

LA-UR-16-25164

Approved for public release; distribution is unlimited.

Title: W14_greenhousegas Multi-scale Atmospheric Modeling of Green House Gas

Dispersion in Complex Terrain: Controlled Release Study

Costigan, Keeley Rochelle Sauer, Jeremy A. Author(s):

Travis, Bryan J.

Dubey, Manvendra Krishna

Intended for: Web

Issued: 2016-07-18

W14_greenhousegas

Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain: Controlled Release Study

Keeley Costigan (PI), Jeremy Sauer, Bryan Travis, and Manvendra Dubey

July 2016

LA-UR-16-?????

Affordable Artificial Neural Network and Mini-Sensor System to Locate and Quantify Methane Leaks on a Well Pad

ARPA-e project schematic for monitoring methane leaks.

- 1. Small, inexpensive sensors deployed in an optimal configuration
- 2. Meteorological measurements
- 3. Artificial Neural Network (ANN) diagnoses leak location and flux, from measurements and with negligible computational resources
- Prior to deployment, computationally intensive HiGrad simulations provide training data for ANN
 - Iterative training yields progressive reduction in error, through determination of node weights.
 - Flexible implementation allows adjustments to training scheme.

