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ABSTRACT 

Enhanced geothermal systems (EGS) contain newly created fractures in addition to possible existing fractures. Accurate characterization 
and monitoring of EGS reservoirs are crucial for optimal placement of new wells and effective extraction of geothermal heat. The 
fractured reservoirs behave as anisotropic media where seismic waves propagate with different velocities along different directions. In 
addition, the anisotropic properties of fluid-filled fracture zones could be different from those of dry fracture zones. We develop an 
optimized rotated staggered-grid elastic-wave finite-difference method for simulating seismic-wave propagation in heterogeneous, 
anisotropic media. Our new method uses a few extra grid points and optimized finite-difference coefficients based on the space-time 
dispersion relation, and reduce numerical dispersion of the conventional rotated staggered-grid finite-difference scheme. We validate 
our new method using synthetic vertical-seismic-profiling (VSP) data for an anisotropic geophysical model built with geologic features 
found at the Raft River EGS reservoir. This improved and optimized rotated staggered-grid finite-difference method provides an 
essential tool for analyzing VSP data, reverse-time migration, and elastic-waveform inversion in anisotropic, fractured reservoirs. 

1. INTRODUCTION 

The elastic-waveform inversion (EWI) is becoming a powerful tool for accurately characterizing complex geological structures using 
multi-component seismic data. EWI is to infer subsurface structures and medium properties by minimizing the difference between the 
recorded data and synthetic data. Most current waveform inversion algorithms assume acoustic media or isotropic elastic media and are 
implemented either in the time domain or in the frequency domain (e.g., Tarantola, 1984; Virieux and Operto, 2009; Guitton, 2012; Lin 
and Huang, 2015). EGS usually contains fractures that preferentially align along one or more spatial directions, making the reservoir 
anisotropic. Therefore, anisotropic elastic-waveform inversion is needed for fracture characterization in EGS reservoirs. 

A fundamental tool in developing EWI for anisotropic media is the fast yet accurate solver to simulate elastic wavefield propagation in 
anisotropic media. There have been many attempts, such as finite-difference method (e.g., Virieux, 1986), the spectral-element method 
(Komatitsch and Tromp, 1999) and discontinuous Galerkin (DG) method (Dumbser and Kaser, 2006) to solve the elastic wave equation. 
The conventional staggered-grid (SG) finite-difference method (Virieux, 1986) is the most popular scheme among these methods 
because of its simplicity and accuracy. Although the conventional SG scheme can properly handle anisotropy such as transverse 
isotropy with vertical symmetry axis (VTI) or horizontal symmetry axis (HTI), and orthohombic anisotropy, the method requires to 
interpolate wavefield velocity components for other more complicated anisotropic media, such as media containing transverse isotropy 
with a tilted symmetry axis (TTI), monoclinic anisotropy, or triclinic anisotropy. Wavefield interpolation could lead to inaccurate 
simulation of seismic-wave propagation in anisotropic media. In addition, since the stress components are not all defined at the same 
grid points in the SG scheme, it is necessary to interpolate some of elastic parameters on the grid points of shear stress components even 
in the isotropic case or VTI/HTI case, resulting in additional numerical errors.  

Saenger et al. (2000) proposed the so-called rotated staggered-grid finite-difference stencil (RSG) to avoid these problems, where the 
stress components and all the elasticity parameters are defined on the same grid points, and velocity components and density are defined 
at the same grid points. The RSG is known to have larger numerical dispersion compared with SG using the same temporal and spatial 
discretization (Saenger and Bohlen, 2004). Several optimized finite-difference methods were developed based on either the spatial 
dispersion relation or temporal-spatial dispersion relation of the wave equation to reduce the numerical dispersion during modeling (e.g., 
Liu, 2013; Tan and Huang, 2014). 

We develop an optimized RSG finite difference method for modeling elastic-wave propagation in anisotropic media. We employ a 
finite-difference stencil along the rotated coordinates similar to the stencil used by Tan and Huang (2014) in the regular coordinates. 
That is, our optimized rotated-staggered grid (ORSG) stencil uses some extra points off the rotated coordinates and employs the 
optimized coefficients calculated based on minimizing the space-time dispersion relation. The resulting ORSG finite-difference stencil 
contains more grid points compared with the conventional RSG. However, we demonstrate using dispersion curves that the ORSG can 
indeed achieve a higher computational efficiency compared to the conventional RSG scheme. We use our new method to conduct 
numerical modeling of VSP wavefields in an anisotropic geophysical model built using geologic features at the Raft River EGS field 
(Ayling and Moore, 2013), and compare the wavefields with those computed using an isotropic model.  

Our paper is organized as follows. We first introduce our ORSG finite-difference stencil, and compare the dispersion curve of our 
ORSG method with that of the conventional RSG scheme. We then show a numerical example to demonstrate the importance of 
simulating anisotropic wave propagation in EGS reservoirs for reliable imaging and waveform inversion for fracture characterization.  
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2. METHODOLOGY 

We introduce the methodology of our optimized rotated staggered-grid finite-difference method for modeling elastic-wave propagation 
in anisotropic media.  

2.1 Elastic-wave equation modeling in anisotropic media 

2.1.1 Elastic-wave equation 

The elastic-wave equation in the stress-velocity formulation (Carcione, 2007) is given by 
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This elasticity matrix describes the anisotropy up to monoclinic anisotropy and transverse isotropy with tilted axis (TTI), with the 1 3x x  

plane as the symmetry plane.  

 

 

Figure 1: Finite-difference stencil for our ORSG finite-difference method: blue and red axis represents the rotated x- and z-axis, 
respectively, and blue and red dots represent the grid points used to calculate the staggered finite-difference 
approximation of the first-order derivatives along the two rotated axes, respectively. Note there are four off-axis points 
for each rotated axis in our ORSG scheme. 

 

2.1.2 Optimized Rotated Staggered-Grid Finite-Difference Scheme 

Figure 1 shows the fundamental difference between the conventional RSG and our ORSG.  The conventional RSG stencil uses the blue 
or red grid points along each rerated coordinate, while our ORSG stencil employs four extra points for each rotated axis. This idea is 
inspired by the work of Tan and Huang (2014) for constructing optimized SG for acoustic-wave modeling. Our ORSG finite-difference 
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stencils have 4th order accuracy in time and 2L-th order spatial accuracy for the first-order partial derivatives along two rotated axes, i.e., 
 and , at the point ( , )i j  as 
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where 1 / 2m m   , mc  are the coefficients for the points along the rotated axes, 0d  is the coefficient for the points off 

the rotated axes, and 2 2r x z     computed using the grid intervals x  and z  along the regular coordinates. In contrast to the 
conventional finite-difference coefficients based on the Taylor expansion that have analytical expressions, the optimized finite-
difference coefficients are functions of the dispersion parameter /r v t h   , where t  is the time interval in the modeling, and h  is 

the grid size for the modeling. We adopt the coefficients in Tan and Huang (2014) with an enlarged grid spacing, i.e., 2  times of the 
grid spacing on the regular coordinates when x z   , to obtain the optimized coefficients for our ORSG. 

Because seismic waves may propagate with different speeds along different directions in anisotropic media, we first solve the 
Christoffel equation (Carcione, 2007) to compute the phase velocities of the qSV-wave along 360 directions with a one-degree interval, 
then we choose the minimum phase velocity to calculate the dispersion parameter r , and compute the optimized finite-difference 
coefficients using this r value. A high-order ORSG stencil with 16th order accuracy in space involves 16 points along each rotated axis 
and 4 points off each rotated axis.  Therefore, the calculation of first-order derivative for each grid point in our ORSG uses a total of 40 
grid points, while the conventional RSG uses only 32 grid points. On the other hand, ORSG allows us to use a time interval larger than 
that for RSG. In combination, our new ORSG not only is more accurate but also is computationally more efficient than RSG. 

2.1.2 Comparison of numerical dispersions between ORSG and RSG 

We compare numerical dispersion of our new ORSG with that of the conventional RSG. Similar to the analysis in Tan and Huang 
(2014), we write the relative phase velocity error in RSG as 
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and k  is the wavenumber, xk  and zk  are the 1x - and 3x -component of k , respectively, mc  are the conventional staggered-grid finite-

difference coefficients obtained using the Taylor expansion. 

The relative phase velocity error in our ORSG is given by 
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and mc  and 0d  are the optimized finite-difference coefficients that are functions of dispersion parameter .r  

We calculate the relative phase velocity errors for both RSG and ORSG when dispersion parameter 0.1r  . Figure 2 shows the 
calculated absolute values of the phase velocity errors along 0   direction for 16th-order RSG, 16th-order ORSG and 32nd-order RSG. 
The ORSG clearly has smallest dispersion at almost all the wavenumber range among the three schemes, and the error is much smaller 
compared with those of RSG of the same order at large wavenumbers. The 16th-order ORSG has similar dispersion with that of 32nd-
order RSG at large wavenumbers. However, 32nd-order RSG involves 64 grid points to calculate the first-order spatial derivative for 
each grid point, while our ORSG needs only 40 grid points.  

 

 

Figure 2: Dispersion curves of the conventional RSG with 16th-order accuracy in space (blue), the ORSG with 16th-order 
accuracy (red) and conventional RSG with 32nd-order accuracy. The propagation direction is 0  . 

 

3. RESULTS AND ANALYSIS 

In this section, we show a numerical example with our ORSG for a geophysical model built using geologic features found at the Raft 
River geothermal field in Idaho (Ayling and Moore, 2013). Figure 3 displays the models of elasticity parameters 11C , 13C , 33C  and 

55C . We set 15 35 0.C C  The model contains a vertical narrow structure. We discretize the model with a grid interval of 7 m along 

both horizontal and vertical directions. We assume that the vertical narrow structure contains randomly distributed vertical fractures 
(transverse isotropy with horizontal axis, or HTI), and let elasticity constant 33C  be 33 112C C . For comparison, we also conduct 

numerical modeling for the case when the narrow structure is an isotropic elastic medium with 33 11C C .  

We simulate an offset VSP dataset for the source at 70 m in depth and 875 m in the horizontal direction, and a total of 300 receivers 
placed in a vertical borehole penetrating the vertical narrow structure. We use a Ricker wavelet with a central frequency of 40 Hz as the 
source function. 

Figure 4 shows simulated common-shot VSP wavefields. Figures 4(a) and (b) are the horizontal particle velocity components when 
assuming the vertical narrow structure is HTI anisotropic and isotropic, and Fig. 4(c) depicts their differences magnified by 10 times. 
Figures 4(d-f) are the corresponding vertical components of the simulated wavefields. Even though the narrow structure is quite small in 
size, the resulting wavefield differences caused by anisotropy within the structure are significant, as shown in Figs. 4(c) and (f). Imaging 
and inversion based on full wavefields, such as the anisotropic elastic full-waveform inversion, rely on these differences to infer the 
characteristics of the reservoir. A reliable description of the medium properties and the accurate modeling of seismic wavefields are 
therefore vitally important for such tasks. 
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(a)                                                                                                             (b) 

    

(c)                                                                                                             (d) 

Figure 3: Elasticity parameter models for numerical wavefield modeling. (a) 11C  model, (b) 13C  model, (c) 33C  model, and (d) 

55C  model. Note the difference between 11C  and 33C  in the vertical narrow structure. 

 

4. CONCLUSIONS 

We have developed an optimized rotated staggered-grid finite-difference method for modeling seismic-wave propagation in anisotropic 
elastic media. Our optimized rotated staggered-grid finite-difference stencil incorporates a few extra grid points off the rotated axes and 
employs finite-difference coefficients optimized in the space-time domain. This optimized finite-difference method has lower numerical 
dispersion compared with the conventional rotated-staggered grid finite-difference method, while preserving all the advantages of 
rotated staggered-grid finite difference method such as that there is no need to interpolate elasticity parameters or wavefield velocity 
components during numerical modeling. We have validated our new method using a geophysical model containing an anisotropic region 
and demonstrated the importance of accounting for anisotropy for characterizing fractured EGS reservoirs. 
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(a)                                                                      (b)                                                                       (c) 

     

(d)                                                                      (e)                                                                       (f) 

Figure 4: Horizontal (a-c) and vertical (d-f) particle velocity components of simulated offset VSP wavefields: (a) and (d) are for 
the case when the vertical narrow structure is HTI anisotropic, (b) and (e) are for the isotropic narrow structure , (c) 
shows wavefield differences between (a) and (b), and (f) displays wavefield difference between (d) and (e). Wavefield 
differences in (c) and (f) are magnified by a factor of 10. 
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