5 h before to 1 h after the peak) 
where increasingly higher convective cloud tops associated 
with deep convection are found (Figure 9c), there is a large 
increase in D0 and a decrease in Nw when compared with 
the buildup phase. This clearly indicates that coalescence 
processes are more efficient in that phase than during the
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Figure 11. The same format as Figures 9d and 9e, except shows (top) D0 and (bottom) Nw at 2.5 km 
associated with events in the (left) AM class and (right) PM class. The overplotted contour curves in 
black represent the CTH frequency as shown in Figures 9d and 9e, normalized by the number of events 
in each class.

buildup phase. It is striking to see how the microphysics of 
deep convective storms is very different in that mature phase 
between the AM and PM events. In the AM events, the Nw is 
actually increasing a lot, -400% higher, when entering the 
mature phase (while it was slightly decreasing in the PM 
events), while the D0 is increasing, but with a time lag with 
respect to the PM events similar to that observed for the 
increase in convective cloud top heights. Overall it is found 
that drops in the AM deep convective clouds are on average 
larger but in much smaller concentration than those in the PM 
deep convective clouds. In other words, deep convective 
rainfall characteristics in the mature stage of the life cycle 
of the AM and PM events are completely different.

[48] Finally, in the decay phase (from 1 h after the rainfall 
peak), the atmosphere returns to the same conditions as 
during the buildup phase for the PM events (Figure 11, right) 
and “all events” (not shown). It is not the case at all for the 
AM events, in which the rainfall parameters are very 
different from the buildup phase, especially for convective 
tops lower than 10 km, where mean drop diameters are much 
smaller and Nw are larger than during the buildup. This 
higher Nw is indicative of new convective developments. 
This seems to be in good agreement with larger frequencies 
of occurrence of cloud top heights in the 7-12 km height 
layer in Figure 9d as compared to Figure 9e.

5. The Temporal Evolution of the Large-Scale 
Moisture Budget During Rain Events

[49] In this section, we explore the evolution of large-scale 
moisture budget around the rainfall events identified above 
with the goal to better understand the relative role of

dynamical and physical processes in the transition from 
shallow to deep convection. Due to their structural differences, 
the analysis is performed separately for the morning and after
noon rainfall events defined above. Figures 12a and 12b show 
the time evolution of the vertically resolved budget of specific 
humidity for ±12 h on either side of the AM and PM events, 
respectively. The large-scale moisture budget is divided into 
four terms, namely the moisture tendency (q tend) which 
arises from contributions from horizontal advection (q adv h), 
vertical advection (q adv v), and the residual term (02). In 
summary, q tend = <7 adv h +</ adv v + Q2. The Q2 term 
represents the collective effects of all subdomain-scale 
processes [see Yanai et ah, 1973]. All terms are scaled to the 
same units of humidity change with time, i.e., gkg-1 h-1.

[50] The large-scale data set has a 6-hourly resolution, and 
so within the 24 h window around each rainfall event, there 
will be between four and five profiles. The time stamps of 
the large-scale data with respect to the onset time of the rain 
events in both the AM and PM classes are represented by the 
short vertical lines above the humidity tendency panels. It is 
clear from this illustration that due to the high time resolution 
(10 min) of the radar data used to define the rain events, the 
timing of the large-scale data entering the composite is nearly 
continuous around / ~~ 0 h. Thus, the observed temporal 
evolution of the moisture budget terms in Figure 11 is robust 
even on an hourly scale, despite using the 6-hourly forcing 
data set.

[51] Considering the humidity tendency itself, it is evident 
that both classes of events are characterized by moistening 
during the storm buildup phase that gradually increases in 
depth from the boundary layer to the middle troposphere. 
For the AM events, the moistening starts earlier than for the
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Figure 12. Superposed epoch analyses (composite) responses of Q terms for up to 12 h on either side of 
rain events identified to occur within (a) 00:00 A.M.-08:00 A.M. and (b) 12:00 P.M.-08:00 P.M. A bin size 
of 6 h in time and 50 hPa in pressure was used in this figure. The overplotted green curve shows the location 
of “0 amounts” in each panel, and the series of black curve is the CTH frequency as shown in Figures 9d 
and 9e. The vertical black lines above the humidity tendency panels indicate the large-scale profile times 
relative to the rainfall events used in the composite analysis.

PM events. It is often speculated that the main source of the 
midlevel moistening are cumulus congestus clouds. While 
not entirely conclusive, the breakdown of the humidity 
tendency into three components allows for an investigation 
of this hypothesis.

[52] It is evident that for both types of events, the horizon
tal advection terms are negative. This is understandable as 
areas of heavy rain are moist, making it likely that the sur
rounding area is drier leading to negative humidity gradients 
away from the rainy area. For both sets of events, it is the 
vertical advection term as well as the subdomain-scale terms 
that contribute to the midlevel moistening, albeit in quite 
different ways between the event types.

[53] For the AM events, which have been shown to be 
mostly oceanic in nature, the period from —12 to —5h is 
characterized by drying of the middle troposphere (implying 
downward large-scale motion), compensated by moistening 
by subdomain processes. While it is tempting to ascribe this 
moistening to congestus clouds, it is evident from the 
evolution of the cloud characteristics (Figure 9 and replotted 
as grey contours in Figure 12) that no such clouds exist at this 
time. The fact that the atmosphere is ascending above the 
midlevels while the subgrid processes dry the upper 
troposphere makes it more likely that the middle tropospheric 
moistening by small-scale processes is a result of the 
evaporation of precipitation from stratiform clouds that are 
likely remnants of previous convective events. This is also 
consistent with a very similar evolution of the moisture 
budget after the main rain events (+9h and onward). 
Approximately 8h before the rainfall event, the vertical

advection term turns positive near the surface increasing in 
depth as time progresses, reaching its peak during the event 
at midlevels. This implies a profile of increasing vertical 
motion with height, and hence low-level convergence, and 
indicates that it is large-scale dynamical, not small-scale, 
processes that dominate the evolution from shallow to deep 
convection. This is consistent with the findings of Hohenegger 
and Stevens [2012].

[54] The moisture evolution for the (land-based) PM 
events is somewhat different. The vertical advection term is 
positive at low levels for the entire prerainfall period. This 
is likely a result of net convergence into the domain in 
support of the widespread sea breeze circulations developing 
during the day. The moistening from this term is weak and 
increases in height a few hours before the main rainfall event. 
There is a distinct peak in moistening from small-scale 
processes approximately 5 h before the main rainfall event 
at 800 hPa, accompanied by the drying of the levels below, 
indicative of the presence of nonprecipitating shallow 
cumulus clouds. As is evident from the overlaid radar CTF1 
evolution, the bulk of the congestus clouds appears after this 
peak and is not directly associated with it. In fact, the moist
ening by small-scale processes weakens when the congestus 
clouds appear, making it unlikely that they play a major role 
in setting the conditions for deep convection. More likely, 
they constitute a transitional stage of convection as the 
large-scale atmosphere transits from suppressed (—12 to 
—5h) to convectively active (-5 to +5h) conditions. The 
latter are characterized by a very strong compensation in 
the humidity tendency between large-scale dynamical
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processes (moistening) and small-scale convective processes 
(drying), indicating the very strongly dynamically coupled 
nature of precipitating deep convection.

6. Conclusion and Summary
[55] Wet season (October-April) C-band polarimetric 

(CPOL) radar observations of cumulus cloud top heights 
(CTHs) and their rainfall properties over a 3 year period 
(2004-2007) at the Darwin site have been used to 
objectively identify different tropical cumulus modes. 
Once these cumulus modes were established, the study then 
focused on studying the progression of the different modes 
around several carefully selected heavy rainfall events by 
using a composite analysis applied separately to events 
experienced in morning (oceanic) and afternoon (continen
tal) conditions. The large-scale moisture budget was ana
lyzed to reveal the relative role of dynamical and physical 
processes in the transition from shallow to deep convection 
during the rainfall events.

[56] The study first showed that the CPOL radar is capable 
of observing cumulus congestus mode (aka, Mode 2) but 
misses most of the shallow cumulus mode (aka, Mode 1). 
This was verified by comparing the CTH statistics from 
CPOL with concurrent observations from a millimeter- 
wavelength cloud radar (MMCR). In deeper convection 
(aka, Modes 3 and 4), the CPOL performance was shown 
to be better than that of the MMCR, as expected.

[57] The identification and further study of individual 
cumulus cloud cells revealed that the cell rainfall properties 
at 2.5 km height change remarkably with CTH. This allowed 
an objective way of identifying four different cloud types: a 
shallow cumulus mode with CTH in the trade inversion layer 
(1 -3 km ), a congestus mode with tops in the highly stable 
middle troposphere (3-6.5 km), a deep convective mode with 
tops in the region of free convection (6.5-15 km ), and an 
overshooting convection mode with tops in the tropical 
tropopause layer (CTH > 15 km). The four CTH layers of 
the cumulus modes are also visible in temperature lapse rates. 
Furthermore, the vertical profile of the reflectivity lapse rates 
is also found to contrast strongly between the different 
cumulus cloud modes.

[58] The study then examined the temporal evolution of the 
identified cumulus modes during heavy rainfall events. 
Overall, the daily rainfall pattern in the Darwin region is 
semidiurnal in nature, with the larger afternoon peak clearly 
associated with continental-based convection and the 
secondary peak associated with oceanic convection. The two 
types of events were studied separately by considering events 
between 00:00 A.M. and 08:00 A.M. local time (AM class 
with 39 events) and 12:00 P.M.-08:00 P.M. local time 
(PM class with 78 events). In both sets of events, there 
is a distinct evolution of cloud top height involving a 
“congestus” phase that starts 5-8 h before the rainfall peak. 
The deeper modes begin to form shortly before the onset time 
of rainfall events. All cumulus modes decay nearly at the same 
time, approximately 3 h after the rainfall peak. For the oceanic 
AM events, the ratio of the shallow to the deep population is 
higher and the transition time from the shallow to the onset 
of deep population is shorter than for the continental PM 
events. The convective-scale microphysical properties, repre
sented by retrieved mean drop diameter D0 and drop

concentration Nw, were found to be very different between 
the two rain event classes. This indicates that different 
microphysical processes dominate over different underlying 
surfaces during convective storms.

[59] A composite analysis of the large-scale moisture bud
get during the rainfall events implies that for both the AM 
and PM events, the moistening peaks before the peak in the 
congestus population. In both sets of events, large-scale 
dynamical processes play a significant role in the transition 
from shallow to deep clouds. This leads to the conclusion that 
the transition to deep convection is characterized by a close 
interplay between a moistening of the middle troposphere 
by congestus clouds and the heating-induced convergence 
on larger scales.

[60] Many more studies of this kind using a combination of 
instruments such as merged cloud radar, CPOL, and in situ 
observations, and over different underlying surface condi
tions such as oceanic and continental are needed to further 
understand the rainfall properties of the four cumulus cloud 
modes identified here and their evolution during rainfall 
events. In particular, the shallow cumulus mode (Mode 1), 
its rainfall properties and role, if any, in increasing the 
congestus formation (Mode 2) and subsequent deep clouds 
(Modes 3 and 4) needs to be investigated with more suitable 
scanning radars and higher resolution space-time observation 
of the atmospheric moisture and thermal gradients. Also, it 
would be worthwhile to analyze the tropical data with 
strategies developed in studies already undertaken at midlat
itudes [e.g., Zhang and Klein, 2010].
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[1] Single-column models (SCM) are useful test beds for investigating the 
parameterization schemes of numerical weather prediction and climate models. The 
usefulness of SCM simulations are limited, however, by the accuracy of the best estimate 
large-scale observations prescribed. Errors estimating the observations will result in 
uncertainty in modeled simulations. One method to address the modeled uncertainty is to 

simulate an ensemble where the ensemble members span observational uncertainty. This 
study first derives an ensemble of large-scale data for the Tropical Warm Pool 
International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of 

error in the best estimate product. These data are then used to carry out simulations with 
11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also 
performed. All models show that moisture-related variables are close to observations and 
there are limited differences between the best estimate and ensemble mean values. The 
models, however, show different sensitivities to changes in the forcing particularly when 
weakly forced. The ensemble simulations highlight important differences in the surface 
evaporation term of the moisture budget between the SCM and CRM. Differences are 
also apparent between the models in the ensemble mean vertical structure of cloud 
variables, while for each model, cloud properties are relatively insensitive to forcing. The 
ensemble is further used to investigate cloud variables and precipitation and identifies 
differences between CRM and SCM particularly for relationships involving ice. This 
study highlights the additional analysis that can be performed using ensemble simulations 
and hence enables a more complete model investigation compared to using the more 
traditional single best estimate simulation only.
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1. Introduction
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to 13 February 2006 [May et al., 2008]. The data collected 
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experiment collected sufficient information to derive both 
the large-scale heat and momentum and moisture budgets 
[Xie et al., 2004] as well as detailed information on the 
state of the smaller scale convection and associated clouds. 
Such data sets are commonly used in the modeling com
munity to carry out process-oriented studies in particular 
applying cloud-resolving models (CRM) and single-column 
models (SCM). One of the primary motivations for TWP- 
ICE was to enable the improvement ofglobal climate models 
(GCM), which are known to be deficient in the repre
sentation of cloud and rainfall particularly associated with 
tropical convection. The international research community 
has conducted a suite of multimodel studies for TWP-ICE. 
A hierarchy of experiments enables the investigation of 
model errors as discussed in J. Petch et al. (Evaluation 
of intercomparisons of four different types of model sim
ulating TWP-ICE, submitted to Quarterly Journal of the 
Royal Meteorological Society,2012) andincludesGCM [Lin 
et al., 2012] and Limited Area Models [Zhu et al., 2012] 
forced with European Centre for Medium-Range Weather 
Forecasts (ECMWF) reanalysis as well as a CRM study 
[Fridlind et al., 2012] performing simulations driven by a 
single “best estimate” large-scale budget data set [Xie et al., 
2010]. This paper reports on the SCM component of the 
overall modeling strategy. One innovation applied here will 
be the use of an ensemble of SCM simulations to elucidate 
uncertainties in the estimation of model errors and to explore 
model sensitivities to changes in the data set driving the 
model simulations.

[3] The investigation of model shortcomings through 
SCMs is a well-used method in the model development 
research community. Model development studies, which 
include a SCM component, have been instigated by the 
Global Energy and Water-Cycle Experiment (GEWEX) 
Cloud System Study (GCSS) [Randall et al., 2003] in con
junction with the U.S. Department of Energy Atmospheric 
System Research (ASR) to investigate a wide range of test 
cases including deep convection over the tropical ocean 
using data from the Tropical Ocean Global Atmosphere 
(TOGA) Coupled Ocean-Atmosphere Response Experiment 
(COARE) [Webster and Lukas, 1992] intensive observation 
period [e.g., Woolnough et al., 2010; Bechtold et al., 2000] 
and convection over land exploiting extensive observations 
[e.g., Grabowski et al., 2006; Xie et al., 2005, 2002; Ghan et 
al., 2000]. Investigation of the specific problem of the diur
nal cycle was conducted by the European Cloud Systems 
(EUROCS) project and discussed in Guichard et al. [2004]. 
These studies focussed on a limited number of model sim
ulations forced by a single data set, from hereon referred to 
as the “best estimate” forcing. While best estimates of the 
large-scale atmosphere are usually derived to depict the most 
probable state of the large-scale atmosphere, they do contain 
errors of usually unknown magnitude. These errors compli
cate the interpretation of the results of SCM simulations, 
as the discrepancies between the model-simulated fields and 
observations may be attributed to two sources, from pre
scribing an incorrect large-scale state or due to errors in 
model processes. By using a single-model realization of 
the large-scale state, it is impossible to separate these two 
error sources.

[4] Ensemble techniques are commonly used in numerical 
weather prediction (NWP) and climate models to investigate

model sensitivities and to determine uncertainty. These 
ensembles may include perturbed initial conditions or vary
ing model parameters within a limited range. Multimodel 
ensembles have also been used to provide an estimate of 
the range of simulations. A limited number of studies also 
derived ensemble techniques for use in SCM studies. Hack 
andPedretti [2000] added random perturbations to the initial 
conditions of their ensemble simulations and found consid
erable variations in simulated fields. Similar results were 
found when modifying the prescribed vertical motion field in 
a similar manner. Given the bifurcations discussed in Hack 
and Pedretti [2000], Hume and Jakob [2005,2007] and Ball 
and Plant [2008] determined that an ensemble technique was 
appropriate for SCM. Hume and Jakob [2005] found that 
after about 18 h of simulation, results were increasingly sen
sitive to the prescribed forcing rather than differences in the 
initial conditions. For this reason, this TWP-ICE study uses 
an ensemble of large-scale forcing.

[5] The goal of this study is to apply an ensemble SCM 
technique to the TWP-ICE experiment and to highlight 
additional opportunities for model evaluation that such a 
technique may provide. The technique is applied to a wide 
range of SCMs as well as a small number of CRMs, enabling 
the investigation of a range of model behaviors. The results 
from the ensemble simulation will be compared to those of 
single “best estimate” simulations. It will be shown that a 
particularly interesting aspect of the use of the ensemble 
technique in this context is the possibility to study model 
sensitivities with changing forcing data set. It is shown that 
the different models exhibit distinctly different ensemble 
behavior that is not apparent when comparing simulations 
with a single forcing data set. Section 2 summarizes the 
experimental design including the methodology used in the 
derivation of the ensemble large-scale forcing, the case spec
ification, and a description of the models. The main results of 
the study are discussed in section 3 followed by a summary 
and the main conclusions in section 4.

2. Experimental Design
[6] The experiments conducted here use both a best esti

mate forcing and an ensemble of forcing data sets. The best 
estimate data set used is that derived by Xie etal. [2010] and 
is identical to that used in Fridlind et al. [2012]. Using an 
ensemble approach enables a better understanding of model 
accuracy and model sensitivity to be calculated. As this 
study includes a number of different models, these character
istics are determined dependent on model. This section will 
detail the design of the study including the ensemble forcing 
design, the case specification, and the participating models.

2.1. Ensemble Design
[7] A number of techniques exist to derive budgets from 

observational data collected in field campaigns. Here, the 
variational analysis technique of Zhang and Lin [1997] is 
used in the analysis of TWP-ICE observations. This tech
nique provides an estimate of area-averaged atmospheric 
and surface conditions using a combination of surface obser
vations, vertical profiles of the atmosphere, satellite obser
vations, and numerical model data. The variational analysis 
process minimizes a cost function for the heat, moisture, and
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Figure 1. Time-averaged vertical profiles of omega over active ( left) and suppressed (right) monsoon 
for all ensemble members. Broken and light-colored lines show all ensemble members with key ensemble 
members (5th, 25th, 50th, 75th, and 95th percentiles) as black continuous lines. The best estimate forcing, 
used here and in the CRM intercomparison, is shown by small circles. Note the different .r axis.

momentum budgets using constraints of top of atmosphere 
and surface energy and moisture.

[s] One of the constraints used in the variational analysis 
method is the domain-average surface rainfall. In the case of 
the TWP-ICE experiment, this domain-mean surface rainfall 
is derived from radar data. Compared to the use of rain gauge 
observations, this improves the spatial representativeness of 
the estimate, but this comes at the expense of accuracy of 
the local rainfall estimates as radar measurements need to be 
converted to rainfall. It has been shown [Zhang et al., 2001] 
that the surface rainfall has a large effect on the derived 
forcing data set; for example, the analyzed vertical veloc
ity is very sensitive to rainfall. Furthermore, the derivation 
of surface rainfall from radar data is also highly complex 
and liable to large errors [Jo.?.? and Waldvogel, 1990]. These 
errors will have a large effect on the derived forcing data set.

[9] One method to address uncertainty in large-scale forc
ing data is to derive an ensemble of forcing data. Only a 
short summary of the method to derive such an ensemble is 
given here, with more details provided in the Appendix. The 
method is principally based on estimates of errors in the rain
fall estimates that are a key input to the variational budget 
analysis. A comparison of radar-derived and rain gauge data 
is carried out to provide an estimate of the error in the radar 
estimates of domain-average rainfall. From these error esti
mates, 100 equally likely alternative domain-mean rainfall 
time series are calculated. The 100 rainfall time series are 
then used as inputs to the variational analysis to derive 100 
alternative versions of the large-scale state using the same 
variational technique as is used to derive the best estimate 
large-scale state. These 100 large-scale states constitute the 
forcing ensemble used in this study.

[10] When deriving the large-scale state using these alter
nate rainfall time series, all other observations have the 
same values as the best estimate, for example, tempera
ture, moisture, and horizontal wind fields. Given that the 
boundary values of temperature and moisture are identical 
between all realizations, the horizontal advection terms of 
temperature and moisture differ very little. The variational 
analysis process generally equates larger values of rain
fall with increased low-level convergence and upper level 
divergence and therefore generally larger values of vertical

velocity. The structure of the derived vertical velocity, how
ever, is also dependent on other budget terms so that vertical 
velocity does not monotonically increase with rainfall.

[11] Figure 1 shows the vertical velocity profile aver
aged over both the active and suppressed monsoon for each 
ensemble member as well as key percentiles of the ensem
ble. Stronger vertical motion is derived from time series 
with larger rainfall. In the active monsoon, there is always 
strong upward vertical motion, although the ensemble mem
bers with weaker rainfall have weaker vertical motion. 
During the suppressed monsoon, the ensemble members 
with strong rainfall have upward vertical motion at all 
levels. The ensemble members with weaker rainfall have 
upward motion at lower levels (below 650 hPa) but down
ward motion above. In addition to the ensemble members, 
Figure 1 shows the standard best estimate for vertical veloc
ity. As is evident, the best estimate results are close, but 
not identical, to the 50th percentile of the ensemble forc
ing. While there is a large spread in omega, it is worth 
noting that 50% of the ensemble members lie in the lim
ited range between the 25th and 75th percentile lines. While 
each ensemble member is equally likely, most cluster around 
the 50th ensemble member and the best estimate, and the 
most extreme omega values are rare. These differences in 
omega imply changes in low-level convergence and upper 
level divergence through the continuity equation and will 
have an effect on convection. These 100 large-scale “forc
ing” data sets are then used as input to the model simulations 
discussed below.

2.2. Case Description
[12] The TWP-ICE experiment experienced a range of 

atmospheric conditions. At the start of the experiment, the 
region experienced monsoon conditions. Between 23 and 
24 January, a strong mesoscale convective system (MCS) 
passed through the domain followed by relatively sup
pressed conditions. There were then clear conditions from 
3 to 5 February with little rain followed by monsoon break 
conditions to the end of the field campaign. Full details of 
the meteorological conditions can be found in May et al. 
[2008]. In this study, the focus is on the active period defined 
as 20 00Z-25 12Z Jan and the suppressed period defined as
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Table 1. Models Contributing to SCM Study

Model Full Name Modeler Reference

UM-GR Unified Model-Gregory and Rowntree M. Whitall/R. Plant Davies et al. [2005]
UM-PC Unified Model-Plant/Craig R. Keane/R. Plant Davies et al. [2005]
SCAMS Single-Column Community Atmospheric Model X. Liu/X. Shi Collins et al. [2006]
SCAML Single-Column Community Atmospheric Model X. Liu/X. Shi Wang et al. [2009]
SCAMR Single-Column Community Atmospheric Model X. Song/G. Zhang Collins et al. [2006]
NCEPG NCEP GFS Model W. Wang EMC [2003]
GFDL2 GFDL-AM2 Model Y. Lin GAMDT [2004]
GISS GISS Model A. Wolf/A. DelGenio Schmidt et al. [2006]
CLUBB Cloud Layers Unified by Binormals model B. Nielsen/V. Larson Golaz et al. [2002]
JMA1 Japan Meteorological Agency T. Komori JMA [2007]; Nakagawa [2009]
JMA2 Japan Meteorological Agency T. Komori JMA [2007]; Nakagawa [2009]
2-D LEM UK Met Office Large Eddy Model A. Hill Grayetal. [2001]
3-D SAM System for Atmospheric Modeling L. Davies Khairoutdinov and Randall [2003]

“Includes the acronym used in this paper, the full model name, contributing author(s), and the main reference for the model. 
Further model details are given in the text and the references therein. Note that there are two cloud-resolving models as part of this 
study.

28 00Z Jan-2 12Z Feb. The conditions during the clear and 
break periods are dominated by a strong diurnal cycle, which 
is driven by the land-sea contrast in the experiment domain. 
As SCMs cannot usually represent such contrasts in a single 
grid box, the later part of the experiment is excluded from 
the simulations presented here.

[13] In order to investigate the performance of the ensem
ble technique proposed here in different meteorological 
conditions, the study applies two sets of large-scale forcing 
data. The first is a best estimate simulation forced using the 
standard data set [Xie et al. ,2010]. These simulations can be 
directly compared to the CRM results [Fridlind et al., 2012], 
and the best estimate simulations also form the basis of dis
cussion in J. Petch et al. (submitted manuscript, 2012). In 
this study, the best estimate simulations will be used to form 
a SCM multimodel ensemble. In addition to the best esti
mate simulations, all models were run using the 100-member 
ensemble of forcing data derived above. It was found that 
some models showed numerical instabilities for the strongest 
forcing data sets (i.e., those derived from the largest rainfall) 
when using their standard time-stepping. As a consequence, 
the 10 strongest forcing data sets and, for reasons of symme
try, the 10 weakest ones are excluded from further analysis, 
reducing the ensemble size to 80.

[14] The aim when defining the model specification is to 
impinge as little as possible on the inherent characteristics 
of the individual models, and modelers are encouraged to 
use their preferred configurations; however, the following 
requirements are made for all simulations:

[15] 1. The TWP-ICE domain has mixed surface types 
making the choice of surface type unclear. All simulations 
assume an ocean surface consistent with Fridlind et al. 
[2012]. Fixed time-invariant SST = 29°Cisused. Interactive 
surface fluxes are required to be calculated in the boundary 
layer scheme.

[16] 2. Simulations are initialized with observed tempera
ture and moisture profiles at 0300Z 19 January 2006.

[17] 3. An observed ozone profile is used where possi
ble, but the McClatchey ozone profile [McClatchey et al., 
1972] is used above the maximum height of observations 
(40 mbar).

[18] 4. Full interactive radiation is used with a diurnal 
cycle for a domain centered on the Atmospheric Radiation 
Measurement (ARM) site (12.425°S, 130.891°E).

[19] 5. Mean horizontal winds are relaxed to observed 
profiles with a 2 h time scale. There is no nudging of the tem
perature and moisture fields which are left free to respond to 
the forcing.

[20] 6. Horizontal advective tendencies for temperature 
and moisture are prescribed, but the vertical terms are calcu
lated by the models. Sensitivity studies showed a warm tem
perature bias above the tropopause when prescribing a total 
forcing as the model cannot freely evolve vertical advection 
associated with this warming and reduce the temperature 
bias. This method differs from Fridlind et al. [2012] where 
temperature and moisture were nudged towards observed 
profiles to avoid such temperature biases.

2.3. Models
[21] In this section, a brief description of all models used 

in this study will be given. Table 1 gives a summary of 
the models with further details given below. The study also 
includes two CRM which also simulate the ensemble. The 
CRM provide an important reference for the SCM and link 
to the CRM study [Fridlind et al., 2012].

[22] The UK Met Office SCM [Davies et al., 2005] con
tains parameterizations for radiation [Edwards and Slingo, 
1996], layer-cloud microphysics [Wilson and Forbes, 2004; 
Wilson and Ballard, 1999], boundary layer processes [Lock 
et al., 2000], and convection; see also Martin et al. [2006]. 
Results were submitted for both the default UM convection 
scheme [Gregory and Rowntree, 1990; Martin et al., 2006; 
Derbyshire et al., 2011] (UM-GR) and the Plant and Craig 
[2008] stochastic spectral mass-flux scheme (UM-PC). In 
the default scheme, convection is triggered by instability 
of surface parcels at the lifting condensation level (LCL); 
a CAPE closure is used for deep convection, and the clo
sure for shallow convection is based on Grant [2001]. In 
the Plant-Craig scheme, convection is triggered by con
structing potential updraft source layers and evaluating their 
buoyancy at the LCL; a CAPE closure is used. The stochas
tic variability of the Plant-Craig scheme depends upon the 
column size—an area of (50 km)2 was used here.

[23] The single-column model of the NCAR CAM3 
(SCAM) contains the radiation scheme as described in 
Collins et al. [2006]. The treatment of cloud condensa
tion and microphysics in CAM3 [Boville et al., 2006] is 
based on Rasch and Kristjansson [1998] as updated by
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Zhang et al. [2003] with separate prognostic equations for 
the liquid and ice-phase condensate. The boundary layer 
scheme is based on Holtslag and Boville [1993] and Boville 
et al. [2006]. CAM3 includes the convection scheme of 
Zhang and McFarlane [1995] with CAPE closure. CAM3- 
Liu (SCAML) [Wang et al., 2009] differs from SCAM 
with modification for cloud microphysics by introducing 
a double-moment cloud microphysics [Liu et al., 2007], 
explicit treatment of ice nucleation [Liu and Penner, 2005], 
and water vapor deposition on ice crystals and Bergeron- 
Findeisen process in pure ice and mixed-phase clouds. 
SCAMR differs most fundamentally from SCAMS as the 
deep convection parameterization is replaced by the revised 
Zhang and McFarlane [1995] scheme proposed by Zhang 
[2002]. The new convection scheme uses CAPE changes 
due to large-scale forcing (e.g., large-scale advection, radia
tive cooling) in the free troposphere, instead of CAPE itself, 
for closure.

[24] In the NCEP GFS model, the longwave radia
tion scheme follows Fels and Schwarzkopf [1975] and 
Schwarzkopf and Fels [1991]. The shortwave radiation for
mulation uses multiband techniques [Slingo, 1989; Chou et 
al., 1998; Kiehl et al., 1998]. The cloud condensate is prog
nosed from a single-moment microphysics scheme [Zhao 
and Carr, 1997]. The boundary layer parameterization uses 
a nonlocal scheme [Hong and Pan, 1996]. Penetrative con
vection scheme [Pan and Wu, 1995] is simplified from 
Arakawa and Schubert [1974], with a quasi-equilibrium 
assumption as a closure. Convection is trigged when a 
cloud work function exceeds a threshold. Shallow convec
tion is parameterized as an extension of the vertical diffusion 
scheme [Tiedtke, 1983].

[25] The GFDL AM2 uses the shortwave radiation algo
rithm of Freidenreich and Ramaswamy [1999], and the 
longwave radiation follows Schwarzkopf and Ramaswamy 
[1999]. It uses Slingo [1989] and Held et al. [1993] for liq
uid cloud radiative properties and Fu and Liou [1993] for 
ice clouds. The microphysics scheme uses Rotstayn [1979] 
with cloud fraction prognosed following Tiedtke [1993]. The 
microphysics used for convective clouds is rather crude 
with prescribed precipitation efficiencies for shallow and 
deep convections. Boundary layer scheme follows Lock 
et al. [2000]. GFDL uses the relaxed Arakawa-Schubert 
scheme [Moorthi and Suarez, 1992] with a CAPE closure 
for shallow and deep convection.

[26] The GISS SCM used here is a developmental 
update of the Schmidt et al. [2006] model. Radiation 
uses explicit multiple scattering calculations and the k- 
distribution approach to absorption. Large-scale clouds are 
based on the prognostic cloud water parameterization of Del 
Genio etal. [1996], including all relevant microphysical pro
cesses, detrainment, and cloud top entrainment. Convective 
microphysics follows Del Genio et al. [2005], which inter
actively partitions condensate into precipitating, detrained, 
and vertically advected components. The boundary layer 
uses dry conserved variables and includes local (diffu
sive) and counter-gradient flux terms. Moist convection is 
parameterized using a mass-flux scheme with convection 
triggered when a lifted parcel becomes buoyant. The mass 
flux is that required to produce neutral buoyancy at cloud 
base, with updraft speeds and entrainment rates based on 
Gregory [2001].

[27] The CLUBB model, in these TWP-ICE simulations, 
is used in conjunction with the BUGSrad radiative transfer 
scheme [Stephens et al., 2001] and a single microphysics 
scheme [Morrison et al., 2009] for all clouds. Although in 
the prior literature CLUBB was tested only for boundary 
layer cloud cases [Golaz et al., 2002; Larson and Golaz, 
2005; Larson et al., 2012], here CLUBB is used to sim
ulate both deep and shallow clouds with a single, unified 
equation set. Unlike Larson et al. [2012], here CLUBB is 
run as a single-column model and handles all cloud types 
without the use of a cloud-resolving model or any other host 
model. CLUBB prognoses various higher-order moments 
and achieves closure by use of a single multivariate subgrid 
PDF of velocity, moisture, and temperature. CLUBB has no 
explicit convective trigger; rather, the turbulence and ther
modynamic variability generated in shallow convection are 
intended to evolve into deep convection when and where the 
large-scale forcings are appropriate.

[28] The single-column model JMA1 contains the param- 
eterizations of the default Global Spectral Model [JMA, 
2007; Nakagawa, 2009]. The radiation scheme has two- 
stream with delta-Eddington approximation for shortwave 
and table look-up and k-distribution methods for long
wave. Cloud condensation and microphysics are based on 
Smith [1990] and Sundqvist et al. [1989]. The boundary 
layer scheme is the level 2 closure scheme of Mellor and 
Yamada [1974]. The convection scheme is a multiplume type 
with cloud work function closure based on Arakawa and 
Schubert [1974], two types (for shallow and deep con
vection) of prognostic equations of the upward mass-flux 
[Randall and Pan, 1993] and triggering functions [Xie and 
Zhang, 2000]. JMA2 is the same as JMA1, except for using 
modified convection and cloud schemes (T. Komori and 
K. Yoshimoto, Evaluation from a perspective of spin-down 
problem: Moistening effect of convective parameterization, 
submitted to CAS/JSC WGNE Research Activities in Atmo
spheric and Oceanic Modeling, 2012).

[29] There are two CRM in the study which are briefly 
described here. The UKMO Large Eddy simulation model 
(LEM) uses the shortwave and longwave radiation scheme 
of Edwards and Slingo [1996]. The LEM employs a three- 
phase microphysics scheme, which is described in Gray 
et al. [2001], and the microphysical configuration is the 
same as the UKMO-2A setup described in Fridlind et al. 
[2012]. The subgrid mixing scheme is a modified first-order 
Smagorinksky-Lilly scheme, which is described inMacVean 
and Mason [1990].

[30] The model used in the System for Atmospheric Mod
eling (SAM) is described by Khairoutdinov and Randall 
[2003] and uses the BUGSrad radiation scheme described 
in Stephens et al. [2001]. Single-moment microphysics were 
used as outlined in Khairoutdinov and Randall [2003]. 
The subgrid mixing scheme is a 1.5-order closure model 
[Khairoutdinov and Kogan, 1999]. The SAM model simu
lates nine ensemble members equally spaced in the range 
10-90.

3. Results

3.1. Simulations of Humidity and Precipitation

[31] This section gives an overview of both the tempo
ral evolution and the vertical structure of the simulation
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Figure 2. Time series of precipitation for the active period ( left) and suppressed period ( right) for each 
model type. Colored lines show the average for each model type (e.g., all UM SCM, all SCAM, and all 
JMA models are averaged together) and gray lines the 80-member ensemble for all models. The best 
estimate observed precipitation is given in the heavy black line. Note the different y axis.

of several moisture-related variables in the various models. 
Particular focus is given to comparing moisture-related vari
ables as large errors can arise in models potentially due to the 
dependence of moisture on error-prone parameterizations. 
The convective component of total surface precipitation is 
discussed to highlight the different roles of model parame
terization between the active and suppressed periods. Model 
accuracy will be discussed by comparison to observations 
for each model. The ensemble is then used to investigate 
model sensitivity in terms in the sources and sinks in the 
moisture budget. The best estimate is contrasted with the 
ensemble mean to directly determine how using an aver
age of many simulations might affect results compared to a 
single simulation.

3.1.1. Overall Simulation Behavior
[32] Figure 2 shows time series of surface precipitation for 

the active and suppressed periods. Model ensemble means 
are shown as colored lines with individual ensemble mem
bers from all model simulations overlaid in gray. In this 
figure, all UM-type, SC AM-type, and JMA-type models are 
averaged together as they are very similar. Observations are 
shown as a heavy black line. This plot allows broad interpre
tation of the characteristics of each model while capturing 
the spread of the ensemble. Figure 2 shows that all mod
els have a similar precipitation during the active period with 
moderate precipitation before the passage of the MCS on 
23-24 January. All models have similar heavy rain associ
ated with the MCS. The ensemble is spread around this mean
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Figure 3. Mean precipitation averaged over the active and suppressed periods. The left box is the mul
timodel ensemble constructed from the best estimate simulations (MM BE) averaged over the period for 
each model. There are nine individual ensemble SCM with 80 members and two ensemble CRMs, a 2-D 
Met Office LEM simulation with 80 members, and a 3-D SAM model with 9 members. The far right has 
the ensemble of observations. The box represents the 25th, 50th, and 75th percentiles with the 5th and 
95th percentiles being shown by the horizontal bars. The ensemble mean data are shown by the small 
asterisk. The best estimate is shown for the SCM data and observations as large asterisks. The ensemble 
is averaged for each ensemble member over all times.
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with the largest spread occurring during the MCS. Modeled 
precipitation is close to observations which may be antici
pated, as in strongly forced conditions precipitation will be 
predominantly driven by forcing in all ensemble members 
\Xie et al., 2005; Xu et al., 2002; Woolnough et al., 2010].

[33] Period-mean precipitation during the suppressed 
period is lower than during the active period. It is evi
dent that the relative differences in the ensemble mean time 
evolution between models as well as the differences from 
observations are larger than those in the active period. This 
might be expected as the forcing is weaker and as a conse
quence has less of an influence on the model solutions. In 
weakly forced conditions, it is expected that the details of 
the parameterizations in the various models exert a stronger 
influence, which explains the larger differences in the sup
pressed period. The ensemble spread is rather uniform and 
does not increase substantially with rainfall, which remains 
light throughout the period. The CRM behave similarly to 
the SCM. In the active period, solutions from the two model 
types track each other closely, again highlighting that pre
cipitation is constrained by the forcing in that period. Just as 
for the SCM, the differences between CRMs as well as to 
observations increase ( in a relative sense) in the suppressed 
period. The CRM results in the active period strongly resem
ble the results of the larger CRM comparison [Fridlind et al., 
2012], indicating that the CRMs shown here provide a 
representative sample for this family of models.

[34] Figure 3 provides a comparison of the multimodel 
best estimate ensemble and individual model ensembles for 
the time-mean surface precipitation averaged over the active 
and suppressed periods for all simulations used in this study. 
Each model is included as a box-whisker plot constructed 
from the time-averaged precipitation for each ensemble 
member. Observations are also included. It can clearly be 
seen that the ensemble SCM and CRM encompass a wide 
range of surface precipitation values. The models capture 
the spread seen in the observations. This is due to strong 
coupling between the forcing, which is primarily through 
vertical velocity, and rainfall.

[35] The multimodel ensemble has a limited spread of 
surface precipitation as all models are simulating the same 
forcing. Figure 3 provides a useful check that the multimodel 
ensemble has limited spread compared to the SCM and 
CRM simulations. This result supports findings of Hume and 
Jakob [2005] that largest spread in an SCM ensemble will 
be found by varying the forcing (the boundary conditions). 
Figure 3 also shows the ensemble mean (small asterisk) 
and best estimate mean ( large asterisk) precipitation for the 
observations and models. For most models, the magnitude 
of the best estimate observed precipitation is very close to 
the 50th percentile (median) precipitation with the ensemble 
mean larger. This is due to the ensemble having a distribu
tion which is skewed towards high values of precipitation 
leading to larger means than medians.

[36] Figure 4 shows time-height cross sections of the 
observed, SCM-mean and CRM-mean modeled relative 
humidity. Relative humidity provides a useful perspective 
on the model simulations, since unlike precipitation, which 
is primarily driven by forcing, relative humidity is less con
strained by the forcing and more affected by model physics 
[.Emanuel and Zivkovic-Rothman, 1999]. Given the model 
setup (section 2.2), the models have freedom to develop
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Figure 4. Time-pressure relative humidity ( with respect to 
water) for the active and suppressed periods for observa
tions and SCM and CRM simulations. The SCM and CRM 
data are averaged over all models and all available ensemble 
members in the range 10-90.
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certain moisture source/sink terms such as moisture con
vergence and surface evaporation. The ensemble sensitivity 
to these terms will be addressed in section 3.1.3. Relative 
humidity with respect to water has been calculated using 
Teten’s formula [Lowe, 1977, equation 6] for each individ
ual simulation from values of temperature, water vapor, and 
pressure to ensure consistency across models. The modeled 
data shown in Figure 4 is an average over all models and all 
ensemble members used. Detailed investigation shows that 
relative humidity differences are primarily caused by dif
ferences in moisture as temperature varies little across the 
simulations and is close to observations.

[37] Observations show that the atmosphere has high rel
ative humidity through a deep layer during the active period, 
but the models generally underestimate humidity particu
larly at low levels. During the suppressed period, observa
tions show lower humidity above 800 hPa but large values 
in the boundary layer. All models capture the reduction in 
relative humidity caused by drying on the transition to the 
suppressed period above 700 hPa, although the SCM over
estimate the reduction in humidity. Both SCM and CRM 
persist with low values of humidity in the boundary layer 
compared to observations.

[38] While Figure 4 shows the evolution of the mean state, 
the ensemble simulations also allow investigation of model 
sensitivity. Figure 5 shows time series of 500 mbar relative 
humidity for all ensemble members for each model com
pared to their best estimate simulations, ensemble mean, and 
observations. Relative humidity at 500 mbar is chosen, as 
accurate representation of moisture in midlevels is important 
if models are to correctly represent cloud. All models have 
high 500 mbar relative humidity during the active period 
consistent with the observations, but most SCM tend to 
have lower relative humidity than the CRM. The JMA and 
GISS models have particularly low relative humidity which 
is about 10% and 15% lower than the observations, respec
tively. The CLUBB and NCEP models have slightly larger 
relative humidity compared to the observations. All models 
have very limited spread during the active period.

[39] Observations show that during the transition to the 
suppressed period, humidity reduces to around 60% after the 
passage of the MCS. Relative humidity increases slightly 
before it reduces again from 70% to 30% between days 27 
and 31 (27-31 January). There is a big difference between 
the responses of the SCM and CRM during this period. The 
CRM capture the transition to the suppressed period rea
sonably well with relative humidity 10% too low but its 
temporal evolution well captured. SCM generally reduce rel
ative humidity too much in the transition period with mean 
values after the transition ranging from 40% (UM) to 10% 
(JMA). An exception to this is the CLUBB model which 
does not excessively reduce relative humidity during the 
transition and is then too moist during the suppressed period.

[40] The CRM show limited spread during the active 
period and the passage of the MCS. The spread in both 
model types is largest during the suppressed period. The 
SCM show larger but limited spread in the active period and 
in the transition associated with the MCS. Just like the CRM, 
they show increased spread during the suppressed period. 
This suggests a hypothesis that the simulation of midlevel 
relative humidity may be more sensitive to changes in the 
forcing when the forcing is weak. Furthermore, this sensi

tivity results in nonlinearity between the ensemble members 
which is particularly apparent during the suppressed period. 
For example, around 30 January, the SCAMS model shows 
that ensemble members with weaker (stronger) forcing have 
the lowest (highest) relative humidity despite the forcing not 
being the weakest (strongest) forcing.

[41] Figure 5 shows that in general the ensemble mean 
and best estimate simulation results follow each other quite 
closely so that their differences from observations are sim
ilar. On some limited occasions, the ensemble mean is 
closer to the observations than the best estimate, for exam
ple, UM-PC during both the active and suppressed periods 
and CLUBB and SCAMS during the suppressed period. 
To further investigate the ensemble mean to best estimate 
behavior, Figure 6 shows profiles of the difference between 
the best estimate and the ensemble mean relative humid
ity for all SCM for the active period. Figure 6 shows that 
when averaged over this period most models have similar 
best estimate and ensemble mean relative humidity. How
ever, there are some important exceptions. For example, the 
UM-PC has larger ensemble mean relative humidity than its 
best estimate throughout the depth of the troposphere. This 
larger relative humidity in the ensemble mean represents an 
improvement in the model simulations by bringing the val
ues closer to observations. As UM-PC is the only SCM to 
include a stochastic parameterization, this result highlights 
that ensemble simulations are necessary when using models 
with stochastic components. The usefulness of the ensemble 
approach will be investigated further below.

[42] When comparing the ensemble simulations with 
observations (Figure 5), it is possible, for some models and 
periods, to determine whether the errors are due to the pre
scribed forcing or are models errors. Given that the observed 
forcing spans the range of possible observations, none of the 
JMA ensemble members closely approximate the observed 
relative humidity during the active period. Therefore, this 
model clearly has limitations correctly simulating relative 
humidity during this period. For many models (includ
ing SCAM, NCEP, GiSs, and JMA), the ensemble shows 
that the transition to the suppressed period is likely to be 
attributable to model error rather than errors in the forcing. 
The GISS model also consistently underestimates relative 
humidity during the suppressed period.
3.1.2. Precipitation Partitioning

[43] An interesting question in the simulation of tropical 
convection is how the various SCMs partition the precip
itation between convection and the resolved scale motion. 
Furthermore, given the construction of the ensemble used 
here, it is possible to study how this partitioning changes 
with forcing strength and meteorological situation. Figure 7 
shows the time average convective precipitation fraction 
(CPF), defined as the ratio of convective precipitation to total 
precipitation at the surface, against total precipitation for 
both the active and suppressed periods. Each SCM is shown 
by a color with different symbols used for the different 
models. Each point represents a single ensemble member 
averaged over the period of interest. An increase in total pre
cipitation (x axis) indicates an increase in forcing strength. 
The multimodel best estimate ensemble is shown as large 
asterisks.

[44] Generally, there is a wide spread in the magnitude 
of CPF between the models ranging from 0.2 to 0.9 in the
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Figure 5. Time series of RH at 500 mbar for all SCM and CRM. Blue lines show best estimate sim
ulations, red lines ensemble mean simulations, and the black line is observations. Gray lines show all 
ensemble members in the range 10-90. Key ensemble members, the 25th, 50th, and 75th percentiles of 
the 80-member large-scale “forcing,” are highlighted as thin black lines which are dash-dotted, solid, and 
dashed, respectively. Note that the CRM do not report best estimate data.
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Figure 6. Mean period-averaged difference between the 
best estimate and ensemble mean relative humidity for the 
active period for each SCM.

active period and 0.5 to 1 in the suppressed period. In the 
active period, the models also show a very diverse behavior 
with forcing strength, with some showing an increase in CPF 
(e.g., GISS, UM-GR), some showing a near-constant CPF 
(e.g., NCEP, SCAM), and some showing a decrease (e.g., 
UM-PC). The GFDL2 model shows a somewhat erratic 
behavior. Models of the same type show different behav
ior depending on the parameterization scheme used (e.g., 
UM-PC versus UM-GR).

[45] In the suppressed period, all SCMs have a CPF of 
greater than 50%. There is a tendency in almost all mod
els for the CPF to increase with increasing forcing although 
there is much scatter in the relationship. There are two 
groups of models, with either very high or relatively low 
CPF. There is some consistency between the periods, with 
the GISS and UM-PC models showing the lowest CPF 
in both.

[46] The rather wide spread in model behavior is likely 
indicative of large differences in the assumptions made in the 
different convection treatments on how to partition rainfall

between convection and the larger scales. As this will likely 
have an impact on the vertical distribution of heating and 
moistening, an important issue for future work is to provide 
observational constraints for the relationships shown here.
3.1.3. Ensemble Moisture Budget Characteristics

[47] The ensemble provides an opportunity to investigate 
the interplay between modeled moisture and the moisture 
budget terms. In particular, this study permits a compari
son between how the models control their moisture budgets. 
Given that the models are forced by prescribing horizon
tal advection terms and vertical velocity, they independently 
develop moisture budget terms such as vertical advection 
terms and moisture convergence in addition to the moisture 
contributions from parametrized processes such as convec
tion and surface evaporation. This is an important difference 
between this study and previous intercomparisons [e.g., 
Woolnough et al., 2010; Guichard et al., 2004] where the 
total moisture forcing was prescribed. Furthermore, given 
that this study also includes both best estimate and ensemble 
simulations, comparison can be made about the additional 
model characteristics exposed using an ensemble compared 
to a single best estimate simulation.

[4s] Figure 8 shows time average precipitable water 
against various terms in the moisture budget for the active 
period for all models and ensembles in this study. Very 
similar results are obtained for the suppressed period (not 
shown). Figure 8a shows that during the active period, the 
SCMs tend to divide into models in which lower precip
itable water is associated with larger precipitation (GISS and 
SCAM), models where precipitable water is higher for larger 
values of precipitation (UM and CLUBB), and those models, 
including CRM, where precipitation is independent of pre
cipitable water. The GFDL model is somewhat an exception 
as its relationship shows significant scatter.

[49] The largest term in the moisture budget is the mois
ture convergence term which is shown in Figure 8b. In 
all models, the moisture convergence term shows a similar 
magnitude and characteristics to precipitation which is not 
surprising as it is the largest source of moisture for the grid 
box exceeding surface evaporation by an order of magnitude 
( see below). Furthermore, Figure 8b shows that the moisture

Surface precipitation (mm hr b

Figure 7. Time-averaged scatter plots of surface precipitation against convective precipitation (shown 
as a fraction of the total surface precipitation) over the active ( left) and suppressed (right) periods for 
ensemble members 10-90. Each model type is represented by a color and each model of a given type by 
a symbol. The multimodel best estimate ensemble is represented by a large asterisk. The CLUBB model 
and CRM do not submit partitioned precipitation data.
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Figure 8. Time-averaged scatter plots of PW against (a) 
precipitation, (b) moisture convergence, and (c) surface 
evaporation over the active period for ensemble members 
10-90. Each model type is represented by a color and each 
model of a given type by a symbol. The CRM are rep
resented by large open symbols and the multimodel best 
estimate ensemble by a large asterisk.

convergence acts as feedback mechanism where SCM with 
larger values of precipitable water enhance moisture sup
ply and produce more precipitation. Other models, despite 
the strong forcing, have lower precipitable water and lower 
moisture convergence. Fetch et al. (submitted manuscript, 
2012) discusses a likely reason by investigating the method 
used to force the SCM compared to the method used to force 
the CRM as used in Fridlind et al. [2012]. It was found that 
given a positive moisture bias, convergence (which occurs 
during the active period) increases that positive bias, and 
similarly convergence enhances a negative moisture bias. 
Models forced by prescribing the total moisture forcing, as 
used in Fridlind et al. [2012], do not develop these biases. 
The ensemble results shown in Figure 8b support the find
ings of Fetch et al. (submitted manuscript, 2012). This model 
response to bias is not, however, apparent when only the 
best estimate simulations are considered. GISS and SCAM 
both have a drier atmosphere during the active period com
pared to the observations and other SCM which result in 
reduced precipitation compared to those SCM with a moister 
atmosphere.

[so] Another important term in the moisture budget is 
surface evaporation. Figure 8c shows this term for each 
model and ensemble member as before. Note that the surface 
evaporation term is an order of magnitude smaller than the 
moisture convergence contribution. It is evident that there 
is a fundamentally different relationship between forcing 
strength and evaporation in the SCMs and the CRMs indicat
ing differences in the physical mechanisms at work in these 
two classes of models. All SCMs approximate a quasi-linear 
relationship of evaporation to precipitable water, albeit of 
varying strength, with larger surface evaporation at lower 
values of precipitable water and lower surface evaporation 
when precipitable water is high. This is consistent with the 
formulation of the SCMs as, given that low level winds 
and SST are prescribed in all models, evaporation can only 
change in response to atmospheric moisture. The CRMs on 
the other hand show a very different response to changes 
in the forcing. Here, the values of evaporation are inde
pendent of precipitable water. This indicates the importance 
of small-scale wind variability in driving surface evapora
tion. In the SCMs, this variability is not resolved. Unless 
it is parametrized, SCM surface fluxes are determined by 
the mean wind alone. In the CRMs, this wind variability is 
resolved and hence will enhance the surface fluxes. From 
the results, it is evident that the SCMs do not deal effec
tively with the subgrid variability. This result highlights the 
usefulness of the ensemble approach as this “error” in the 
SCMs would not have been evident from a set of single best 
estimate simulations.

[si] By using an ensemble approach, several interesting 
conclusions about model performance as well as simula
tion setup could be drawn. Given that strong precipitation 
in the models (and in nature) is strongly linked to moisture 
convergence, this exposes some interesting model behav
ior. By design of the simulations, moisture convergence 
is calculated by the models. Consequently, those mod
els that develop a dry bias cannot develop large moisture 
convergence and do not produce as much precipitation, 
with the opposite effect occurring in models with a moist 
bias. The SCMs require a drier atmosphere to develop 
stronger surface evaporation. In contrast, the CRMs develop
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Figure 9. Mean period-averaged cloud fraction (left) for the active period (top) and suppressed period 
(bottom) for each model. For a limited number of models, the right-hand panels show the period mean 
together with ensemble members. Colored lines show the average for each model and gray lines ensemble 
members in the range 10-90. (Note that the CLUBB model does not include ice in cloud fraction and the 
LEM includes rain in cloud fraction. )

evaporation changes independent of atmospheric moisture 
likely due to the development of subgrid scale wind variabil
ity not present in the SCMs.

3.2. Clouds
[52] This section investigates the simulation of cloud- 

related variables in the CRMs and SCMs. Initially, the 
vertical structure of liquid water and ice clouds are discussed 
in both the active and suppressed monsoon. Following on 
from this, once again use of the ensemble will be made 
to investigate relationships between cloud-related variables 
as the forcing strength changes. This will expose several 
interesting characteristics of the various model parameteri- 
zations.
3.2.1. Profiles of Cloud Properties

[53] Figure 9 shows vertical profiles of the ensem
ble mean model cloud fraction for all models during 
the active (top left) and suppressed (bottom left) period 
as well as selected examples of the full ensemble from 
three models for the active (top right) and suppressed 
(bottom right) periods. Cloud fractions generally reflect the 
meteorological conditions shown in Figure 4 with cloud 
throughout the troposphere during the more moist, active 
period and two cloud layers during the suppressed period 
which are low cloud between 950-750 hPa, and high ice 
cloud above 200 hPa.

[54] During the active period, there are large differences 
in CRM cloud fraction of around 30% at all levels, and 
the SCMs mostly fall within the range of the CRMs. This 
can largely be explained by the definition of cloud fraction, 
which in the LEM includes both cloud and precipitating 
hydrometeors, while in the SAM model it only includes 
cloud water and ice. All SCMs have cloud fraction less than 
30% below 600 hPa and more cloud (with the exception of 
IMA) above. There are large differences between the mod
els with slightly better agreement in lower levels than in the 
upper troposphere.

[55] The differences in cloud fraction in the SCMs are also 
large in the suppressed period. One noticeable feature of the 
selected full ensembles (right panels) is that the difference 
of individual ensemble members from their mean tends to 
be smaller than the differences between models. This indi
cates that the differences in the simulated cloud structures 
are dominated by the structural properties of the models, not 
by the forcing data set, and shows that model representation 
of cloud is liable to error independent of the meteorologi
cal conditions. Best estimate simulations are therefore likely 
sufficient to expose model differences in this variable. This 
is investigated in Figure 10, which shows the differences 
of profiles of cloud cover between the ensemble mean and 
the best estimate simulation. As for relative humidity, most 
models show only small differences although with notable
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Figure 10. Mean period-averaged difference between the 
best estimate and ensemble mean cloud fraction for the 
active period for each SCM.

exceptions, the UM-PC around 400 hPa and GFDL below 
700 hPa.

[se] Figure 11 shows profiles of ice water content in all 
models for the active period. Again, the ensemble means 
for all models are shown in the left panel, while selected 
full ensembles are shown in the right panel. The suppressed 
period is omitted from this Figure as the ice cloud during 
this period is not linked to local convection and is not well 
simulated. There are large differences between ice water 
content in both the CRMs and the SCMs during the active 
period which will impact on the model radiation budgets. 
Modeled ice water content differs in terms of both mag
nitude and vertical structure. Differences in the structural 
properties can again be noted in modeled ice water content 
with each SCM clustering around its ensemble mean. Diffi
culty in representing ice microphysics has been noted in all 
other TWP-ICE intercomparison studies and has been unan
imously suggested as a focus for future model development.

[57] This section has shown that there are substan
tial differences in the vertical structure of parameterized 
cloud variables which may be attributable to systematic

300
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differences in the representation of clouds between the mod
els. Structure in the cloud variables is clearly identifiable 
using the ensemble in both the active and suppressed peri
ods. These persistent structures show that the models are not 
sensitive to changes in the forcing and that for most mod
els best estimate simulations are likely sufficient to expose 
the mean model behavior in both periods. It is clear from the 
large differences between them that the CRMs only provide 
a limited estimate of the truth, especially during the sup
pressed period, as their representations of clouds are limited 
themselves [Fridlind et al., 2012].
3.2.2. Ensemble Cloud Characteristics

[ss] While the previous section showed that it is likely 
that the mean cloud properties of each model can be exposed 
by a single best estimate simulation, the full ensemble 
results provide a useful tool to investigate how relation
ships between variables might change within each model 
as the forcing varies across ensemble members. Represent
ing the correct relationships between variables is a greater 
challenge for models than representing means, but it is also 
a necessary condition for applying the models over a wide 
range of conditions, such as a full GCM. This subsection 
will investigate how the ensemble developed here can be 
used to investigate relationships between different variables. 
Each ensemble member, experiencing different forcing data, 
can be considered as a separate test case, albeit spaced in 
controlled manner from all other ensemble members.

[59] Figure 12 shows the mean liquid water path (LWP) 
as a function of the mean surface precipitation averaged over 
the active (left) and suppressed (right) periods for all mod
els. Each symbol represents an individual ensemble member. 
While there are generally different relationships between the 
two periods (note the change in scale between periods in 
the Figure ), the CRMs show that relationship between LWP 
and precipitation is linear ( with a gradient of approximately 
250 kg nr3 h in both the active and suppressed period). 
The CRMs agree very well during the suppressed period 
but differ at the larger precipitation rates during the active 
period.

[eo] Most, but not all, SCMs also produce a linear rela
tionship between LWP and surface precipitation. Notable 
exceptions are the GFDL, SCAM, and IMA models. The 
relationships in the SCMs differ somewhat between the

UM-GR 
SCAMR 
NCEPG 
J MAI

Ice content (kg kg h

Figure 11. Mean period-averaged ice water content for the active period ( left) for each model type. For a 
limited number of models, the right-hand panels show the period mean together with ensemble members. 
Colored lines show the average for each model and gray lines ensemble members in the range 10-90.
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Figure 12. Time-averaged scatter plots of surface precipitation against liquid water path over the active 
(left) and suppressed (right) periods for ensemble members 10-90. Each model type is represented by a 
color and each model of a given type by a symbol. The CRM are represented by large open symbols and 
the multimodel best estimate ensemble by a large asterisk.

active and suppressed periods with a tendency for mod
els to have tighter and more linear relationships during the 
active period. In the suppressed period when precipitation 
is small, both the UM and NCEP models tend to have pre
cipitation independent of LWP, which itself is at an almost 
constant value. The GFDL and SCAM models tend to dis
play significant scatter in LWP with only a weak relationship 
to precipitation. In fact, only the CLUBB, GISS, and .IMA 
models increase LWP with precipitation as the CRMs sug
gest during the suppressed period. A linear relationship was 
observed between LWP and precipitation in Fridlind et al. 
[2012].

[el] The CRMs tend to lie in the middle of the SCM 
distribution, suggesting that the SCM ensemble mean may 
approximate the correct values of LWP, although individual 
models may differ quite considerably from the CRMs. The 
UM and NCEP models are biased low at all times, whereas 
the GISS and one of the .IMA models have a LWP that is too 
large during the suppressed period. Unlike for cloud frac
tion before, the best estimate simulations do not always fall

close to the center of the ensemble (note the large asterisks 
for GFDL and one .IMA model to their associated ensem
ble during the suppressed period). The ensemble results also 
expose interesting nonlinearities in some of the models. For 
instance, there is a discontinuity in LWP in the GFDL around 
0.15 kg nr2 during the active period. This possibly relates 
to the discontinuity in the convective precipitation fraction 
in Figure 7. While magnitude differences are apparent in 
the multimodel ensemble, the relationships between LWP 
and precipitation are only found in the full ensemble show
ing a potential usefulness of an ensemble technique when 
identifying model behavior.

[62] Figure 13a shows the relationship between IWP and 
precipitation during the active period. It can be seen that 
similar to LWP, IWP generally has a linear relationship 
with precipitation. Unlike the relationship of precipitation 
with LWP, the one with IWP is not consistent between the 
CRMs. There are very different magnitudes of IWP in the 
CRMs, and the slope of the relationship to precipitation 
varies strongly as well. Large differences in the simulation of
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Figure 13. Time-averaged scatter plots of surface precipitation against ice water path (left) and liquid 
water path against ice water path (right) over the active period for ensemble members 10-90. Each model 
type is represented by a color and each model of a given type by a symbol. The CRM are represented by 
large open symbols and the multimodel best estimate ensemble by a large asterisk. Note: GISS model is 
not shown in these plots. GISS IWP exceeds all other models by a factor of 2.
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Figure 14. Location of rain gauges used in this study in 
and around the pentagon-shaped TWP-ICE domain. Com
parison of radar-derived rainfall data to gauge rainfall data 
is conducted at all stations. Representative results are shown 
for Batchelor station (YBCR, 131.0252W, 13.0545S) and 
Charles Point (CHAP, 130.6309W, 12.389S). The colored 
area around each gauge shows the region of the TWP-ICE 
domain area closest to that gauge.

IWP in CRMs have been identified in other studies [Fridlind 
et al., 2012]. The existence of those discrepancies makes it 
difficult to use the CRM results in assessing the SCM behav
ior. The LEM has approximately double IWP compared to 
SAM with a gradient of 300 kg nr3 h (LEM) compared 
to 50 kg nr3 h in SAM. Most SCM have gradients around 
this range, although in the NCEP model IWP is relatively 
insensitive to forcing.

[63] The ensemble enables the comparison not only 
between models but also of different versions of the same 
model. For example, SCAMS and SC AMR have very

YBCR

Accumiation period: 180 minutes 
Radar area: 9 km2 (3x3 pixels)

Rg &1 mm hoir1 (15 bucket tips) 
Log-normal parameters

10-

similar IWP, whereas SC AML, using a different micro
physics scheme, has twice the IWP of the other SCAM 
models. There is a more marked difference between the two 
versions of the UM. UM-PC follows closely the gradient 
and approximate magnitude of the LEM ( which is the UK 
Met Office’s CRM) and which was used in the formulation 
of the Plant and Craig [2008] stochastic convection param
eterization scheme. The UM-GR, on the other hand, is close 
to the SAM CRM which shows that there is complex inter
play between the parameterization schemes. The UM SCM 
only differ in their convection parameterization, but this has 
a large effect on the IWP produced. In general, there is a 
split between models that follow the strong slope of the LEM 
and those closer to the weaker slope of the SAM. It is not 
possible, however, to attribute the relationship between pre
cipitation and IWP simply based on the model microphysics 
scheme.

[64] Figure 13b shows the relationship between LWP 
and IWP and shows different aspects of the relationships 
between the variables in the models. There is a clear spilt 
between some models that have larger ranges in LWP (e.g., 
SCAM and .IMA models) and others that have larger ranges 
in IWP (e.g., UM-PC and CLUBB). Fridlind et al. [2012] 
found that 2-D CRMs have a weaker relationship than 3- 
D CRMs between IWP and LWP, which is contrary to 
Figure 13a. However, the 2-D version of the LEM used here 
was not part of the Fridlind et al. [2012] study, and fur
thermore, the SAM here used a single-moment microphysics 
scheme, whereas the SAM in Fridlind et al. [2012] used a 
double-moment scheme [Morrison et al., 2009] so a direct 
comparison is not possible.

[es] Interestingly, considering only the multimodel 
ensemble (Figure 13b) shows a different relationship 
between LWP and IWP compared to the relationship shown 
in the individual ensemble simulations. The ensemble 
within each model suggests increasing IWP with LWP, 
whereas the multimodel ensemble would suggest a tendency 
for IWP to increase with decreasing LWP. This shows the 
differences and potential limitations of using a multimodel

CHAP

Radar and gauge parameters 
AccimilatJon period: 180 minutes 
Ractor area: 9 km2 (3X3 pixels)
Rr sl mm hour1 
RgSlrrm hou-1 (15 bucket tips) 
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|-,p =0.467417

RA,

Figure 15. Distributions of radar-derived rainfall normalized by rain gauge rainfall for two rain gauges 
for TWP-ICE. A log-normal fit is shown in the solid line. Statistics of the observed data and the fit data 
are given in the top right corner of each panel.
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Figure 16. Ensemble cumulative rainfall time series for TWP-ICE derived from error estimates in radar- 
derived rainfall. Broken and light-colored lines show all ensemble members with key ensemble members 
(5th, 25th, 50th, 75th, and 95th percentiles) as black continuous lines. The best estimate forcing, used 
here and in the CRM intercomparison, is shown by small circles.

ensemble. Using a multimodel ensemble would suggest the 
reverse characteristic relationship between variables to that 
suggested by CRM and SCM each simulating their own 
ensemble.

4. Summary and Discussion

[ee] This study presents an ensemble of SCM and CRM 
simulations for the TWP-ICE period. The first purpose of 
the study was to derive an ensemble of model forcings based 
on observational uncertainty. This data set was then applied 
to a variety of models to assess what new information about 
model behavior and model error might be gleaned from an 
ensemble approach that could not be attained by a single 
realization commonly used in CRM and SCM studies. It was 
found that the overall model behavior in terms of the time 
evolution of thermodynamic variables or the time-averaged 
vertical structure of those variables generally changes lit
tle between the ensemble mean and a single “best estimate'’ 
simulation. However, there were some notable exceptions 
to that finding. In some model simulations, like those with 
the UM-PC, ensemble means deviate from the best esti
mate simulations throughout the troposphere. Given that the 
ensemble mean forcing is close to that of the best esti
mate, this indicates nonlinearities in the simulation behavior 
possibly due to the stochastic component of the model. 
The ensemble also shows that models have greater sen
sitivity when weakly forced, and therefore, an ensemble 
is necessary. Perhaps the main value the ensemble adds 
to single simulations is the possibility to investigate the 
changes in model behavior with changes in forcing. This 
has proved invaluable in highlighting several aspects of 
model behavior in this study, namely, ( I) a distinctly different 
behavior in the SCMs from that in the CRMs in achiev
ing changes in surface evaporation; (ii) the sensitivity to 
the particular forcing method applied, (iii) a wide spread 
in the convective precipitation fraction in models and its 
sensitivity to forcing strength, and (iv) distinctly different 
model behavior in the relationships between cloud variables 
and precipitation.

[67] Examining the terms of the moisture budget using 
the ensemble enabled interesting conclusions about model 
behavior for two important terms; the surface evaporation

and the moisture convergence. A clear distinction exists 
between the CRMs and the SCMs. In the CRMs, evapora
tion increases for constant atmospheric moisture, whereas 
the SCMs can only increase evaporation by drying the atmo
sphere. This suggests a role of subgrid variability likely 
brought about by cold pools in the CRMs that is not param
eterized in SCMs. A representation of cold pool dynamics 
in SCMs would allow surface evaporation to occur in a 
moist atmosphere. Studying the moisture convergence term 
as a function of forcing strength revealed an interesting 
feedback between model error and the particular forcing 
approach chosen here. As the models are forced with hori
zontal moisture advection and vertical motion profiles (and 
hence profiles of mass convergence and divergence), they 
develop their own vertical moisture advection and moisture 
convergence terms. In models that develop a moist/dry bias, 
this bias is reinforced by an increase/decrease of the mois
ture convergence into the region. This behavior limitation 
can easily be deduced using the ensemble approach, while 
it would go largely unnoticed in single simulations with a 
number of models.

[6s] The ensemble was also shown to be useful in inves
tigating cloud variables and their relationships. Ensemble 
vertical profiles generally highlight structural differences 
between different models in that all ensemble members 
of a particular model tend to he closer to its mean than 
to that of other models, even with large variations in the 
forcing. Consistent with the results in the accompanying 
modeling studies for TWP-ICE [Lin et al., 2012; Fridlind 
et al., 2012; Zhu et al., 2012], large differences are found in 
the models’ simulation of cloud ice, highlighting this area 
once again as one warranting further study. The ensemble 
is used to identify relationships between liquid water, cloud 
ice, and precipitation. CRM simulations, while varying in 
magnitude, show clear linear relationships between those 
variables. This behavior is not reproduced in all SCMs, some 
of which show strongly nonlinear behavior or even jumps. 
The ensemble also reveals that the ice water path to liquid 
water path relationships are very different between models, 
with one group of models showing a very strong increase 
of IWP with LWP, while in others IWP is almost indepen
dent of LWP. This conclusion applies to both CRMs and 
SCMs. Using the multimodel best estimate ensemble only,
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the important relationship of increasing ice water path with 
liquid water path in individual models is reversed.

[69] This study shows that the introduction of an ensem
ble to a modeling study provides more information than 
might be gathered by simulating only simple best estimate 
forcing. While the method does not replace the standard 
best estimate approach to single-column modeling, it com
plements it by (i) providing an easy framework to study 
model sensitivities and (ii) increasing confidence in detect
ing model behavior that is likely due to model, rather than 
forcing, limitations. Future SCM studies should therefore 
consider adding ensemble simulations in addition to, rather 
than instead of, the more conventional best estimate method. 
Despite the additional information provided by the ensem
ble, it remains difficult to conclusively link model behavior 
in an SCM to parameterization assumptions, highlighting the 
need to embed studies like the one presented here into a 
larger framework of model evaluation.

Appendix A: Derivation of the Large-Scale 
Forcing Ensemble

[70] An important part of this study is the use of an 
ensemble of large-scale forcing data sets. The motivation 
for doing so is to assess the inherent uncertainty in deriv
ing a single best estimate of the large-scale atmosphere 
from observations and in its subsequent application to drive 
model simulations. This appendix describes the construction 
of the ensemble used in this study, which is based on two 
steps: (i) estimate errors in the estimate of area-mean rain
fall and construct alternative rainfall scenarios and (ii) apply 
a constrained variational analysis to each of the rainfall sce
narios derived in the first step to yield the final ensemble of 
large-scale atmospheric states.

A1. Deriving an Ensemble of Rainfall Estimates
[71] The main source area-mean rainfall information in 

this and other TWP-ICE studies [e.g., Xie et al., 2010] are 
rainfall estimates from a C-band polarimetric radar located 
near Darwin [Keenan et al., 1998]. The algorithm used 
to estimate rainfall from radar variables is that of Bringi 
and Chandrasekar [2001]. While the radar provides excel
lent spatial coverage to estimate area means, deriving rain 
rates from radar variables will lead to errors in the rainfall 
estimates. A first step in the ensemble construction is to esti
mate these errors. To do so, we use rain gauge observations 
around Darwin and apply a method very similar to that of 
Jordan et al. [2003].

[72] Radar rain rates vary in space and time, and radar 
errors may vary considerably based on location and tim
ing of rain events. The array of rain gauge data shown in 
Figure 14 is used as a reference for the radar-derived rain
fall data. A grid of 3 x 3 radar pixels (approximately 9 km2) 
are averaged and compared to rain gauge measurements over 
an accumulated period of 180 min where both rain rates are 
greater than 1 mm. By performing this analysis at many loca
tions over the TWP-ICE domain, it is anticipated that the 
differing sources of error may be better accounted for.

[73] Examples of the ratio of radar-derived rainfall data 
to rain gauge rainfall data are shown in Figure 15 for two 
rain gauges. Assuming that rain gauge data may be a better 
estimate of rainfall than radar-derived data, ratios close to 1

suggest small errors in the radar data, with smaller standard 
deviations showing the clustering of the errors. The statistics 
in Figure 15 for the observed data show differences in the 
mean values and standard deviations at the two locations, 
suggesting that indeed errors have different spatial patterns. 
As the data tend to cluster about 1, the two observed data sets 
predominantly agree on the magnitude of rainfall, although 
the long tails of the error distribution show that on occasions 
large errors can be identified.

[74] A log-normal distribution is fitted to the errors shown 
in Figure 15. The log-normal distribution parameters are 
estimated and used to construct an ensemble of rain rates 
at each radar pixel as follows. The distribution of radar to 
gauge rainfall ratios is divided into 100 percentiles. Then the 
ratio for each percentile is used to multiply the radar rain val
ues, providing 100 rainfall values (one for each percentile) at 
each radar pixel. For each radar pixel, the error distribution 
derived at the nearest rain gauge is used. Figure 14 shows the 
areas (colored) for which error characteristics are assumed 
constant in space based on the nearest rain gauge behavior.

[75] Having derived rainfall error estimates at each radar 
pixel, which is expressed as 100 values of rainfall from the 
lowest to the highest, the next task is to estimate the error 
in the area-mean rainfall. This requires assumptions about 
the spatial correlation of the individual pixel errors. As our 
goal is to span the widest range of possibilities, we will 
assume the worst case scenario of maximum correlation. 
In other words, we assume that whenever the largest pos
sible error occurs at 1 pixel, the largest error in the same 
direction occurs at all radar pixels. This is an extremely 
simple assumption and will maximize the possible error in 
the area-mean rainfall, consistent with our goal to maxi
mize ensemble spread. Using this assumption, 100 values of 
area-mean rainfall are derived by simply averaging the pixel- 
rainfall rates within each percentile, i.e., the first percentile 
of the area-mean rainfall distribution is simply the average 
of all first-percentile values at each pixel and so on stepping 
through all percentiles. Figure 16 shows the 100 cumulative 
rainfall time series in this way for TWP-ICE. For compari
son, the figure includes the best estimate rainfall time series 
as derived by Xie et al. [2010], which falls close to the 50th 
percentile as might be anticipated from the method the dis
tribution was constructed. While the error estimates allow 
for a large range of possible rainfall values, 50% of the dis
tribution falls between the 25th and 75th percentiles of the 
distribution which has a limited range of rainfall.

A2. Deriving the Large-Scale Atmospheric State
[76] Each of the 100 rainfall scenarios derived above 

is used separately in the variational analysis algorithm of 
Zhang et al. [2001] (all other observations, such as thermo
dynamic variables, horizontal winds, and radiation terms, 
are unchanged and are the same for each scenario) to pro
duce 100 separate forcings that are all equally possible given 
the uncertainty in area-mean rainfall. The higher (lower) 
percentile corresponds to stronger (weaker) surface pre
cipitation and generally stronger (weaker) vertical motion. 
The characteristics of the vertical motion for the active and 
suppressed periods are discussed in the main text.

[77] Investigations were made into whether the additional 
variational analysis inputs should be modified in order to
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be more physically consistent. For example, an estimate 
of rainfall error has been used to derive alternative rain
fall time series, but increased rainfall may, in the simplest 
terms, also be associated with more deep cloud and therefore 
reduced top-of-the-atmosphere longwave radiation, which is 
also an input to the variational analysis. Sensitivity studies 
where the radiation was varied in conjunction with rainfall 
had little impact on the resulting large-scale atmosphere. 
This supports Zhang et al. [2001], who suggested that rain
fall provided the largest contribution term in the variational 
analysis.

[78] The 100 large-scale data sets so derived are used to 
provide forcing data for SCM and CRM as described in the 
main text.
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