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DESCRIPTION OF MAP UNITS
[Station locations referenced on the map are included in the accompanying GIS 

database.]

INTRUSIVE ROCKS

Quartz vein (Permian?)—Quartz veins locally contain variable amounts of 
chlorite, ankerite, graphite, muscovite, magnetite, epidote, hematite, 
biotite, calcite, tourmaline, dolomite, sulfides, plagioclase, and alkali 
feldspar. Milky to smoky quartz veins are generally tabular and locally 
irregularly shaped, show sharp boundaries with the host rock, and locally 
contain blocky to elongate quartz crystals with euhedral terminations in 
vugs as much as several centimeters (cm) across along the median line. 
Strike and dip symbols show the location and orientation of 43 veins. 
Measured veins are as much as 0.3 meters (m) thick, dip steeply, and 
show variable strikes

ROCKS OF THE MERRIMACK ZONE

Intrusive Rocks

Chelmsford Granite (Late Devonian)—Light-gray to white, rusty tan- to 
white-weathering, medium- to coarse-grained, foliated biotite-muscovite- 
quartz-plagioclase-microcline monzogranite and granitic pegmatite. 
Contains trace amounts of chlorite, opaques, apatite, garnet, titanite, 
epidote/clinozoisite, saussurite, and zircon. Occurs as outcrop- and 
map-scale dikes that range from several centimeters thick to 
kilometer-scale intrusions. Contacts with the adjacent Paxton and 
Oakdale formations are not exposed, but xenoliths of the Paxton 
Formation granofels were observed on the southern ridge of Deadhorse 
Hill. Good exposures occur in Auburn at cuts along the Penn Central 
Railroad northwest of Dark Brook Reservoir and on the southern ridge of 
Deadhorse Hill. Previously mapped as “mqm” (“muscovite-biotite quartz 
monzonite”) by Barosh and others (1977) or as “Sagr” (“granite to 
tonalite”) of the Ayer Granite on the State map (Zen and others, 1983). 
Barosh (unpub. data, 1996) correlates the rock with the Eastford Gneiss 
of Pease (1972), and Barosh (2009) uses the informal name Eastford 
granite for this unit. Walsh and others (2013b) report a Late Devonian 
SHRIMP uranium-lead (U-Pb) zircon age of 375±3 Ma (mega-annum) 
from the Chelmsford Granite in northeastern Massachusetts, and Wintsch 
and others (2007) report a SHRIMP U-Pb zircon age of 379±4 Ma from 
the Eastford Gneiss in northeastern Connecticut. Walsh and others 
(2013a) report a preliminary SHRIMP U-Pb zircon age of 372±3 Ma 
from sample number WO–025 collected north of Dark Brook Reservoir

Granite at Kettle Brook (Devonian)—White to very light gray, tan- to 
white-weathering, medium- to coarse-grained, foliated garnet- 
tourmaline-quartz-plagioclase-microcline monzogranite and granitic 
pegmatite. Contains conspicuous black tourmaline crystals up to 2 cm 
long and small (≤3 millimeters (mm)) garnet porphyroblasts. Contains 
minor to trace amounts of muscovite and biotite, plus trace amounts of 
chlorite and apatite. Well exposed in Kettle Brook north of Stump Hill in 
Worcester where it contains xenoliths of the Paxton Formation. Also 
occurs as a foliation-parallel sill within the Paxton Formation at a cut on 
the Penn Central Railroad near the junction of Grand View Avenue in 
Worcester; there it is shown by a purple strike and dip symbol. Previously 
included within “Sagr” of the Ayer Granite on the State map by Zen and 
others (1983)

Granite at Prospect Hill (Devonian)—Light-gray, gray to locally tan and 
rusty weathering, medium- to coarse-grained, equigranular, moderately 
to weakly foliated quartz-plagioclase-microcline monzogranite with a few 
percent muscovite and biotite in approximately equal proportion. The 
rock is generally less foliated and more massive towards the northwest, 
farther from the Clinton-Newbury fault. Contains trace amounts of 
chlorite, opaques, apatite, and zircon. Exposed on the southern and 
eastern slopes of Prospect Hill in Auburn and Oxford. It is well exposed 
along the power line in the vicinity of the Oxford–Auburn town line. The 
rock is similar to, but less micaceous than, the Chelmsford Granite. 
Contacts with the adjacent Oakdale Formation to the northwest and the 
Granodiorite at Eddy Pond to the southeast are not exposed. On the 
northeastern slopes of Prospect Hill, the unit contains a gray, 
inequigranular biotite-quartz-plagioclase-microcline monzogranite 
(mapped as Dphk) with distinctive microcline megacrysts up to 3 cm 
long. The feldspar crystals are locally euhedral, but in most places are 
deformed into augen generally 1 to 2 cm long. Dphk contains about 13 
percent biotite and trace amounts of muscovite and chlorite. The contact 
between Dph and Dphk is not exposed, though nearby outcrops are 
within a few meters. Previously mapped as “Sagr” of the “Ayer Granite” 
on the State map by Zen and others (1983), informally as the Late 
Proterozoic Oxford quartz monzonite facies of the “Ayer Granite” by 
Barosh (unpub. data, 1996), or as “mqm” (“muscovite-biotite quartz 
monzonite”) by Barosh and others (1977). Walsh and others (2013a) 
report a preliminary SHRIMP U-Pb zircon age of 386±3 Ma from 
sample number WO–279 collected on the south side of Prospect Hill

Ayer Granodiorite (Silurian) (name revised by Walsh and others, 
2013b)—Light- to medium-gray, generally equigranular, fine- to 
medium-grained, well-foliated to mylonitic, biotite-K-feldspar-quartz- 
plagioclase granodiorite to monzogranite. Plagioclase is altered to 
saussurite, K-feldspar is altered to sericite, and biotite is altered to 
chlorite. Contains minor to trace amounts of fabric-forming muscovite. 
Contains trace amounts of chlorite, hornblende, epidote/clinozoisite, 
allanite, opaques, titanite, tourmaline, garnet, zircon, calcite and apatite. 
Kinematic analysis of mylonitic fabric (see mylonitic pattern on map and 
station 1034 in GIS database) north of Chimney Pond shows down-dip 
normal motion at garnet grade, above chlorite stability. Mylonitic 
foliation is defined mostly by syn-tectonic muscovite-biotite and quartz 
ribbons. Asymmetric fabrics include mica fish, feldspar porphyroclasts, 
oblique foliation, and C’-type shear bands. Locally contains distinctive 
dark-gray biotite schist (Sw xenoliths) and biotite tonalite to quartz diorite 
enclaves that occur as 1 to 30 cm long patches and lenses that are 
flattened in the plane of the foliation and elongated into down-dip rods 
parallel to the lineation. Contains small (≤1 cm) feldspar megacrysts at 
exposures on Interstate 395 (I-395) northbound, north of Chimney 
Pond. Well exposed on I-395 between Exits 5 and 6, near Eddy Pond 
and Chimney Pond. Exposures in the median of I-395, approximately 
400 m south of Cedar Street in Auburn, show that the granodiorite 
intruded the Worcester Formation (Sw) in a zone of abundant foliation- 
parallel dikes or sills, each of which is 10 to 20 cm thick; the location is 
shown on the map by a purple strike and dip symbol. Gore (1976) 
reports that the Clinton facies of the Ayer also intrudes the Worcester 
Formation. Previously mapped as “ape” (“early porphyritic quartz 
monzonite of the Ayer”) by Barosh and others (1977) or as “Sacgr” 
(“Clinton facies”) of the “Ayer Granite” on the State map by Zen and 
others (1983). The mapped rock is largely equigranular, however, it does 
not contain the large feldspar megacrysts that characterize the Clinton 
facies. Barosh (unpub. data, 1996) described the rock as the “Eddy 
Quartz Diorite Facies” for exposures near Eddy Pond. The unit is similar 

Dph

Sep

Dcgr

Dckg

Dphk

to the biotite granodiorite of the Devens-Long Pond facies of the Ayer 
Granodiorite in the Nashua South quadrangle (Walsh and others, 
2013b). Walsh and others (2013a) report a preliminary SHRIMP U-Pb 
zircon age of 424±3 Ma from sample number WO–117 collected on 
I-395

Metasedimentary Rocks

Worcester Formation (Silurian)

Phyllite and schist—Dark-gray to silvery gray, locally rusty weathering, 
carbonaceous quartz-muscovite phyllite or schist. Bedding that is locally 
graded is difficult to discern, but is characterized by light-gray, locally tan 
weathering, cm-scale sandy laminations and metasiltstone or 
metasandstone beds as much as 5 cm thick. Limited topping data from 
graded beds suggest that the Worcester Formation is stratigraphically 
above the Oakdale Formation. The unit varies northwest to southeast 
from chlorite grade in the northwest to staurolite grade in the southeast. 
The contact with the Boylston Schist is not exposed. The contact with 
the Oakdale Formation is exposed at one place in the outflow channel of 
the Blackstone River flood control tunnel; there it is sharp and marked by 
a quartzite (Swq). In the chlorite zone, the metapelite is a chlorite- 
muscovite-quartz phyllite with trace amounts of tourmaline, graphite, 
ilmenite, sulfides, plagioclase, epidote/clinozoisite, and apatite. In the 
biotite zone, the metapelite is a biotite-chlorite-quartz-muscovite phyllite 
with trace amounts of tourmaline, graphite, ilmenite, sulfides, 
plagioclase, epidote/clinozoisite, and apatite. In the garnet zone, the 
metapelite is a garnet-chlorite-biotite-quartz-muscovite phyllite to schist 
with trace amounts of tourmaline, graphite, ilmenite, sulfides, 
plagioclase, epidote/clinozoisite, and apatite. In the staurolite zone, the 
metapelite is a plagioclase-staurolite-garnet-biotite-quartz-muscovite 
schist with trace amounts of chlorite, tourmaline, graphite, ilmenite, 
hematite, sulfides, epidote/clinozoisite, zircon, and apatite. The unit 
contains calc-silicate rock mapped as Swhb

Calc-silicate granofels—Gray to light-gray, zoisite-clinozoisite/epidote- 
diopside-plagioclase-hornblende/tremolite-quartz granofels with 
distinctive light- to dark-green amphibole porphyroblasts. Exposed in 
Auburn along the west side of Pakachoag Street near the intersection of 
Burnap Street and Bancroft Street. Contacts with the surrounding schist 
are not exposed. Mapped as a hornblende quartz diorite gneiss by Grew 
(1970)

Quartzite—Light-gray to white, tan-weathering, massive vitreous quartzite 
interlayered with gray plagioclase-staurolite-garnet-biotite-quartz- 
muscovite schist. This unit is approximately 8 m thick. Contact with the 
underlying Oakdale Formation is sharp where exposed in the outflow 
channel of the Blackstone River flood control tunnel. May be correlative 
with the Tower Hill Quartzite (Grew, 1970; Goldsmith and others, 1982; 
Markwort, 2007)

Oakdale Formation (Silurian)—Interbedded gray, very light gray, 
purplish-gray, and purplish-green, locally rusty weathering, biotite- 
plagioclase-quartz granofels and lesser (≤25 percent) gray to dark-gray 
and purplish-gray plagioclase-chlorite-biotite-muscovite-quartz schist to 
phyllite. Rocks are locally calcareous, carbonaceous, or sulfidic. 
Granofels contains minor amounts of muscovite, chlorite, and carbonate, 
and trace amounts of actinolite/tremolite, epidote/clinozoisite, apatite, 
opaques (including sulfides and graphite), ilmenite, titanite, tourmaline, 
and zircon. Locally contains light-gray to purplish-gray or very pale green 
calc-silicate rock consisting of epidote/clinozoisite-actinolite/tremolite- 
biotite-plagioclase-quartz granofels containing mostly (>90 percent) 
plagioclase and quartz. Actinolite/tremolite crystals occur as tiny (>0.3 
mm) grains generally aligned in the plane of the dominant foliation. 
Calc-silicate rock contains trace amounts of sphene, carbonates, zircon, 
opaques including sulfides, and apatite. Pelitic rocks contain abundant 
quartz veins with ankerite, dolomite, calcite, chlorite, lesser sulfides, 
tourmaline, and plagioclase. The contact with the Worcester Formation 
is exposed at one place in the outflow channel of the Blackstone River 
flood control tunnel (see description of units Sw and Swq above). In 
general the unit is poorly exposed, but roadcuts in Auburn at the 
following three locations provide excellent exposure: (1) the junction of 
I-290, I-395, and U.S. Route 20, (2) the I-90 exit 10 interchange, and (3) 
Water Street between I-290 and Route 12

Paxton Formation (Silurian)—Gray, locally rusty weathering, slabby, 
biotite-quartz-plagioclase granofels with trace amounts of epidote/ 
clinozoisite, actinolite, tourmaline, opaques (including sulfides and 
graphite), apatite, sphene, and zircon. Locally a calc-silicate granofels, 
consisting largely of biotite, quartz, and plagioclase with a few percent 
actinolite and epidote/clinozoisite, and trace amounts of apatite, sphene, 
and zoisite. The Paxton Formation contains dikes and sills of granite and 
pegmatite estimated to be about 10 to 20 percent of the unit (Barosh and 
Moore, 1988). The unit is lithologically similar to the Oakdale Formation, 
but lacks appreciable metapelite. The presence of granitoid rocks and the 
lack of carbonate indicate that it experienced a somewhat higher grade 
of metamorphism. This belt of rocks is considered the Paxton Group by 
Barosh and others (1977) or the Dudley Formation in the lower part of 
the Paxton Group by Barosh and Moore (1988) and Pease (1989). Here 
we use the name “Paxton Formation” for continuity with the statewide 
map (Zen and others, 1983; Robinson and Goldsmith, 1991). Robinson 
and Goldsmith (1991) noted a similarity between the Paxton Formation 
and the lower-grade Oakdale Formation. Grew (1970) mapped the 
Oakdale and the Paxton together as the Oakdale Formation, and showed 
higher grade rocks in the western part of the Worcester North 
quadrangle that we could not confirm in the Worcester South quadrangle 
because rocks with the appropriate bulk composition were not found. All 
thin sections from the two formations yielded essentially the same 
assemblage (±actinolite-biotite-quartz-plagioclase). The contact between 
the Paxton and Oakdale formations is either not exposed or is occupied 
by the Chelmsford Granite. The Paxton Formation is not well exposed, 
but representative outcrops occur in Kettle Brook between the elevations 
of 550–570 feet and in Lynde Brook between the elevations of 730–760 
feet

Boylston Schist—(Silurian to Ordovician?)

Schist and granofels—Gray, medium-grained, rusty weathering, staurolite- 
biotite-garnet-chlorite-plagioclase-quartz-muscovite schist and granofels 
with undifferentiated boudins and layers of gray to light-gray, 
equigranular muscovite-biotite-chlorite-quartz-plagioclase granodioritic to 
tonalitic granofels to gneiss. The unit is interpreted as a metasedimentary 
rock consisting of interlayered metapelite (schist) and metapsammite 
(granofels) with intrusive layers, sills, and boudins of metamorphosed 
igneous rock. Igneous rock layers and boudins range in thickness from 
about 10 cm to 2 m. Metasedimentary rocks contain trace amounts of 
opaques (includes sulfides), epidote/clinozoisite, and zircon. Metaigneous 
rock contains trace amounts of opaques, epidote/clinozoisite, alkali 
feldspar, muscovite, and zircon. Retrograded staurolite, identified only in 
thin sections of schist, occurs as granular aggregates in sericite clots. 
Schist contains conspicuous garnet porphyroblasts, as much as 5 mm 
across. Biotite and garnet are retrograded to chlorite. Plagioclase occurs 

as deformed and recrystallized porphyroblasts in the metasedimentary 
rocks. The metamorphosed igneous rock exhibits a holocrystalline 
texture of quartz, feldspar, and biotite that experienced grain-size 
reduction and recrystallization during metamorphism. Rare small quartz 
and feldspar porphyroclasts, as much as 5 mm across, may be relict 
phenocrysts in the igneous rock. The igneous rock contains small dark- 
gray to black pods, as much as 10 cm across, of quartz-plagioclase- 
biotite-chlorite granofels that may be altered xenoliths. The unit occurs 
between the Nashoba Formation (S�n) and the coticule-bearing Boylston 
Schist (SOboc) in the northeastern part of the map, and is exposed only 
along the power line northeast of the junction of Providence Street 
(Route 122A) and Route 146 in Worcester. The unit may be correlative 
with the Tadmuck Brook Schist (Barosh, 1976; Goldsmith and others, 
1982), and the informally named “Science Park unit” (Hepburn, 1976). 
The metamorphic assemblage in the schist and the presence of similar 
igneous rocks resembles the schist mapped as Worcester Formation (Sw) 
west of the Wekepeke fault in the southwest part of the map. Our belt of 
Boylston Schist may also be correlative with the staurolite-grade rocks of 
the Worcester Formation. Grew (1970) considered both this belt of rock 
(SObo and SOboc) and the entire belt mapped by us (as the Worcester 
Formation (Sw)), as parts of the Boylston Schist, but we restrict the usage 
of the name “Boylston Schist” to the limited occurrence of this belt of 
rocks east of Providence Street based on usage shown on the State map 
by Zen and others (1983). Additional work is needed to more accurately 
characterize this belt of rocks to the northeast, and to determine the 
validity of the name “Boylston Schist.” Robinson and Goldsmith (1991) 
and Goldsmith (1991) suggested that the higher grade (sillimanite) of the 
Boylston Schist at its type locality (Emerson, 1917) supported a 
correlation with the Nashoba Formation. In Boylston, Hepburn (1978) 
and Markwort (2007) mapped the Boylston Schist as a sillimanite-grade 
fault-bounded slice on the east side of the Merrimack terrane

Schist and coticule—Silvery gray to dark-gray, medium-grained, rusty 
weathering, biotite-garnet-chlorite-plagioclase-quartz-muscovite schist 
and granofels with distinctive boudins and layers of pink coticule to 
garnetiferous feldspathic quartzite. Coticule occurs as very fine grained, 
disarticulated, discontinuous, contorted, ribbony magnetite-quartz-garnet 
rock. Schist contains trace amounts of graphite, hematite, tourmaline, 
opaques (includes sulfides), epidote/clinozoisite, and zircon. Schist 
contains conspicuous garnet porphyroblasts, as much as 5 mm across. 
Biotite and garnet are retrograded to chlorite. The unit occurs between 
the Boylston Schist (SObo) and the Worcester Formation (Sw) in the 
northeastern part of the map, and is correlative with the informally 
named “Science Park unit” of Hepburn (1976) in the Worcester North 
quadrangle or the “Sts” phyllite member of the Tower Hill Quartzite 
(Hepburn, 1978). The unit is exposed only along the power line 
northeast of the junction of Providence Street (Route 122A) and Route 
146 in Worcester

ROCKS OF THE NASHOBA ZONE

Intrusive Rocks

Tonalite gneiss (Mississippian)—Gray, light-gray-weathering, weakly 
foliated, homogeneous, equigranular muscovite-biotite-quartz-plagioclase 
tonalitic granofels to gneiss within the Nashoba Formation. Contains 
trace amounts of alkali feldspar, chlorite, epidote/clinozoisite, opaques 
(including magnetite), garnet, sphene, apatite, and chlorite. Alkali 
feldspar is altered to sericite. The unit is characterized by a lack of 
leucosomes or alkali feldspar porphyroblasts typically found in the 
adjacent metasedimentary rocks. It occurs as thin sill-like bodies aligned 
in the plane of the dominant S2 foliation. Mapped in the Nashoba 
Formation where it occurs as approximately 1- to 2-m-thick layers in the 
vicinity of Greenwood Street, south-southeast of Quinsigamond Village 
(stations 1602 and 1596), and on I-395 (station 1125) in Worcester; the 
thickness of the unit is exaggerated on the map to show the locations. 
Other smaller unmapped bodies occur within the Nashoba Formation at 
stations 1082, 1110, and 1392. Walsh and others (2013a) report a 
preliminary SHRIMP U-Pb zircon age of 323±3 Ma from a 1.2-m-thick 
tonalite (sample number WO–125) on I-395, about 400 m south of Dana 
Road in Oxford

Pegmatite dike (Permian?) or sill (Mississippian to Ordovician)—Pink 
and white to white, white-weathering, coarse-grained, unfoliated, steeply 
dipping, tabular, muscovite granitic pegmatite dikes and foliated to 
weakly foliated syntectonic granitic pegmatite sills in the Nashoba and 
Marlboro Formations. Red strike and dip symbols on the map show the 
location and orientation of pegmatite dikes and sills. Symbols represent 
15 measured dikes as much as 0.25 m thick or 22 sills as much as several 
meters thick. Fifteen measured tabular dikes postdate the foliation and 
show a preferred strike to the northwest. Pegmatite sills in the Nashoba 
Formation occur in the plane of the foliation. Other smaller syntectonic 
pegmatite sills occur throughout the Nashoba Formation but were not 
mapped separately. Large pegmatite bodies are mapped as OMp. A 
Permian age for the pegmatite dikes is inferred from regional correlations 
with similar dikes in Connecticut and Rhode Island in the Avalon zone 
(Zartman and Hermes, 1987; Wintsch and Aleinikoff, 1987; Zartman 
and others, 1988; Walsh and others, 2007). An age range of Ordovician 
to Mississippian is reported for the sills in the Nashoba Formation 
(Zartman and Naylor, 1984; Hepburn and others, 1995; Hepburn and 
Bailey, 1998; Acaster and Bickford, 1999). Walsh and others (2013a) 
report a preliminary SHRIMP U-Pb zircon age of 326±3 Ma from sample 
number WO–125 on I-395, about 400 m south of Dana Road in Oxford

Biotite granitoid (Mississippian to Ordovician)—Pinkish-gray to 
light-gray, white-weathering, medium-grained, well-foliated, garnet- 
muscovite-chlorite-biotite-quartz-feldspar granitic to tonalitic sills and 
lesser dikes in the Nashoba Formation. Garnet is retrograded largely to 
chlorite and quartz. Feldspar consists mainly of recrystallized plagioclase 
and lesser sericitized alkali feldspar. Locally the unit contains muscovite 
porphyroblasts up to 2 cm across and also contains trace amounts of 
epidote and opaque minerals. Purple strike and dip symbols show the 
location and orientation of 3 dikes and 8 sills; includes one symbol in Sp 
which is correlated with a dike of Dckb. Symbols represent measured sills 
or dikes as much as 3 m thick. Sills occur in the plane of the foliation. 
Other smaller syntectonic granitic rocks occur throughout the Nashoba 
Formation but were not mapped separately; large granitic bodies are 
mapped as Omg in the northeastern part of the map. An Ordovician to 
Mississippian age range has been reported for the sills in the Nashoba 
Formation (Zartman and Naylor, 1984; Hepburn and others, 1995; 
Hepburn and Bailey, 1998; Acaster and Bickford, 1999)

Nashoba Formation (Silurian to Cambrian)

Migmatitic gray schist to gneiss—Gray, medium- to coarse-grained, well- 
foliated, migmatitic, biotite-plagioclase-quartz-muscovite gneiss to 
muscovite-alkali-feldspar-plagioclase-quartz-biotite schist with distinctive 
foliation-parallel leucosomes and alkali feldspar porphyroblasts. 
Leucosomes locally contain muscovite porphyroblasts up to 2 cm across. 
May contain accessory chlorite, monazite, epidote/clinozoisite, apatite, 
hematite, and opaques including magnetite. Locally contains garnet and 
sillimanite visible in hand sample and staurolite or kyanite identified in 
thin section. Sericite, chlorite, and epidote/clinozoisite are retrograde 
products of biotite, garnet, sillimanite, staurolite, kyanite, plagioclase, 
and alkali feldspar. Locally the unit also contains unmapped boudins of 
dark-gray quartz-muscovite-biotite schist, amphibolite, and calc-silicate 
rock. Additionally the unit contains: (1) unmapped layers of gray 
epidote/clinozoisite-muscovite-biotite-feldspar-quartz gneiss, which may 
either be paragneiss or orthogneiss similar to tonalite gneiss unit (Mt); (2) 
amphibolite mapped as S�na; (3) calc-silicate rock mapped as S�ncs; 
(4) local garnetiferous schist that was mapped separately as S�ng where 
possible; and (5) migmatitic sulfidic schist (S�ns) mapped separately. 
The dominant foliation is locally mylonitic and characterized by extensive 
quartz ribbons, sericite-biotite-sillimanite±magnetite layers, and quartz- 
feldspar leucosomes. Sillimanite and K-feldspar assemblages show 
retrogression as sericite alteration of K-feldspar and minor alteration of 
sillimanite in sillimanite-magnetite bands surrounded by sericite. 
Distinctive porphyroblasts of plagioclase and lesser alkali feldspar are 
pre- to syntectonic, and as much as several centimeters across. 
Retrograde greenschist facies assemblages with abundant muscovite, 
biotite, and minor chlorite overprint amphibolite facies assemblages 
along the west side of the formation along the Clinton-Newbury fault. 
Contacts with the amphibolite unit (S�na) are sharp, but gradational with 
the sulfidic schist (S�ns) by intercalation over a few meters. Good 
exposures occur in roadcuts along the Massachusetts Turnpike, Route 
146, and Route 20. The age of the Nashoba Formation is interpreted as 
Cambrian to Silurian (Hepburn and others, 1995; Hepburn, 2004; 
Wintsch and others, 2007; Loan and others, 2011)

Migmatitic sulfidic schist—Dark-gray, medium-grained, rusty weathering, 
well-foliated, sillimanite-alkali feldspar-muscovite-plagioclase-biotite-quartz 
schist and staurolite-garnet-quartz-biotite-muscovite schist. Contains 
accessory graphite, sulfides, ilmenite and hematite. Sericite and larger 
flakes of muscovite occur around alkali feldspar. The larger flakes of 
muscovite also occur both along and across the foliation. Sillimanite and 
alkali feldspar show retrogression to sericite. Biotite locally shows 
retrogression to chlorite. Contains amphibolite mapped as S�na. 
Plagioclase and lesser alkali feldspar porphyroblasts are pre- to 
syntectonic, and as much as 1 cm across. Staurolite occurs as 
microscopic unaltered, euhedral porphyroblasts. Typical exposures occur 
along the powerline west of Dorothy Road in Millbury and north of Town 
Farm Pond in Sutton

Undifferentiated amphibolite and calc-silicate—Dark-green to black, rusty 
weathering, well-foliated, fine- to medium-grained, plagioclase- 
hornblende amphibolite gneiss and lesser well-layered calc-silicate gneiss. 

Amphibolite contains accessory sphene and quartz, and trace pyrite, 
chalcopyrite, magnetite, epidote/clinozoisite, and apatite. Calc-silicate 
gneiss is dark- to light-gray or dark-green, well-foliated, locally sulfidic, 
fine- to medium-grained, diopside-sphene-biotite-chlorite-actinolite- 
quartz-hornblende-plagioclase rock. Occurs as boudins and disarticulated 
layers less than a few meters across and is locally coarse-grained. Weakly 
foliated to non-foliated varieties may be intrusive metagabbroic dikes or 
sills. The size of the unit is exaggerated on the map to show outcrop 
locations. Good exposures occur in roadcuts in Millbury along the 
Massachusetts Turnpike (I-90) north and northwest of Dorothy Pond 
(stations 1383 and 1386) and on Route 146 east of Bramanville (station 
1194). The biotite-plagioclase-quartz-hornblende calc-silicate observed 
on I-90 northwest of Dorothy Pond contains abundant disarticulated 
quartz veins (station 1386)

Calc-silicate rock—Light-gray to gray, white- to tan-weathering, poorly 
foliated calc-silicate rock consisting largely of plagioclase-biotite- 
hornblende-quartz granofels. Contains minor amounts of diopside, 
epidote/clinozoisite, apatite, sphene, tremolite, chlorite, and opaques. 
Occurs in Millbury as a single layer a few meters across in a roadcut on 
the Massachusetts Turnpike (station 2078). Thickness is exaggerated on 
the map to show outcrop locations

Garnetiferous schist—Dark-gray, medium- to coarse-grained, locally rusty 
weathering, migmatitic, moderately foliated, kyanite-sillimanite-garnet- 
quartz-muscovite-biotite schist (eastern belt) or plagioclase-quartz- 
magnetite±staurolite±kyanite-garnet-biotite schist (western belt) with 
distinctive abundant garnet porphyroblasts. Locally a gneiss or a 
granofels. Contains minor amounts of plagioclase, K-feldspar, and 
magnetite and trace amounts of monazite, sericite, ilmenite, and zircon. 
Biotite defines the foliation and occurs as post-tectonic porphyroblasts 
across the foliation. Sillimanite, if present, occurs as fibrolite in the plane 
of the foliation. Microscopic kyanite (<1 mm), and mesoscopic garnet 
(<1 cm) and K-feldspar (<1 cm) occur as retrograded porphyroblasts. The 
foliation is defined largely by muscovite, biotite, quartz, and minor 
fibrolite. The three discontinuous along-strike units in the western belt in 
Worcester (in the northeastern part of the quadrangle) are retrograded; 
sillimanite or K-feldspar was not observed, but rather samples contain the 
lower-grade assemblages staurolite-kyanite-garnet (station 1225) or 
garnet-muscovite-chlorite (station 1044). Contacts with the surrounding 
map unit (S�n) are sharp. The unit is well exposed in Millbury on Route 
146, east of Bramanville (station 1195, eastern belt), and on Route 20 
near the Millbury-Worcester town line (station 1225, western belt)

Cambrian Intrusive Rocks

Grafton Gneiss (Cambrian)—Light-gray to light-pink, medium-grained, 
well-foliated, chlorite-biotite-quartz-plagioclase-alkali feldspar granite 
gneiss. Contains secondary accessory sericite, epidote/clinozoisite, 
sphene, apatite, and magnetite. Relict allotriomorphic texture of 
intergrown quartz and 1.5 mm feldspar grains shows grain-size reduction 
along crystal boundaries. The foliation is defined by recrystallized quartz 
and feldspar and aligned biotite. Plagioclase shows relict polysynthetic 
twinning, local myrmekitic texture, and significant saussuritization and 
sericitization in a microcrystalline sieve texture. Alkali feldspar shows 
relict braided albite exsolution lamellae and mesoperthitic texture, and 
sericitization. Biotite, 2 to 5 percent of the rock, shows static 
retrogression to chlorite. Locally a dark- to medium-gray variety of gneiss 
contains 5 to 10 percent biotite. The interior of the rock body contains a 
somewhat heterogeneous distribution of biotite- and alkali feldspar-rich 
layers, but is relatively more homogeneous than the margins, which 
appear migmatitic and are characterized by abundant foliation-parallel 
granitic layers injected into the Marlboro Formation. The unit locally 
contains amphibolite xenoliths derived from the Marlboro Formation. 
The unit is exposed only on the slopes east of Freeland Hill and west of 
Cedar Swamp in Sutton and correlated with similar rocks in the adjacent 
Grafton quadrangle where it yielded a Cambrian SHRIMP U-Pb zircon 
age of 515±4 Ma (Walsh and others, 2011a)

Lower Paleozoic Metasedimentary and Metavolcanic Rocks

Marlboro Formation (Cambrian)

Amphibolite gneiss and layered gneiss—Dark-green to black, rusty 
weathering, well-foliated, fine- to medium-grained, plagioclase- 
hornblende amphibolite gneiss containing banded dark-gray and light- 
gray well-layered felsic gneiss and lesser calc-silicate gneiss. Amphibolite 
gneiss contains accessory sphene and quartz and trace pyrite, 
chalcopyrite, magnetite, epidote/clinozoisite, and apatite. The layered 
gneiss consists of alternating bands of dark amphibolite gneiss and biotite 
amphibolite gneiss with lighter biotite granite gneiss, foliated pegmatite, 
and minor dioritic gneiss and calc-silicate gneiss. The layered gneiss (with 
injected granitic material) is migmatitic along the contact with the Grafton 
Gneiss (�gg) and younger pegmatite (OMp). The dioritic gneiss is 
dark-gray, medium- to coarse-grained, weakly to moderately foliated. 
The calc-silicate gneiss is gray to light-gray, well-foliated, locally sulfidic, 
fine- to medium-grained, biotite-chlorite-actinolite-quartz-hornblende- 
plagioclase rock. The age is Cambrian or older on the basis of the age of 
the Grafton Gneiss which intrudes it and the age of the interlayered 
Cambrian granofels (�mg). The unit is poorly exposed throughout the 
quadrangle, but locally well-exposed at the outfall of Town Farm Pond 
and west of Cedar Swamp on Freeland Hill in Sutton

Granofels—Gray, fine- to medium-grained, massive to poorly layered, 
slabby and blocky weathering, biotite-quartz-feldspar granofels with 
light-colored quartz and feldspar porphyroclasts up to 0.5 cm. Individual 
granofels layers, interpreted as beds, are 10 to 50 cm thick. Contains 
thin layers of amphibolite that resemble rocks elsewhere in the Marlboro 
Formation. The unit is approximately 20 to 40 m thick. Granofels 
consists of approximately 40 to 50 percent feldspar (most of which is 
plagioclase), 40 to 45 percent quartz, 3 to 10 percent biotite, 1 to 3 
percent epidote/clinozoisite, and trace to 1 percent magnetite, sphene, 
hematite, apatite, and tourmaline. The unit is correlated with a similar 
granofels in the adjacent Grafton quadrangle (Walsh and others, 2011a) 
and interpreted as a metawacke, perhaps of volcaniclastic origin. 
Contacts with the enclosing amphibolite gneiss and layered gneiss (�m) 
are not exposed, but contacts with cross-cutting pegmatite (OMp) are 
sharp. Occurs as a single map unit, structurally above the Grafton Gneiss 
(�gg), on Freeland Hill west of Cedar Swamp in Sutton. From a sample 
in the adjacent Grafton quadrangle, Walsh and others (2011b) report a 
preliminary SHRIMP U-Pb zircon age of 501±3 Ma from oscillatory 
zoned cores in complex zircons; suggesting that part of the Marlboro 
Formation is younger than the Grafton Gneiss

ROCKS OF THE AVALON ZONE

Intrusive Rocks

Hope Valley Alaskite Gneiss (Neoproterozoic)—Light-pink, tan to rusty 
or light-gray- to white-weathering, fine- to medium-grained, equigranular, 
well-foliated, plagioclase-quartz-alkali feldspar alkali granite to monzo- 
granite gneiss. Contains approximately up to 25 percent plagioclase, 30 
to 40 percent quartz, 30 to 40 percent alkali feldspar, and either trace to 
no biotite (Zhv) or trace to 3 percent biotite (Zhvb). Zhvb contains up to 
3 percent chlorite from retrograded biotite. Contains up to 5 percent 
fabric-forming muscovite, up to 1 percent magnetite, and accessory 
garnet, apatite, and epidote-clinozoisite. Recrystallized quartz and 
feldspar define a faintly visible mineral aggregate lineation. Contacts 
were not observed in the map area, but the rock occurs both structurally 
above and below the Westboro Formation and probably intruded it. 
Walsh and others (2011a) report a Neoproterozoic SHRIMP U-Pb zircon 
age of 606±5 Ma from the adjacent Grafton quadrangle. Good 
exposures occur along Hartford Turnpike (Zhv) and south of Mendon 
Road (Zhvb)

Metasedimentary Rocks

Westboro Formation (Neoproterozoic)—Silvery gray to pale-green or 
gray, quartz-rich chlorite-muscovite-quartz phyllite, and pale-green to 
very light gray or white, tan to rusty weathering quartzite. The unit is very 
poorly exposed and was observed at only one location east of Putnam 
Hill Road in Sutton
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EXPLANATION OF MAP SYMBOLS

Contact—Approximately located; dotted where concealed by water. In 
cross section dotted where projected above the ground surface

Outcrops—Areas of exposed bedrock or closely spaced contiguous 
bedrock exposures examined in this study

Tunnel—Trace of the Worcester Diversion flood control tunnel on the 
Blackstone River (U.S. Army, 1956); not examined in this study. 
Geology extrapolated to the surface by Grew (1971)

FAULTS

Inferred mylonitic thrust fault—Parallel to metamorphic foliation; 
sawteeth on upper plate show dip direction. Possible early thrust 
motion on the Clinton-Newbury fault is overprinted by garnet-grade 
normal motion. Some faults are locally reactivated as normal brittle 
faults, especially along the Bloody Bluff fault. Dotted where concealed 
by water. In cross section dotted where projected above the ground 
surface

Inferred brittle fault—Relative motion indicated where known; U, 
upthrown side; D, downthrown side. Dotted where concealed by water. 
In cross section dotted where projected above the ground surface

FOLDS
[Showing trace of axial surface and direction of dip of limbs]

Inferred trace of F2 folds in the Merrimack terrane (Acadian)

Overturned antiform

Overturned synform

PLANAR FEATURES
[Symbols may be combined; point of intersection shows location of measurement]

Strike and dip of graded bedding in the Worcester Formation

Inclined, overturned

Strike and dip of quartz vein (Permian?)

Inclined

Vertical

Strike and dip of OMp pegmatite dike (Permian) or sill (Ordovician 
to Mississippian)

Inclined

Vertical

Strike and dip of OMg granitic dike (Permian) or sill (Ordovician to 
Mississippian)

Inclined

Vertical

Strike and dip of Sep granodioritic dike (Silurian)

Strike and dip of deformed relict foliation (S1)—Symbols show average 
strike and dip of highly deformed foliation 

Strike and dip of deformed relict foliation (S1)—Parallel to bedding or 
compositional layering

Strike and dip of dominant foliation (Sn)—Not age specific but largely 
S2 or a composite S1-S2 foliation expressed as a schistosity in the 
sub-sillimanite-grade metasedimentary rocks and a schistosity to 
gneissosity in the intrusive and migmatitic rocks

Strike and dip of dominant foliation (S2)—A schistosity to gneissosity 
in the metasedimentary and metavolcanic rocks, and a gneissosity in 
the intrusive rocks

Inclined

Vertical

Strike and dip of mylonitic or phyllonitic S2 foliation—Observed 
locally near the Bloody Bluff and Clinton-Newbury faults

Strike and dip of axial surface of F2 minor fold parallel to S2 
foliation—Tight to isoclinal, locally rootless folds

Strike and dip of crenulation cleavage (S3)—Probably Alleghanian and 
correlative across the map

Inclined

Vertical

Strike and dip of axial surface of F3 minor fold—Open to tight, late 
fold; probably Alleghanian and correlative across map

Inclined

Vertical

Strike and dip of F3 or younger minor kink bands or shear 
bands—Late kink bands or shear bands locally associated with 
extensional veins or pegmatites; Alleghanian or younger and correlative 
across the map

Inclined

Vertical

LINEAR FEATURES
[Symbols may be combined; point of intersection shows location of measurement]

Bearing and plunge of L2 intersection lineation—Intersection between 
the dominant foliation (S2) and an older foliation that is parallel to 
compositional layering (S1)

Bearing and plunge of L3 intersection lineation—Intersection between 
a younger cleavage (S3) and an older foliation (S1 or S2)

Bearing and plunge of L2 mineral lineation—Aggregate lineation or 
grain lineation associated with the dominant foliation (S2); consists of 
quartz, biotite, or K-feldspar in the Avalon zone; quartz, biotite, 
amphibole, sillimanite, or K-feldspar in the Nashoba zone; and quartz, 
biotite, or K-feldspar in the Merrimack zone

Bearing and plunge of F2 minor fold axis—Fold axis of tight, isoclinal, 
or rootless fold associated with the dominant foliation (S2)

Bearing and plunge of F3 minor fold axis—Fold axis of late open to 
tight fold or crenulation lineation

OTHER FEATURES

Metamorphic isograd—Approximate boundary between metamorphic 
zones. Poorly constrained in the Paxton Group and Oakdale Formation 
due to bulk composition; there rocks labelled in the garnet zone contain 
actinolite. Well constrained in the Worcester Formation northeast of the 
Wekepeke fault, but less well constrained southwest of the fault where 
the formation is entirely within the staurolite zone. Upper amphibolite 
facies rocks in the Nashoba Formation are overprinted by biotite-grade 
greenschist facies assemblages in a belt east of the Clinton-Newbury 
fault; the limit of this belt is schematic and poorly constrained. 
Metamorphic grade in the Avalon zone is extrapolated from the 
adjacent Grafton quadrangle (Walsh and others, 2011) due to the very 
limited occurrence of the Westboro Formation in the Worcester South 
quadrangle

Abandoned quarry—Includes one quarried pegmatite erratic north of 
Oakland Heights

Spring

Geochronology sample location showing age—Preliminary SHRIMP 
U-Pb zircon age from Walsh and others (2013). Map locations of 
geochronology samples WO–117 and WO–025 are coincident with 
map locations of IUGS rock classification samples WO–117E and 
WO–025, respectively
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Metamorphic grade
Chlorite

Biotite

Garnet—Garnet grade rocks, locally constrained by the 
presence of actinolite in calc-silicate rocks. Poorly con- 
strained in the Paxton Group, Oakdale Formation, and 
the Avalon zone

Staurolite

Approximate limit of retrograded sillimanite grade rocks 
in the footwall of the Clinton-Newbury fault— Retro-
graded to greenschist and lower amphibolite facies. 
Other retrograded areas not shown though retrograde 
greenschist facies assemblages of sericite after stauro-
lite, and chlorite after garnet and biotite, occur in the 
hanging wall of the Clinton-Newbury fault

Undifferentiated Sillimanite-K-feldspar (Sil-Kfs) and 
Sillimanite-Muscovite (Sil-Ms)—Locally retrograded to 
greenschist facies, but not shown 

Plutonic rocks

Contact

Fault—U, upthrown side; D, downthrown side

Thrust fault—Saw teeth on upper plate show dip 
direction

Approximate metamorphic isograd
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Joints by terrane—Summary diagrams showing the orientation and distribution of measured joints in the map area. Joint data are plotted separated into three structural domains 
corresponding to the Merrimack, Nashoba, and Avalon terranes. The pairs of diagrams include a stereonet (top) and a rose diagram (bottom) for each terrane. Stereonets show contoured 
poles to joints. Rose diagrams include a subset of the data shown in the corresponding stereonet for dips >59o. Principal peak on the rose diagrams are shown within 1 standard deviation (1 
s.d.). For all diagrams the number of joints (n) are shown in parenthesis at the bottom. Joint data are not plotted on the geologic map, but are included in the accompanying GIS database.
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D2 fabric by terrane—Summary stereonet diagrams of D2 
ductile structures, including the dominant foliation S2 or 
Sn, separated into the three structural domains: Merrimack 
terrane (top three), Nashoba terrane (middle three), and 
Avalon terrane (bottom) (see inset at left for map of 
structural domains). From left to right, the stereonets show 
the following: (1) mineral lineations and mean lineation 
trends, with confidence interval within one standard 
deviation (1 s.d.); (2) poles to foliation or axial surface, 
contoured poles (Merrimack and Nashoba terranes), 
best-fit great circle to poles, and confidence interval within 
1 s.d. (Avalon terrane); and (3) fold axes and intersection 
lineations with confidence interval within 1 s.d. Due to a 
limited dataset, the poles to foliation and the mineral 
lineations for the Avalon terrane are combined into a 
single stereonet.

D3 fabric—Summary stereonet diagrams of D3 ductile 
structures for the map area. The left stereonet shows 
contoured poles to F3 axial surfaces and S3 cleavage. The 
right stereonet shows L3 intersection lineations, L3 crenula-
tions, F3 minor fold axes, and the mean lineation trend 
with confidence interval within one standard deviation (1 
s.d.). Corresponding map symbols are shown on the lower 
right of each stereonet. Regionally this fabric, and the 
generally northwest-trending veins, shear bands, and 
pegmatite dikes are largely related to the alternately 
named Douglas Woods anticline of Goldstein (1982) or the 
Oxford anticline of Barosh (2005).

D3 to D4 fabric—Summary stereonet diagrams of D3 ductile to D4 or younger brittle structures for the map area. The poles to veins, pegmatite dikes, and shear bands are contoured. 
Planes and poles to kink bands are random and not contoured. Corresponding map symbols are shown on the lower right of each stereonet. Contoured poles to brittle faults and 
calculated paleostress tensors are shown on the right. The number of points in each dataset (n) is shown at the bottom of each diagram. Stereonets and rose diagrams were plotted using 
the Structural Data Integrated System Analyser (DAISY, version 4.95.13) software (Salvini, 2013).
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Zen and others (1983) cites these unpublished works by both Barosh and Dixon and 
the dissertation work of Grew (1970) as the primary sources of data for that 1983 
map compilation.
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DISCUSSION

INTRODUCTION
The bedrock geology of the 7.5-minute Worcester South quadrangle, 

Massachusetts, consists of deformed Neoproterozoic to Paleozoic crystalline 
metamorphic and intrusive igneous rocks in three fault-bounded terranes (zones), 
including the Avalon, Nashoba, and Merrimack zones (Zen and others, 1983). This 
quadrangle spans the easternmost occurrence of Ganderian margin arc-related rocks 
(Nashoba zone) in the southern New England part of the northern Appalachians, and 
coincides with the trailing edge of Ganderia (Merrimack and Nashoba zones) where it 
structurally overlies Avalonia (Hibbard and others, 2006; Pollock and others, 2012; 
van Staal and others, 2009, 2012).

Neoproterozoic intrusive rocks and minor metasedimentary rocks crop out in the 
Avalon zone and structurally underlie the rocks of the Nashoba zone along the Bluddy 
Bluff fault. Due to poor exposure, the position of the Bloody Bluff fault is not 
well-constrained and its location is partly extrapolated from mapping in adjacent areas 
(Barosh, 2005; Walsh and others, 2011a). Cambrian intrusive rocks and Cambrian to 
Silurian metasedimentary and metavolcanic rocks crop out in the Nashoba zone, and 
are overlain by largely Silurian metasedimentary rocks of the Merrimack zone along 
the Clinton-Newbury fault. Ordovician to Permian(?) plutonic rocks intrude the 
Merrimack and Nashoba zone rocks. Paleozoic metamorphism in the Merrimack and 
Nashoba zones peaked during Salinic, Acadian, and Neoacadian orogenesis from the 
Silurian to Mississippian (Wintsch and others, 2007; Stroud and others, 2009; Walsh 
and others, 2011a; Hepburn and others, 2014). Metamorphism in the Avalon zone 
peaked during Alleghanian orogenesis in the Mississippian to Permian (Wintsch and 
others, 1992, 1993, 2001; Attenoukon, 2008). Evidence for garnet-grade 
extensional Alleghanian mylonitization showing normal motion along the 
Clinton-Newbury fault occurred after presumed original terrane juxtaposition by 
left-lateral Acadian thrusting (Goldstein, 1994). Subsequent post-peak metamorphic 
deformation produced outcrop-scale open folds and weak cleavage, local faults, veins, 
shear bands, and pegmatite dikes. Locally, along re-activated ductile faults such as the 
Bloody Bluff fault and along the Wekepeke fault, late Paleozoic to Mesozoic mainly 
brittle normal fault motion led to the current configuration of fault-bounded 
lithotectonic terranes (Goldstein, 1982, 1994, 1998; Goldstein and Hepburn, 1999; 
Goldsmith, 1991; Attenoukon, 2008; Wintsch and others, 2012). The youngest 
deformation includes kink bands, brittle faults, and joints.

The bedrock geology was mapped to study the tectonic history of the area and to 
provide a framework for ongoing hydrogeologic characterization of the fractured 
bedrock of Massachusetts. This report presents mapping by Gregory J. Walsh and 
Arthur J. Merschat from 2008 to 2010. The report consists of a map and GIS 
database, both of which are available for download at http://dx.doi.org/ 
10.3133/sim3345. The database includes contacts of bedrock geologic units, faults, 
outcrop locations, structural information, and photographs.

PREVIOUS WORK
Early geologic mapping more than a century ago covered the northern part of the 

Worcester South quadrangle (Perry and Emerson, 1903) and was compiled into a 
regional synthesis by Emerson (1917). Prior to new mapping from 2008 to 2010 for 
this report, 1:24,000-scale published mapping in the Worcester South quadrangle was 
limited, although Grew (1970) mapped the northeastern corner of the Worcester 
South quadrangle and a preliminary map was completed by Barosh (1977). In 
addition, a provisional unpublished bedrock geologic map of the Worcester South 
quadrangle at 1:24,000 scale was completed by Patrick J. Barosh in 1996 and a copy 
was archived by the Massachusetts Geological Survey. [In the rest of the text this 
unpublished map is cited as Barosh (unpub. data, 1996).] Barosh published the results 
of some his work in the Worcester South quadrangle in fieldtrip guidebook articles 
(Barosh, 1976, 1982) and in small-scale compilations (Barosh, 1977; Barosh and 
others, 1977). Unpublished reconnaissance geologic map data of the Worcester South 
quadrangle by H. Roberta Dixon (1977–78) was acquired from the U.S. Geological 
Survey Field Records Collection Library in Denver, Colo. The state geologic map by 
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