

LA-UR-16-22863

Approved for public release; distribution is unlimited.

Title:	Understanding the Atmospheric and Ionospheric Response to Bolides and Hypersonic Objects in the Atmosphere (Update Talk, 4/7/2016)
Author(s):	Haaser, Robert A.
Intended for:	Distribution to potential US employers, government agencies and interested individuals, for the purpose of obtaining project extensions and other related grants.
Issued:	2016-04-26

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. viewpoint of a publication or guarantee its technical correctness.

Los Alamos

NATIONAL LABORATORY

Bolides and Hypersonic Objects in the Atmosphere

Robert A. Haaser,

Erin Lay and Bill Junor

Los Alamos National Laboratory (LANL) Intelligence and Space Research Group (ISR-2)

UNCLASSIFIED

Overview

Introduction

- Motivation: objective, science focus

Description of new analysis tools

Validation of new analysis tools

Application to bolide cases

Summary

Science Motivations

Primary research objective:

To advance knowledge of phenomena and characteristics associated with bolides by exploring the atmospheric and ionospheric responses from verifiable incoming objects.

Current science focus:

To develop and use analysis tools to identify bolide signatures in GPS-TEC (locally and globally).

Specific attributes (for each event) necessary to observe are:

- geographic location / time
- velocity / propagation direction
- strongest periods and wavelengths in spectrum.

UNCLASSIFIED

GPS Total Electron Content (TEC)

How TEC is measured:

- Signals between ground stations and GPS satellites are analyzed.
- GPS frequencies:
 - L1: 1.22 GHz
 - L2: 1.57 GHz
- Measure phase delay and group delay due to the ionospheric plasma.
- Determine total integrated electron density based on those delays.
- Unit: 1 TECU = 1 x 10¹⁶ electrons/m²
- Always > 3 GPS satellites in line of sight of any ground station.
- sTEC: Projected "Slant TEC" vTEC: Projected "Vertical TEC" GPS satellite / PRN **vTEC** FC ionosphere Assumed IPP-track: "ionospheric pierce point" 350 km receiver $TEC = \int_{ground}^{satellite} N_e \, ds$ Electron density (electrons/m³) Total Electron Content (TEC): Integrated electron density along line-of-sight from ground receiver to satellite [in electrons/m²].

UNCLASSIFIED

GPS Total Electron Content (TEC)

New Analysis Tools

For high-rate RINEX data (1-sec):

- Why?: Required to consider 1-min GPS-TEC signatures
- What?: use new black box codes (i.e. newest TEQC / UNAVCO)
 - completely original code

Simple tools:

- Why?: Existing methods often miss key signature attributes
- What? arrival time estimation: atmospheric acoustic wave model
 - bi-directional bandpass: BP amplitudes without time offset.
 - normalized spectrum: pulse detection
 - N-station-phase: instantaneous direction / velocity

Time-lapse (TL) tools:

- Why?: Complementary tools to deal with low SNR
- What? <u>TL TEC tool</u>: Combining GPS-TEC from available stations (frames at 30-sec).
 - <u>TL band-phase tool</u>: Identify absolute BP phase in signal.
 - <u>TL arrow tool</u>: N-station velocity / direction

UNCLASSIFIED

Validate and Evaluate Signatures of Bolides

	Signature							
	Identified	Ind	Events of Interest:	Location (near)	Event Class	Type/Class/Group	[Abs Mag]	[kt]
Bolides		1	Chelyabinsk 2013	Chelyabinsk, RU	Superbolide	Ordinary Chondrite LL5	-27.0	>400
		2	Sutter's Mill 2012	Sutter's Mill, CA	Superbolide	Carbonaceous Chondrite CM2	-20.0	4
		3	Novato 2012	Novato, CA	Bolide/Fireball	Ordinary Chondrite L6	-13.8	0.003
		4	Ger/Sw/Aus/Bel 2015	Munich, Germany	Bolide	Not Recovered	-16.0	?
		5	San Antonio 2014	San Antonio, TX	Bolide/Fireball	Not Recovered	-14.0	0.055
		6	Northern Florida 2015	North of Olando	Bolide	Not Recovered	-16.0	?
		7	Peekskill 1992	Peekskill, NY	Fireball	Stony Iron H6 Monomict	-13.0	?
			From IPI's Extended Fireba	lls/Bolide list:				
ools		8	Japan Pacific (2010)	East of Japan, Pacific	Bolide	-	?	33.0
		9	Tuli Meteor (2009)	Tuli Safari Area, Zimbabwe	Bolide	-	?	18.0
		10	Gulf of Boni (2009)	Gulf of Boni, Indonesia	Bolide	-	?	33.0
		11	Antarctica (2014)	Southern Ocean, Antarctica	Bolide	-	?	7.6
F		-	Comparisons:					
ç		12	Atlantis (STS-125) Launch	Kennedy LC-39A, FL	*Fireball*	Launch	-	-
dation		13	Columbia (STS-107) Reentry	~Abilene-West-Lufkin, TX	Fireball	Reentry-breakup	-5.0	?
		14	Mir De-orbit 2001	SE of Fiji, Pacific	Fireball	Reentry-breakup	-5.0	?
		15	West Fertilizer Explosion	West, TX	Fertilizer Explosion	Explosion	-	.001005
alie		16	Mount Asama Eruption	Karuizawa, Japan	Volcano Eruption	Explosion	-	47.8
ÿ		17	G4 March 2015	Earth	Geomagnetic Storm	G4	-	-
		18	Japan Tsunami 2011	Offshore of Sendai, Japan	Earthquake/Tsunami	seismic = 9.0	-	45000

UNCLASSIFIED

*Simple Physics Model: Est. Acoustic Wave Travel

Method:

- 1. Consult MSIS model for thermospheric densities
- 2. Use basic dispersion relation for <u>AW</u>/GW
- 3. Find velocities with thermodynamic identifies
- 4. Trace propagation in the atmosphere

Note:

Acoustic wave speed:

$$c_s = \sqrt{\frac{\gamma k_B T}{M_n}}$$

Though density decreases, temperature increases and extended mean free paths allow for faster travel of an acoustic front.

Validation: Tōhoku Earthquake 2011

9

BOLIDE

ΔTEC fluctuations at increasing distances:

Validation: Modes in Earthquake Pulse

ΔTEC, Japan Tōhoku Earthquake, Date: 3/11/2011, Station: 0201, PRN 15

Validation: Modes in Earthquake Pulse

Validation: Modes in Earthquake Pulse

12

Validation: Tōhoku Earthquake 2011

45°N

40°N

35°N

30°N

Latitude

Event Description: 2011 Tōhoku Earthquake/ Tsunami Name: 03/11/2011 Date: Time: 5:46:24 UTC (14:46:24 JST) 38.322°N, 142.369°E (Japan) Loc: Under-sea megathrust earthquake Type: Duration: 6 min Depth: 31 km Mag: 9.0 M Energy: 45 Mt [Surface Seismic]

Advantages:

- large # ground stations
- small distances
- known / well-documented TEC observations

Difficulties:

- acquiring Data

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

130°E

135°E

Validation: Tohoku Earthquake 2011

45°N

40°N

35°N

30°N

Latitude

Event Description:					
Name:	2011 Tōhoku Earthquake/ Tsunami				
Date:	03/11/2011				
Time:	5:46:24 UTC (14:46:24 JST)				
Loc:	38.322°N, 142.369°E (Japan)				
Type:	Under-sea megathrust earthquake				
Duration	Duration:6 min				
Depth:	31 km				
Mag:	9.0 M _w				
Energy:	45 Mt [Surface Seismic]				

Advantages:

- large # ground stations
- small distances
- known / well-documented TEC observations

Difficulties:

- acquiring Data

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

130°E

135°E

Determining Velocity and Direction from GPS-TEC

UNCLASSIFIED

Chelyabinsk Bolide 2013

Event Description: Event Name: Chelyabinsk Bolide (Superbolide) 02/15/2013 Event Date: Event Time: 03:20 UTC (9:20 YEKT) - morning Event Location: 55.15°N 61.41°E (near Chelyabinsk, RU) Bolide travel: Westward Meteor Shower: N/A. Not associated with but close to 2012 DA14. Abs Magnitude: \approx -27 Diameter, Type: \approx 20 m, Ordinary Chondrite Mass, Speed: $\approx 1.2 \times 10^7$ kg, 20 km/s Energy*: 400 - 500 kt Explosion Alt: ≈ 30 km

*Convert: 1 kt = 4.2×10^{12} J

Notes:

- Best IPP-track: Station: ARTU, PRN: 18
- sparse ground stations

Expectations:

- Large, easily observable acoustic signature
- Observe acoustic signature at ~14-18 min (@350 km).
- Observe gravity waves at some time later.

TEC signature details:

- modes:
 - periods: 11 min / 35 min

2

- velocities: $\approx 800 \text{ m/s} / < 50 \text{ m/s}$
- ΔTEC: 0.3 TECU / 0.8 TECU

UNCLASSIFIED

Forming a Bolide

21

22 BOLIDE

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

23 BOLIDE

Sample TOA Estimation: Two Acoustic Waves

Global Signatures after Chelyabinsk Bolide: Europe

Observation:Large scale waves over EuropeTEC wave details:Period:30 - 35 minSpeed:500 - 600 m/sDirection:-80° (azn)Wavelength: >1200 kmΔTEC:0.25 TECU

Likely source(s):

- Chelyabinsk (+2:10, 4500 km)

- sunrise (> 5:40 UTC)

Notes:

- Best observed with PRN 6
- Similar signature over US

Global Signatures after Chelyabinsk Bolide: Europe

Notes:

- Best observed with PRN 6
- Similar signature over US

[After Chelyabinsk Bolide] Europe ΔTEC Time Lapse, Date: 2/15/2013

Global Signatures after Chelyabinsk Bolide: US

UNCLASSIFIED

Global Signatures after Chelyabinsk Bolide: US

- Raw GPS-ΔTEC signature is same as the 2013 JPL paper.
- Large scale waves travel < 500 m/s near eastern US and speed up as they cross the continent.

TEC signature details: Period: 35 min

Speed: 500 - 600 m/s Direction: -80° (azn) Wavelength: 1200 km Δ TEC: 0.5 TECU

Likely sources:

- Tropospheric storms over the Great Lakes and Atlantic Ocean
- Probably not from Chelyabinsk.

UNCLASSIFIED

Global Signatures after Chelyabinsk Bolide: US

Observations:

- Raw GPS-ΔTEC signature is same as the 2013 JPL paper.
- Large scale waves travel < 500 m/s near eastern US and speed up as they cross the continent.

<u>TEC signature details</u>: Period: <u>35 min</u>

Speed: 500 - 600 m/sDirection: $-80^{\circ} (azn)$ Wavelength: 1200 km ΔTEC : 0.5 TECU

Likely sources:

- Tropospheric storms over the Great Lakes and Atlantic Ocean
- Probably not from Chelyabinsk.

UNCLASSIFIED

West TX Fertilizer Plant Explosion

Event Description:

Event Name: West TX Fertilizer Plant Explosion Event Date: 4/17/2013 (local) Event Time: 00:50:38 UTC (19:50:38 CDT) 31.82°N 97.09°W (West, TX) Event Loc: Ground Explosion Type: Seismic Mag: 2.1 ~10 tons of TNT Energy:

TEC signature details:

- Best IPP-track: Texas Stations/PRN 8 (+PRN 28)
- 9-10 minute delay to ionosphere
- Acoustic-range signature (4 min)

Difficulties:

- Background TEC wave producers:
 - 1.Tornados over Oklahoma (3 modes)
 - 2. Storm build-up over south Texas (3 modes)

Possible Explosive Acoustic Signature (4 min)

UNCLASSIFIED

Global Signatures after Chelyabinsk Bolide: US

Look Angle: Slanted Vertical Profiles

[Otsuka et al., 2013]

UNCLASSIFIED

San Antonio Bolide 2014

Event Description:[AMS Event #: 3032-2014]Event Date:11/09/2014Event Time:02:43 UTC (20:45 CST) - eveningEvent Location: $29.3^{\circ}N$, $99.3^{\circ}W$ [~San Antonio, TX]Bolide travel:West-SouthwestMeteor shower:2014 Leonids (early)Abs. magnitude:> -14Diameter, type: ≈ 1 m, [not recovered]Mass, speed: ≈ 1800 kg, > 16 km/sEnergy: ≈ 55 tons TNT (est.)Explosion alt: ≈ 20 km

TEC signature details:

- best IPP-track: PRN 31 (All Stations)
- periods: 12 min / 4 min
- velocity: ? m/s (at ??° azn), 800 m/s expected
- wavelength: 400 km
- ΔTEC: 0.04 TECU / 0.03 TECU

Notes:

- audible from ground (very loud near TX/MX border)
- evening background fluctuations
- possibly 2 events: ~15 min apart

Ground Sighting Map

• Los Alamos

37

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

San Antonio Bolide 2014

Event Description:[AMS Event #: 3032-2014]Event Date:11/09/2014Event Time:02:43 UTC (20:45 CST) - eveningEvent Location: $29.3^{\circ}N$, $99.3^{\circ}W$ [~San Antonio, TX]Bolide travel:West-SouthwestMeteor shower:2014 Leonids (early)Abs. magnitude:> -14Diameter, type: \approx 1 m, [not recovered]Mass, speed: \approx 1800 kg, > 16 km/sEnergy: \approx 55 tons TNT (est.)Explosion alt: \approx 20 km

TEC signature details:

- best IPP-track: PRN 31 (All Stations)
- periods: 12 min / 4 min
- velocity: ? m/s (at ??° azn), 800 m/s expected
- wavelength: 400 km
- ΔTEC: 0.04 TECU / 0.03 TECU

Notes:

- audible from ground (very loud near TX/MX border)
- evening background fluctuations
- possibly 2 events: ~15 min apart

20

-100

[Coverage San Antonio Bolide (2014)] Date: 2014-11-09, Station: txse [Lat,Lon: (29.59°,262.00°)], Prn: Available GPS

32

Lon [°E]

21

-95

22

18

-90

38

BOLIDE

31

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

24

4

11/09/2014, station: TXSM/PRN: 31

39 BOLIDE

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Loc: Texas San Antonio Bolide, Date: 11/09/2014, Time: 02:40:00 UTC 2-Dir Bandpass: T=10 min (25% window), order: 2, PRN: <u>32</u>

Loc: Texas San Antonio Bolide, Date: 11/09/2014, Time: 03:01:00 UTC 2-Dir Bandpass: T=10 min (25% window), order: 2, PRN: <u>32</u>

42

BOLIDE

Loc: Texas San Antonio Bolide, Date: 11/09/2014, Time: 03:01:00 UTC 2-Dir Bandpass: T=10 min (25% window), order: 2, PRN: <u>32</u>

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

43 BOLIDE

Event Description: AMS Event #: 588-2012Event date:4/22/2012Event time:14:51 UTC (7:51PDT) - morningEvent location: $37.6^{\circ}N 120.5^{\circ}W$, Marshall Gold Discovery
State Historical Park [Sutter's Mill]Bolide travel:WestwardMeteor shower:2012 LyridsAbs magnitude: ≈ -26 (reported)Diameter, type: ≈ 2.5 m, CM ChondriteMass, speed: $\approx 4 \text{ kt}$ Energy: $\approx 48 \text{ km}$

TEC signature details:

```
best PRN: 14 (All Stations)
periods: 4 min
velocity: 1600 m/s, at 100° (azn)
wavelength: 400 km
ΔTEC: 0.25 TECU
```

Major Difficulty:

Morning background acoustic (4-min) signature (south-easterly propagating waves from the ocean)

UNCLASSIFIED

44

45 BOLIDE

Event Description: AMS Event #: 588-2012

Event date:4/22/2012Event time:14:51 UTC (7:51PDT) - morningEvent location: $37.6^{\circ}N$ 120.5°W, Marshall Gold Discovery
State Historical Park [Sutter's Mill]Bolide travel:WestwardMeteor shower:2012 LyridsAbs magnitude: ≈ -26 (reported)Diameter, type: ≈ 2.5 m, CM ChondriteMass, speed: $\approx 4 \times 10^4 \text{kg}$, 28.6 km/sEnergy: $\approx 4 \text{ kt}$ Explosion Alt: $\approx 48 \text{ km}$

TEC signature details:

best PRN:	14 (All Stations)
periods:	4 min
velocity:	1600 m/s, at 100° (azn)
wavelength:	400 km
ΔTEC:	0.25 TECU

Major Difficulty:

Morning background acoustic (4-min) signature (south-easterly propagating waves from the ocean)

UNCLASSIFIED

Bandpass: N/A

Bandpass Amplitudes: T = 4.0 min (25%)

Summed Bandpass Amplitudes/num: T = 4.0 min (25%)

Bandpass: N/A

nos

NATIONAL LABORATORY

Sutter's Mill Bolide 2012

49

BOLIDE

Initial Science Results

Chelyabinsk Bolide (2/15/2013):

- Confirmed Local Chelyabinsk Signature in acoustic range.
- Still need to completely understand the double-acoustic/9-12 min signature.
- Large period gravity waves (30-35 min) observed globally are most likely associated with storms and not Chelyabinsk.
- Signature $\Delta TEC \sim .3$ TECU at a distance of 350 km (for 400 kt input)

Sutter's Mull Bolide (4/22/2012):

- 4-minute acoustic signature observed directly over event despite background noise.
- Signature: Amp ~ 0.25 TECU (BP Period: 4 min) at distance of 50 km (for 4.0 kt input).

San Antonio Bolide (11/09/2014):

- Observed cylindrical wave propagating outward from trail.
- Shock fronts appear to produce periods in the range of 9-12 minutes in the ionosphere.
- Signature ΔTEC ~ .01 TECU (BP Period: 10 min) at distance of 100 km (for .050 kt input).

Forward

51 BOLIDE

Progress:

- Generated analysis tools to improve ability to identify events in TEC data.
- Validated analysis tools on Japan earthquake event (2011).
- Began cataloguing example bolide and comparison signatures.
- Developed and improved models/explanations of observations.

Currently working on:

- Further improving SNR in TEC signals from bolide events.
- Examining more bolide cases.
- Examining published physics models for measurement limits with GPS-TEC.
- Paper #1: "Systematic Analysis Techniques for Studying Ionospheric Responses"

Future:

- Determine limits of sensitivity of detecting bolides using GPS-TEC.
- Paper #2: "Global Ionospheric Response to the Chelyabinsk Bolide (2013)"
- Paper #3: "Signature Comparison for Multiple Bolides"

UNCLASSIFIED

Questions?

52

BOLIDE

UNCLASSIFIED

GPS Ground Station Diagram

53

BOLIDE

Global Propagation: Station Coverage Comparison

54

Local Signatures: Chelyabinsk Bolide 2013

BOLIDE [Chelyabinsk Bolide, Date: 2/15/2013, Station: ARTU, PRN: 18]

Description:

Shows GPS coverage over Chelyabinsk Bolide Area. Best PRNs are 18 and 21.

[Coverage Chelyabinsk Bolide, Date: 2/15/2013, Station: ARTU]

Description:

Shows ranges of band dominance and Pulse-like behavior in Spectrum. Red/Blue: 1/0 (highest/lowest values)

Description:

Highest values for each BP, used to normalize spectral diagram.

.30

55

UNCLASSIFIED

Theoretical Considerations

[From Bowling, 2013: Sensing STS-125 Launch]

Figure 6. Ray tracing geometry for a single point source, in plane perpendicular to the shuttle trajectory. Black triangles show the projection of GPS stations onto this plane. The black dashed line shows the projection of the line of sight between a GPS station and satellite 12 onto this plane. The IPP and its projection onto the Earth's surface, or SIP, are indicated. Only the southern half of the modelled domain is shown. Solid black lines show rays produced by a source at 100 km altitude with takeoff angles above 31°. Rays with lower takeoff angles are trapped in the low-velocity channel between the mesopause and thermocline, or are reflected between the Earth's surface and the mesopause and are not shown here. Assuming a cylindrically spreading source, only \sim 23 per cent of the source energy reaches the altitude of maximum electron content (281 km here). Grey lines locate the acoustic wavefront at 5 min intervals.

UNCLASSIFIED

56

BOLIDE

Theoretical Considerations

[After Bowling, 2013: Sensing STS-125 Launch]

Study	Amplitude [TECU]	Velocity [m s ⁻¹]	Mission	Technique
Noble (1990)	N/A	628-735	STS-4	Incoherent Scatter Radar
Li et al. (1994)	0.0093-0.0703	600-700	STS-58, STS-60	VLBI
Calais and Minster. (1996)	0.039-0.25	862-894	STS-60	GPS
Afraimovich et al. (2002)	0.27-0.57	1529	STS-90, STS-95	GPS
This study	0.16-0.65	516-716	STS-125	GPS
Model	0.23-0.71	757	STS-125	GPS

Table 1. Comparison of different studies of acoustic waves produced by shuttle ascents.

57

BOLIDE

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

S-125 Launch]

Date	Detected Object	Latitude	Longitude	Country	Observations	Seismic Interpretation	References
1963	supersonic aircraft			California/Arizona/Utah, USA		acoustic: shock wave	McDonald and Goforth [1969]
19 Sep 1980 and 12 Oct 1982	missile silo explosion and supersonic aircraft			Kentucky/Tennessee, USA		acoustic: point	Johnston [1987]
1989/1991	space shuttle reentries			Southern California, USA	39	acoustic: shock wave	Kanamori et al. [1991, 1992]
8 Dec 1993 and 30 Jan 1992	supersonic aircraft and space shuttle Discovery			Southern California, USA	64+	acoustic: shock wave	Cates and Sturtevant [2002]
15 Jan 2006	NASA Stardust reentry	40.41°N	113.87°W	USA	2	acoustic: shock wave	ReVelle and Edwards [2007]
							and Edwards et al. [2007]

TABLE 1B. Seismic Detections of Man-Made Atmospheric Events

UNCLASSIFIED

59

BOLIDE

UNCLASSIFIED

[Figure. Bolide trajectory from Peter Jenniskens' final report]

UNCLASSIFIED

60

BOLIDE

Explosion Comparisons: West and Tianjin

61

Event: 2015 Explosion Tianjin, China

Time: ~23:30 CST (~15:30 UTC) onwards (fire < 14:50 UTC) Date: 12 August 2015 – present Venue: Port of Tianiin Binhai, Tianjin, China Location: Coordinates: 39.0389°N 117.7371°E Ground Explosion Type: Cause: Under investigation 114 (including 12+ firemen) Deaths 722 (including 58 severe injuries) Non-fatal injuries Missina: 70 (mostly firefighters)

1. ΔΤΕC: 0.3 TECU [PP], T~ 3 - 6 min @1330 UTC – coh >.6 2. ΔΤΕC: 0.6 TECU [PP], T~11 - 30 min @1530 UTC – coh ~.5 3. ['1st'] ΔΤΕC: 1.2 TECU [PP], T~16 - 30 min @1530 UTC – coh > .6

ΔTEC [meas]: Station=BJNM/PRN=15, at ~< 300 km Seizmic (est): 2.3; ?? Energy (est): 3; 20 tonnes (22.4 tons) TNT Cause: Fire + water + Sodium Cyanide, calcium carbide, 800 tonnes ammonium nitrate and 500 tonnes of potassium nitrate

Event: West Texas Fertilizer Explosion

Time: 7:50:38 p.m. CDT (UTC-05:00) Date: April 17, 2013 Location: West Fertilizer Co., 1471 Jerry Mashek Drive, West, Texas, United States Coordinates: 31.816°N 97.088°W Deaths 15 confirmed Non-fatal injuries: More than 160 Property damage: West Fertilizer Company building obliterated, 60–80 homes destroyed, 50–75 homes damaged, 50-unit apartment building destroyed West Middle School damaged

ΔTEC amplitude: 0.? TECU (Station=?/PRN=?) Seismic (est): 2.1 Energy (est): 7-10 tons TNT

Cause: Fire + 240 tons of ammonium nitrate + 50 t of anhydrous ammonia

*Note: Chelyabinsk Bolide (500 kt) demonstrated ΔTEC [PP] = 0.3 TECU [PP] @ 11 min, .8 TECU @ 35 min Measurement taken from Station=ARTU / PRN=18, at ~< 400 km. UNCLASSIFIED

Event Description:

Event Name:West TX Fertilizer Plant ExplosionEvent Date:4/17/2013 (local)Event Time:00:50:38 UTC (19:50:38 CDT)Event Loc:31.82°N 97.09°W (West, TX)Type:Ground ExplosionSeismic Mag:2.1Energy:~10 tons of TNT

TEC signature details:

- Best IPP-track: Texas Stations/PRN 8 (+PRN 28)
- ? 9-10 minute delay to ionosphere
- ? Acoustic-range signature

Difficulties:

- Background TEC wave producers:
 - 1.Tornados over Oklahoma (3 modes)
 - 2.Storm build-up over south Texas (3 modes)

[Photo posted online by MSNBC News]

UNCLASSIFIED

Event Description:

Event Name:West TX Fertilizer Plant ExplosionEvent Date:4/17/2013 (local)Event Time:00:50:38 UTC (19:50:38 CDT)Event Loc:31.82°N 97.09°W (West, TX)Type:Ground ExplosionSeismic Mag:2.1Energy:~10 tons of TNT

TEC signature details:

- Best IPP-track: Texas Stations/PRN 8 (+PRN 28)
- ? 9-10 minute delay to ionosphere
- ? Acoustic-range signature

Difficulties:

- Background TEC wave producers:
 - 1.Tornados over Oklahoma (3 modes)
 - 2.Storm build-up over south Texas (3 modes)

UNCLASSIFIED

Event Description:

Event Name:West TX Fertilizer Plant ExplosionEvent Date:4/17/2013 (local)Event Time:00:50:38 UTC (19:50:38 CDT)Event Loc:31.82°N 97.09°W (West, TX)Type:Ground ExplosionSeismic Mag:2.1Energy:~10 tons of TNT

TEC signature details:

- Best IPP-track: Texas Stations/PRN 8 (+PRN 28)
- ? 9-10 minute delay to ionosphere
- ? Acoustic-range signature

Difficulties:

- Background TEC wave producers:
 - 1.Tornados over Oklahoma (3 modes)
 - 2.Storm build-up over south Texas (3 modes)

UNCLASSIFIED

Event Description:

Event Name:West TX Fertilizer Plant ExplosionEvent Date:4/17/2013 (local)Event Time:00:50:38 UTC (19:50:38 CDT)Event Loc:31.82°N 97.09°W (West, TX)Type:Ground ExplosionSeismic Mag:2.1Energy:~10 tons of TNT

TEC signature details:

- Best IPP-track: Texas Stations/PRN 8 (+PRN 28)
- ? 9-10 minute delay to ionosphere
- ? Acoustic-range signature

Difficulties:

- Background TEC wave producers:
 - 1. Tornados over Oklahoma (3 modes)
 - 2.Storm build-up over south Texas (3 modes)

UNCLASSIFIED

Event Description:

Event Name:West TX Fertilizer Plant ExplosionEvent Date:4/17/2013 (local)Event Time:00:50:38 UTC (19:50:38 CDT)Event Loc:31.82°N 97.09°W (West, TX)Type:Ground ExplosionSeismic Mag:2.1Energy:~10 tons of TNT

TEC signature details:

- Best IPP-track: Texas Stations/PRN 8 (+PRN 28)
- ? 9-10 minute delay to ionosphere
- ? Acoustic-range signature

Difficulties:

- Background TEC wave producers:
 - 1.Tornados over Oklahoma (3 modes)
 - 2.Storm build-up over south Texas (3 modes)

UNCLASSIFIED

Event Description:

Event Name:West TX Fertilizer Plant ExplosionEvent Date:4/17/2013 (local)Event Time:00:50:38 UTC (19:50:38 CDT)Event Loc:31.82°N 97.09°W (West, TX)Type:Ground ExplosionSeismic Mag:2.1Energy:~10 tons of TNT

TEC signature details:

- Best IPP-track: Texas Stations/PRN 8 (+PRN 28)
- ? 9-10 minute delay to ionosphere
- ? Acoustic-range signature

Difficulties:

- Background TEC wave producers:
 - 1.Tornados over Oklahoma (3 modes)
 - 2.Storm build-up over south Texas (3 modes)

UNCLASSIFIED

Tianjin Explosion

Normalized Spectral Diagram Station = \dot{b} inm, PRN = 20

Event Description:

Event Name: **Tianjin Explosion** Event Date: 8/12/2015 Event Time: 15:30 UTC (23:30 CST) 39.04°N 117.74°E Event Loc: (near Binhai, Tianjin, China) Type: Ground Explosion Seismic Mag: 2.3 ~23 tons of TNT Energy:

TEC signature details:

- Best IPP-track: bjnm/PRN 20
- 9-10 minute delay to ionosphere
- Acoustic-range signature

Major Difficulty:

- Only 7 applicable ground stations submitted to IGS
- Not enough ground stations to make good direction calculation.

ButterworthBP wid@T 25%xT

68

BOLIDE

Ш

Response:

Amplitude 0.9

nvelope 0.6 0.5

0.8

0.7

0.4

0.3

0.2 0.1

0.0

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Tianjin Explosion

Event Description:Event Name:Tianjin ExplosionEvent Date:8/12/2015Event Time:15:30 UTC (23:30 CST)Event Loc:39.04°N 117.74°E(near Binhai, Tianjin, China)Type:Ground ExplosionSeismic Mag:2.3Energy:~23 tons of TNT

TEC signature details:

- Best IPP-track: bjnm/PRN 20
- 9-10 minute delay to ionosphere
- Acoustic-range signature

Major Difficulty:

- Only 7 applicable ground stations submitted to IGS
- Not enough ground stations to make good direction calculation.

nos

NATIONAL LABORATORY

EST. 1943

nos

NATIONAL LABORATORY

nos

NATIONAL LABORATORY

