
Statistical Projections for Multi-resolution, 
Multi-dimensional Visual Data Exploration and Analysis

Hoa Nguyen2, Daithi Stone1, and E. Wes Bethel1

1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA 
2 University of Utah, Salt Lake City, UT, USA

January, 2016



Acknowledgment

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing 
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This 
research used resources of the National Energy Research Scientific Computing Center, a DOE 
Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy 
under Contract No. DE-AC02-05CH11231.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government. 
While this document is believed to contain correct information, neither the United States Gov­
ernment nor any agency thereof, nor The Regents of the University of California, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal responsibility for the ac­
curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by its trade name, trademark, manufacturer, or other­
wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or The Regents of the University of California. 
The views and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof or The Regents of the University of California.



Statistical Projections for Multi-resolution, Multi-dimensional Visual Data
Exploration and Analysis

Hoa Nguyen* Daithi Stone1'
University of Utah Lawrence Berkeley National

Laboratory

E. Wes Bethel*
Lawrence Berkeley National 

Laboratory

Abstract

An ongoing challenge in visual exploration and analysis of large, 
multi-dimensional datasets is how to present useful, concise infor­
mation to a user for some specific visualization tasks. Typical ap­
proaches to this problem have proposed either reduced-resolution 
versions of data, or projections of data, or both. These approaches 
still have some limitations such as consuming high computation or 
suffering from errors. In this work, we explore the use of a statisti­
cal metric as the basis for both projections and reduced-resolution 
versions of data, with a particular focus on preserving one key trait 
in data, namely variation. We use two different case studies to ex­
plore this idea, one that uses a synthetic dataset, and another that 
uses a large ensemble collection produced by an atmospheric mod­
eling code to study long-term changes in global precipitation. The 
primary findings of our work are that in terms of preserving the 
variation signal inherent in data, that using a statistical measure 
more faithfully preserves this key characteristic across both multi­
dimensional projections and multi-resolution representations than a 
methodology based upon averaging.

Index Terms: G.3 [Statistics]: nonparametric statistics—
visualizing data variation,H.5.m [Information Systems]: Infor­
mation Interfaces and Presentation—miscellaneous: multi-variate, 
multi-resolution projection, I.6.6 [Computing Methodologies]: 
Simulation and Modeling—Simulation Output Analysis

1 Introduction

To facilitate knowledge discovery in the visual exploration and 
analysis of large, complex, multidimensional data, we examine the 
question of how to present meaningful information through a com­
bination of data projections and summarization. Specifically, we 
focus on the use of a statistical measure, Coefficient of Variation 
(or Cv), which reflects the amount of variation in data.

There are often instances of data exploration and analysis where 
understanding variation in data is of greater interest than the abso­
lute value of the data itself. For example, variability in the climate 
system consists primarily of transfers of energy, mass, and mois­
ture between locations, rather than variations in the total energy, 
mass, or moisture globally; hence, a metric sensitive to these trans­
fers could be a more informative descriptor of how the climate is 
varying through time than a metric that is insensitive to the trans­
fers. This variation information is also important to help climate 
scientists predict future weather patterns. Therefore, we propose a 
methodology that will help users identify the variation information 
in data quickly and with high accuracy.

We explore two interesting properties of Cv in this paper within 
the context of complex multidimensional visual data exploration 
and analysis. The first is how Cv can convey the useful signal in
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data-the amount of variation-at multiple scales, which makes it 
useful within the context of multiresolution representations of data. 
This property, the ability to preserve useful signal (variation), is 
quite useful in creating reduced-sized, more manageable represen­
tations of large data. The second is the use of Cv as the basis for 
performing projection-based data reduction, where different views 
of a dataset are the result of projection from a higher-dimensional to 
lower-dimensional space. Together, these two properties facilitate 
understanding of variation in complex, multidimensional data.

In summary, the main contributions of this work are:
• A methodology of using a statistical measure of variation, Cv, 

for the purpose of visually conveying variational signal within 
complex, multidimensional, multiresolution data to identify 
variation of data.

• A visual exploration tool that uses Cv as the basis for multi­
dimensional, multiresolution projections to help users quickly 
interact and efficiently perform visualization analysis tasks.

• Case studies that confirm our methodology provides more in­
sight and better accuracy than the current methods those based 
on data averaging.

2 Previous Work

The issue of how to reduce large-sized datasets to ones that are more 
manageable is a topic that has been studied in many different forms 
over the years, though primarily within the context of focusing on 
data values, rather than data variation.

For image-based data, Williams, 1983 [13] introduced the con­
cept of mip maps, which are multi-resolution forms of images. The 
process of constructing each successively coarser resolution of im­
age involves a process by which four pixels are ’’filtered,” or av­
eraged together, into a single pixel. This approach, and those like 
it that use pixel-averaging, produces coarse-resolution datasets that 
appear ’blurred”; in effect, the high frequency component of the 
underlying original signal is lost through the repeated averaging 
process.

Wavelet-based representations of data, such as the Discrete Haar 
Wavelet Transformation [4], represent data as a combination of base 
values (averages) and differences. This approach has proved useful 
for addressing several problems of large-data visualization, includ­
ing progressive data access and multi-resolution rendering (Clyne, 
2012 [3]). Visually, the difference between a rendering of full- 
and reduced-resolution version of data appears as a loss of high- 
frequency detail.

Conceptually, a reduced-resolution, wavelet-encoded dataset 
represents averages (and differences) of data samples. At coarser 
and coarser resolutions, the effect is similar as for mip-map repre­
sentations of images: the processing of averaging more and more 
data “washes out” the variational signal inherent in the underlying 
data. Hence, while methods that rely on computing data averages 
at multiple levels of resolution may be useful for representing data 
values, they are not promising for representing variation in data.

Other approaches for reducing the size multidimensional data 
center around the idea of projections. Simply stated, a projection 
is one that reduces a dataset from Rn dimensions to Rm dimen­
sions, where m < n. Some approaches, like orthogonal or arbi­



trary slice planes, are projections that are spatially constrained sub­
samplings of data. Other approaches, like Principal Component 
Analysis (PCA) [1] or Isomap [10], both examples of linear and 
non-linear dimension reduction, respectively, are essentially opti­
mizations aimed at discovering lower-dimensional embeddings of 
higher-dimensional data that take into account the underlying char­
acteristics of multidimensional data distributions. For example, 
PCA finds the projection that captures the most variance in data, but 
we are interested in different problems, namely presentation of vari­
ation and preserving variation across multiple scales. See Maaten et 
al., 2009 [11], for a comparative review of these methods. Whether 
or not methods like PCA or Isomap are useful when doing projec­
tions where the signal of interest is variation is an interesting one, 
but outside the scope of this paper.

In terms of visualizing variation in data, the box plot is a glyph- 
based method for displaying variation in data (Chambers, 1983 [2]). 
The box size reflects the distribution range in data in terms of quar- 
tiles, and the box glyph may include additional annotations to in­
dicate the location of the median, and box “whiskers” indicate the 
full range of data to help show outliers. Whitaker et al., 2013 [12] 
extended this idea to depict variation in data features. There is a 
long history of using traditional scalar color mapping techniques to 
depict variation in data, and Demir et al., 2014 [5] use that visual­
ization approach in conjunction with brushing and linking to enable 
visual exploration of variation in ensemble collections of simulation 
output. One limitation of box plots is they are useful for presenting 
a small number of samples. In contrast, with a single quantity, like 
Cv, we can show and perform operations, like visualization, projec­
tions, and multiresolution reductions, on entire fields.

Our approach for performing projections may be thought of 
as a hybrid of these two approaches. On the one hand, we use 
a subsetting-based approach, where a user can choose to project 
through one or more dimensions of a multi-variate dataset. For 
example, given a time-varying 3D structured dataset, a user could 
project across time, to produce a 3D dataset where each 3D value 
represents a projection across time. On the other hand, our ap­
proach is also like the subsampling method used by orthogonal 
or arbitrary slicing. But, rather than simply subsampling, or local 
weighted averaging (where a slice plane lies between grid points), 
we compute Cv during the projection across a subset of data to pro­
duce a single value that conveys variation within that subset.

3 Statistics Projection Methodology

We propose a method of data reduction by using statistical projec­
tions for multi-resolution or multi-dimensional data. Two statistical 
projections methods that reflect meaningful variation feature in data 
are standard deviation (a) and Coefficient of Variation (or Cv).

a is a statistic that indicates how tightly clustered all the various 
examples are around the mean in a set of data. When the examples 
are tightly bunched together and the bell-shaped curve is steep, a 
is small. When the examples are spread apart and the bell curve is 
relatively flat, that indicates a relatively large standard deviation.

a a«d C, = ? (1)y n — 1 x

In Eq. 1, n is the number of data points, and X is the mean, or 
average, of the set of n data points. Cv represents the ratio of a to 
X, and it is a useful statistic for comparing the degree of variation 
from one data series to another, even if the means are drastically 
different from each other.

The a and Cv (Eq. 1) quantities are related; the Cv is essentially 
a normalized form of a, which arguably makes it more useful in 
comparing the amount of variation in datasets where the range of 
data differs significantly.

Using the mean as the basis for multi-resolution reduction results 
in a ”washing out” of the signal we are interested in, namely varia­
tion. We could use a to show data variation. However a by itself is 
only somewhat informative since it represents variation in the orig­
inal data range, which may not be sufficient in understanding vari­
ation magnitude. Also, due to its property representing normalized 
variance, Cv is more useful in comparing variance across datasets 
having significantly different magnitudes.

4 Case Study

We applied our methods for two datesets, one is synthetic dataset 
and another is climate data.

4.1 Visualization for Synthetic Data: Multi-resolution 
Representation

To test the idea that use of a statistical measure like Cv is more ef­
fective at preserving variational signal across multi-resolution rep­
resentations of data when compared to a method that uses averag­
ing, we perform an evaluation using a synthetic dataset.

We created a synthetic 2D, f (u, v) dataset at 10242 resolution 
where we begin with a base function value, f = 0.5, and add vary­
ing amounts of Gaussian noise to that base value. The standard de­
viation of the Gaussian distribution ranges from low to high across 
columns of v, so that one edge of the data appears to have relatively 
little noise, while the other edge appears to have significantly more 
noise (see Fig. 1a).

Beginning with this 10242 dataset, we generate multiple 
reduced-resolution versions using two different approaches. In the 
first approach, we compute each successively smaller dataset using 
averaging, so that 2 x 2 windows of input data samples are averaged 
to produce 1 output data sample. As we reduce the dataset further 
and further in size via averaging, it becomes increasingly “washed 
out” (Fig. 1b) and is eventually unrecognizable (Fig. 1c).

In the second approach, we use a similar method of reducing 
an N x N window of input samples to 1 output sample, but com­
pute Cv over the input window rather than averaging. With this ap­
proach, the signature of variation in data is much better preserved 
across each successively smaller dataset. If we look at the vari­
ation across the original data, we see correspondence between the 
regions of high and low variation in the original data (Fig. 1a) and in 
Cv at 1282 resolution (Fig. 1d). This signal, the high and low vari­
ation, is much better preserved across the multi-resolution versions 
of the Cv dataset (Fig. 1e). We see that the variation signature is still 
present with the low-resolution Cv image (Fig. 1e) but is completely 
“washed out” in the low-resolution X image (Fig. 1c).

This experiment shows that the Cv does a much more effective 
job at preserving the variation signal in data across multiple res­
olutions compared to using averaging. Use of an alternate unary 
function, like maximum, would produce different results than aver­
aging, but would fail to represent the signal of variation inherent in 
the data. Similarly, boolean range queries, such as those forming 
the basis of query-driven visualization methods [9] would be inef­
fective in finding variation in data, as they focus on finding data 
that matches a given set of (compound) boolean criteria. The sig­
nal presented by variation is something that must be computed: it 
is not directly identifiable through unary operators nor compound 
range queries.

4.2 Visualization for Climate Data
Building upon the foundation in Sec. 4.1 that Cv is a better basis 
than averaging for preserving variational signal in data across mul­
tiple levels of resolution, we next explore extensions and applica­
tions of this idea to multi-dimensional data projections within the 
context of a climate data analysis problem and compare between 
visualization methods that used Cv.



(a) Original data: 10242 in size. (b) x, 1282, 8x reduction (c) x, 162, 64x reduction

(d) Cv, 1282, 8x reduction (e) Cv, 162, 64x reduction

Figure 1: Comparison of x and Cv across multiple levels of resolution in a synthetic dataset.

Precipitation is one of the more visible and influential aspects of 
the climate system for society and ecological systems, and thus is a 
frequent topic of analysis. It represents one branch of the planet’s 
hydrological cycle, wherein moisture evaporates over the ocean, is 
transported over ocean and land, precipitates out of the air, and then 
(if over land) returns to the ocean through rivers and groundwater.

Because precipitation amounts vary strongly across space (e.g. 
deserts versus rainforests) and sometimes across seasons, compar­
isons often require some form of normalization. A common way 
of doing this is by dividing by the mean, usually multiplying by 
100 to get a percentage deviation from the historical mean. For in­
stance, when generating gridded observational products of precip­
itation variations, point measurements at weather stations are con­
verted to fractional anomalies, which are then interpolated; after the 
interpolation the fractional anomalies are multiplied with a spatially 
interpolated field of mean precipitation. The Cv is closely related to 
the calculation of these fractional values.

For our study, we used precipitation data generated by using 
the CAM5.1 global atmospheric climate model [7] run at approxi­
mately 1° x 1° longitude-latitude resolution under observed bound­
ary conditions from the 1959-2014 period [6].

The model was run 50 times with different initial states, thus 
producing an ensemble of 50 realizations of how the weather might 
have evolved. While the large number of simulations is unusual, 
the generation of multiple simulations in this manner is a stan­
dard approach for characterizing uncertainty in the climate system. 
Here we examine monthly mean precipitation output on the model’s 
longitude-latitude grid.

To aid in study of this collection of climate model output, the 
visualization of statistics projections using mean X, and Cv are vi­
sualized in Fig. 2. Each visualization provides slightly a different 
visual representation. There are multiple tasks related to identi­

fying the amount of variation in data visually such as identifying 
variational signal in yearly precipitation across all places or across 
different places and across all simulation runs or across different 
simulation runs. To answer these questions, climate scientists can 
easily interact with our visualization tool to switch between differ­
ent views and find the best graph that represent this information 
most clearly.

One type of projection, a yearly projection, produces values for 
each year that convey either mean (Fig. 2a) or Cv (Fig. 2b) across 
all ensemble members and across all latitude/longitude grid points. 
We include a comparison with box plots to give a visual exam­
ple/comparison of a glyph-based method (box plot) as shown in 
Fig. 2e with a field-based method (Cv).

To facilitate deeper insight, we also show in this visualization the 
Oceanic Nino Index (ONI), which is a metric of the shift between 
El Nino (warm) and La Nina (cool) events in the tropical Pacific [8]. 
This phenomenon is a well-documented driver of year-to-year vari­
ability in climate worldwide, representing a major shift of winds 
around the globe and providing the primary basis for forecasting 
on seasonal time scales. Fig. 2a shows both mean and ONI, while 
Fig. 2b shows both Cv and ONI.

In the mean plot (Fig. 2a), there is little variation in the mean 
from year-to-year, with the main feature being a gradual long-term 
trend. Looking at the mean values from year to year, the major 
El Nino events of 1983 and 1998, as indicated by high ONI values, 
are not particularly remarkable in this figure. In contrast, looking at 
the Cv in Fig. 2b, these two events correspond to the two years with 
the highest Cv values; the correspondence does not seem to hold for 
more moderate El Nino events, however (e.g. 1972).

We now explore a different type of projection, namely a spatial 
projection, which produces values at each latitude/longitude point 
that convey either X (Fig. 2c) or Cv across all ensemble members and
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(a) x, per-year projection through all ensemble members across all (b) Cv, per-year projection through all ensemble members across all 
lat/lon locations from year 1959 to 2014. lat/lon locations from year 1959 to 2014

(c) x, lat/lon projection through all ensemble members across all years. (d) Cv, lat/lon projection through all ensemble members across all years.

1983 El Nino Event 1998 El Nino Event

(e) Box plots for precipitation from year 1980 to 1994

Figure 2: Comparison of x and Cv as the basis for multi-dimensional projections of precipitation in climate model output; comparison of field- 
and glyph-based (box plot) visualization methods.

across all years (Fig. 2d). The map of mean precipitation shows the 
band of rainfall that straddles the equator, known as the Intertropical 
Convergence Zone (ITCZ), along with the mid-latitude storm tracks 
that branch off from the ITCZ from the western sides of the major 
ocean basins; much less precipitation falls in higher latitude areas 
where the air is too cold to hold much water.

The map of Cv looks rather different. Generally it is highlight­
ing the deserts in the subtropical areas to the north and south of the 
ITCZ. The air that has dried through precipitation while rising in 
the ITCZ moves poleward and descends here, leading to hot and 
dry conditions. The low mean precipitation means that the denom­
inator of Cv is small, and the infrequent but substantial storms lead 
to a comparatively high numerator. The exception to this subtropi­
cal focus is the area with which Cv over the eastern tropical Pacific 
(i.e. against South America). Because the trade winds blowing 
from the east pull up cool water from the deep ocean here, the wa­
ter at the surface is usually quite cool, does not evaporate much, 
and thus does not provide much moisture for subsequent rainfall. 
However, during El Nino years the winds reverse and temperature

rises markedly, driving major thunderstorms.
The properties of the Cv map explain the behavior of the yearly 

bar plots of Cv in Fig. 2b. In essence it is acting as a combined index 
of the occurrence of El Nino events and of anomalous rainfall over 
subtropical regions. In contrast, the yearly bar plots of the mean 
are mostly reflecting activity in the ITCZ. While the mean reflects 
variations in rainfall where it is plentiful, application of a land filter 
to the global Cv (to mask out the El Nino aspect) means that Cv 
provides a metric of variations where precipitation is scarce. This 
has been achieved using the Cv without any parametric definition of 
what constitutes a subtropical desert.

5 Conclusion

In working with large, complex data, one key issue is how to effec­
tively produce smaller-sized representations in a way that convey 
useful information. We focus on preserving variation in data across 
multiple resolutions and multidimensional projections. We demon­
strate application of this approach on a synthetic dataset to show 
how Cv preserves variation across multiple data resolutions, and



apply it to climate model output in multidimensional projections to 
faciliate deeper insight in global precipitation changes. A primary 
observation from this work is that the statistical metric Cv preserves 
the variation signal, which is “washed out” when using averaging.

Due to the fact Cv is a normalized measure of variation, this ap­
proach appears to be useful as the basis for seeing and comparing 
variation across datasets having vastly different ranges and scales. 
There are many potential applications and uses of this technique, 
from physical to social sciences. This approach lends itself to use 
of field-based visualization and analysis methods; it is easily incor­
porated into existing visualization tools and methodologies.

Acknowledgements

This work was supported by the Director, Office of Science, Of­
fice of Advanced Scientific Computing Research, of the U.S. De­
partment of Energy under Contract No. DE-AC02-05CH11231, 
through the grant “Towards Exascale: High Performance Visual­
ization and Analytics,” program manager Dr. Lucy Nowell. This 
research used resources of the National Energy Research Scien­
tific Computing Center, a DOE Office of Science User Facility sup­
ported by the Office of Science of the U.S. Department of Energy 
under Contract No. DE-AC02-05CH11231. We thank Dmitriy Mo­
rozov for his insightful comments on a draft of this paper, Vincent 
E. Beckner for discussions concerning the idea of using Cv as the 
basis for visualizing variation in data.

References

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Sto- 
ica. Blinkdb: Queries with bounded errors and bounded response 
times on very large data. In Proceedings of the 8th ACM European 
Conference on Computer Systems, EuroSys ’13, pages 29-42, New 
York, NY, USA, 2013. ACM.

[2] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graph­
ical Methods for Data Analysis. Wadsworth, 1983.

[3] J. Clyne. Progressive Data Access for Regular Grids. In E. W. Bethel, 
H. Childs, and C. Hansen, editors, High Performance Visualization— 
Enabling Extreme-Scale Scientific Insight, Chapman & Hall, CRC 
Computational Science. CRC Press/Francis-Taylor Group, Boca Ra­
ton, FL, USA, Nov. 2012. http://www.crcpress.com/ 
product/isbn/97 8143 98 75 72 8, LBNL-6466E.

[4] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and 
Applied Mathematics, June 1992.

[5] I. Demir, C. Dick, and R. Westermann. Multi-charts for comparative 
3d ensemble visualization. IEEE TVCG, 20(12):2694-2703, 2014.

[6] C. Folland, D. Stone, C. Frederiksen, D. Karoly, and J. Kinter. The In­
ternational CLIVAR Climate of the 20th Century plus (C20C+). CLI- 
VAR Exchanges, 19:57-59, 2014.

[7] R. B. Neale, C. Chen, A. Gettelman, P. H. Lauritzen, S. Park, D. L. 
Williamson, A. J. Conley, R. Garcia, D. Kinnison, J. Lamarque, et al. 
Description of the NCAR community atmosphere model (CAM 5.0). 
NCAR Tech. Note NCAR/TN-486+ STR, 2010.

[8] G. G. W. Services. El Nino and La Nina Years and Intensities. 
http://ggweather.com/enso/oni.htm, last accessed De­
cember 2015.

[9] K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel. Query-Driven Vi­
sualization of Large Data Sets. In Proceedings of IEEE Visualization 
2005, pages 167-174. IEEE Computer Society Press, October 2005. 
LBNL-57511.

[10] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geo­
metric Framework for Nonlinear Dimensionality Reduction. Science, 
290:2319-2323, Dec. 2000.

[11] L. van der Maaten, E. Postma, and H. van den Herik. Dimensionality 
Reduction: A Comparative Review. Technical report, Tilburg Univer­
sity Technical Report, 2009. TiCC-TR 2009-005.

[12] R. T. Whitaker, M. Mirzargar, and R. M. Kirby. Contour Boxplots: 
A Method for Characterizing Uncertainty in Feature Sets from Simu­
lation Ensembles. IEEE Transactions on Graphics and Visualization, 
19(12):2713-2722, 2013.

[13] L. Williams. Pyramidal parametrics. In Proceedings of the 10th An­
nual Conference on Computer Graphics and Interactive Techniques, 
SIGGRAPH ’83, pages 1-11, New York, NY, USA, 1983. ACM.


