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Assessment of Sediments in the Riverine Impoundments
of National Wildlife Refuges in the Souris River Basin,

North Dakota

By Brian A. Tangen,' Murray K. Laubhan,? and Robert A. Gleason'

Abstract

Accelerated sedimentation of reservoirs and riverine
impoundments is a major concern throughout the United
States. Sediments not only fill impoundments and reduce
their effective life span, but they can reduce water quality by
increasing turbidity and introducing harmful chemical con-
stituents such as heavy metals, toxic elements, and nutrients.
U.S. Fish and Wildlife Service national wildlife refuges in the
north-central part of the United States have documented high
amounts of sediment accretion in some wetlands that could
negatively affect important aquatic habitats for migratory birds
and other wetland-dependent wildlife. Therefore, informa-
tion pertaining to sediment accumulation in refuge impound-
ments potentially is important to guide conservation planning,
including future management actions of individual impound-
ments. Lands comprising Des Lacs, Upper Souris, and J. Clark
Salyer National Wildlife Refuges, collectively known as the
Souris River Basin refuges, encompass reaches of the Des
Lacs and Souris Rivers of northwestern North Dakota. The
riverine impoundments of the Souris River Basin refuges are
vulnerable to sedimentation because of the construction of in-
stream dams that interrupt and slow river flows and because of
post-European settlement land-use changes that have increased
the potential for soil erosion and transport to rivers. Informa-
tion regarding sediments does not exist for these refuges,
and U.S. Fish and Wildlife Service personnel have expressed
interest in assessing refuge impoundments to support refuge
management decisions.

Sediment cores and surface sediment samples were col-
lected from impoundments within Des Lacs, Upper Souris,
and J. Clark Salyer National Wildlife Refuges during 2004—05.
Cores were used to estimate sediment accretion rates using
radioisotope (cesium-137 [*¥"Cs], lead-210 [*'°Pb]) dating tech-
niques. Sediment cores and surface samples were analyzed for
a suite of elements and agrichemicals, respectively. Examina-
tion of core characteristics along the depth profile suggests

'U.S. Geological Survey.
2U.S. Fish and Wildlife Service.

that there has been regular sediment mixing and removal, as
well as non-uniform sediment deposition with time. Estimated
mean accretion rates based on the three methods of deter-
mination (two time markers for '*’Cs, 2!°Pb) ranged from
0.22-0.35 centimeters per year, and approximately 70 per-
cent of cores had less *’Cs than expected. Concentrations of
sediment-associated elements generally were within reported
reference ranges, and all agrichemicals analyzed were below
detection limits. Results suggest that there does not appear to
be widespread sediment accumulation in impoundments of the
Souris River Basin refuges. In addition, there were no identifi-
able patterns among sedimentation rates from the upstream
(Des Lacs, Upper Souris) to the downstream (J. Clark Salyer)
refuges. There were, however, apparent upstream to down-
stream patterns of increased concentrations of some elements
(for example, aluminum, boron, and vanadium) that may
warrant further exploration. Future related monitoring and
research efforts should focus on areas with high potential for
sediment accumulation, such as upstream areas adjacent to
dams, to identify potential sediment problems before they
become too severe. Further, assessments of suspended sedi-
ments transported in the Des Lacs and Souris Rivers would
augment interpretation of sedimentation data by identifying
potential sediment sources and areas with the greatest potential
for accumulation.

Introduction

During the extreme drought in the mid-1930s, the
U.S. Fish and Wildlife Service (USFWS) established numer-
ous national wildlife refuges (NWR) with the purpose of
providing dependable habitats for migratory birds and other
wildlife (U.S. Fish and Wildlife Service, 2007). In North and
South Dakota, many of these refuges were established in river
corridors that previously had been modified to enhance agri-
cultural production. To create and restore floodplain habitats,
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the USFWS constructed levees and dams to facilitate water
retention and management of specific river reaches, essen-
tially creating in-stream impoundments. A primary purpose of
management was to provide breeding and stopover habitat for
migratory waterfowl and other wetland-dependent species.

Impoundments created by obstructing river flows,
however, often have a finite life span because they accumu-
late sediments that result in loss of water storage capacity
(Smith and others, 1960; Gleason and others, 2003a; Juracek,
2004; Lee and others, 2008; Graf and others, 2010; Juracek,
2010; Juracek, 2011). Sedimentation is a natural process, but
infrastructure that slows and impounds water flows tends to
accelerate sedimentation rates in localized areas upstream
from structures (for example, levees, dams) and accelerate
erosion downstream from structures. The extent to which sedi-
ment processes are disrupted depends on channel morphol-
ogy, flow characteristics (for example, frequency, magnitude,
duration), type of infrastructure design (for example, stoplog
as compared to radial gate water-control structure), and water-
management strategies implemented.

In terms of quantity, sediment is the major pollutant
of wetlands, lakes, estuaries, and reservoirs in the United
States (Baker, 1992). The potential environmental effects of
increased sedimentation are numerous and include water-
quality degradation (Goldman and Horne, 1983; U.S. Environ-
mental Protection Agency, 1986; Salomons and others, 1987;
Wetzel, 2001) because sediments act as both a sink and source
for constituents such as heavy metals, trace elements, nutri-
ents, and agrichemicals (Martin and Hartman, 1987; Schwarz
and others, 2004; Sando and others, 2007; Juracek and Becker,
2009; Juracek, 2010; Juracek, 2011; Belden and others, 2012).
Once in the food chain, bioaccumulation of sediment-derived
constituents may pose a risk to fish, wetland-dependent wild-
life, and humans (Knezovich and others, 1987; Reynoldson,
1987; Willford and others, 1987; Ingersoll and others, 1994;
U.S. Environmental Protection Agency, 1994; Morel and oth-
ers, 1998; Hamilton and Buhl, 2004). Additionally, unconsoli-
dated sediments can increase turbidity, reduce dissolved oxy-
gen concentrations, alter nutrient availability, reduce sunlight
penetration, bury invertebrate egg and plant seed banks, and
affect aquatic biota (Ellis, 1936; McCabe and O’Brien, 1983;
Dieter, 1991; Newcombe and MacDonald, 1991; Jurik and
others, 1994; Gleason and Euliss, 1998; Gleason and others,
2003b). If sufficient, these changes can eliminate or reduce
growth of submerged aquatic vegetation that provides foods
and structure for fish, invertebrates, and wildlife (Robel, 1961;
Kullberg, 1974).

Recent (circa 2000) research on Mud Lake, an impound-
ment on the James River managed by Sand Lake NWR
in South Dakota, estimated that maximum pool depth has
been reduced by as much as 55 centimeters (cm) because of
sedimentation since approximately 1959 (Gleason and others,
2003a). Gleason and others (2003a) also estimated annual
sedimentation rates and projected that wildlife habitats in Mud
Lake (not shown) could be severely compromised in as few
as 20 years if rates remained unchanged. Likewise, Schottler

and Engstrom (2011) reported an average water depth loss of
15 cm from 1940 to 2008 for Agassiz Pool of Agassiz NWR
(not shown) in northwest Minnesota. During that 68-year
timeframe, an estimated 1,196,000 metric tons of inorganic
sediment was eroded from the watershed and trapped within
the 4,047-hectare (ha) Agassiz Pool. Similar studies also have
demonstrated sedimentation in wetlands of off-channel refuges
(Heimann and Richards, 2003; Elliot and others, 2006; Fitz-
patrick and others, 2007).

Information pertaining to sediment accumulation in
refuge impoundments is important to guide conservation
planning, including future management actions of individual
impoundments. Various strategies such as flushing, dredging,
or upland management to reduce erosion and runoff can be
used to remove sediments or reduce rates of accumulation;
however, management options and success will vary among
sites depending on watershed or wetland size, amount of sedi-
ment accumulation, and practical constraints associated with
removal of materials from aquatic systems, including cost,
partnership cooperation, and regulatory requirements. There-
fore, effectively addressing environmental issues caused by
sedimentation often requires site-specific information on the
location and magnitude of sediment loads.

Riverine impoundments of Des Lacs, Upper Souris, and
J. Clark Salyer NWRs (collectively known as the Souris River
Basin refuges; fig. 1) may be particularly vulnerable to sedi-
ment accumulation because changes in land use (for example,
conversion of grassland to agricultural production) have
increased the potential for soil erosion and surface runoff of
sediment to rivers; however, information regarding sediment
dynamics currently (2013) does not exist for these refuges.
Further, understanding how sedimentary dynamics vary with
respect to the unique watershed characteristics of each refuge
may assist refuge personnel in identifying alternative man-
agement or mitigation strategies. For example, management
actions implemented to reduce surface runoff and sedimenta-
tion in the upstream tributaries (Des Lacs NWR) and main-
stem impoundments (Upper Souris NWR) may affect sedi-
mentary dynamics and proposed management actions in the
lower reaches (J. Clark Salyer NWR). Given these consider-
ations, USFWS personnel from the Souris River Basin refuges
expressed interest in quantifying sedimentation rates in refuge
impoundments to determine if potential problems are develop-
ing so any issues could be addressed cost-effectively before
thresholds that compromise management goals are surpassed.

Purpose and Scope

The purpose of this report is to assess sedimentation
and present sediment chemistry data of riverine impound-
ments within Des Lacs, Upper Souris, and J. Clark Salyer
NWRs, located in the Souris River Basin of North Dakota.
The objectives of the study were to gather baseline informa-
tion on sediment dynamics (location, depth, accretion rates)
and concentrations of sediment-associated trace elements and



agrichemicals in a subset of impoundments on each refuge.
To accomplish this task, sediment cores and surface sediment
samples were collected from 31 sites distributed among the

3 refuges during 2004-05.

Study Area

The Souris River Basin encompasses approximately
63,700 square kilometers (km?) of north-central North
Dakota in the United States and southeast Saskatchewan and

Study Area 3

southwest Manitoba in Canada. The Souris River, the primary
river in the basin, flows south from Saskatchewan into North
Dakota where it then turns north and eventually flows into the
Assiniboine River (not shown) in Manitoba (Vecchia, 2000).
Recent water-quality assessments in the Souris River basin
suggest that concentrations of various trace elements generally
are within limits established by state water-quality standards;
however, habitat degradation (for example, channelization,
bank stabilization), nutrient inputs, siltation, and stream-flow
modification have been identified as factors affecting aquatic
life (North Dakota Department of Health, 1998; North Dakota
Department of Health 2000; Wax, 2006a; Wax, 2006b).
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Figure 1. Location of Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges in North Dakota.
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National wildlife refuges in the basin are located in
northwestern North Dakota and consist of Des Lacs, Upper
Souris, and J. Clark Salyer (fig. 1). Des Lacs NWR extends
south from the Canada-North Dakota border and encompasses
approximately 79 km? along a 45-kilometer (km) reach of
the Des Lacs River, the primary tributary to the Souris River.
Upper Souris NWR encompasses 130 km? along a 56-km
reach of the west arm of the Souris River. J. Clark Salyer
NWR encompasses 238 km? and extends southeast from
the Canada-North Dakota border along 121 km of the east
arm of the Souris River. Refuge habitats include riverine
impoundments and reservoirs, prairie wetlands, native and
tame grasslands, and wooded coulees (U.S. Fish and Wildlife
Service, 2007). River impoundments are formed by low-head
dams, dikes, and road beds equipped with a variety of water-
control structures including stop-log structures, screw gates,
and radial gates.

Sample Locations

Sediment cores were collected from impoundments on
the Souris River Basin refuges for age-dating and determina-
tion of trace-element concentrations. Cores were sampled at
strategic locations based on map reconnaissance and consulta-
tion with refuge staff. In selecting sites, areas were included
that would likely span a gradient of potential sedimentation
rates to provide USFWS staff with comprehensive informa-
tion on their respective refuges that could be used to inform
future management decisions. For example, cores were col-
lected from impoundments that directly interrupt river flows
or receive direct inputs from tributaries that were expected to
have greater sediment accumulation. Conversely, impound-
ments located directly downstream from other impoundments
also were sampled because sediment accumulation in these
areas is expected to be lower because of decreased water flows
in upstream sites that would facilitate sediment deposition.
Cores were collected from locations that were not affected
by the river channel to avoid variability associated with in-
channel processes that could affect determination of sediment
accretion rates. Nine cores were collected from 5 impound-
ments at Des Lacs NWR, 10 cores from 4 impoundments at
Upper Souris NWR, and 10 cores from 3 impoundments at
J. Clark Salyer NWR. Surface sediments also were collected at
the 29 core sites, as well as an additional site at Upper Souris
(US11) and J. Clark Salyer (JC5) NWRs. Core and sediment
sample locations are depicted in figures 2, 3, and 4 for Des
Lacs, Upper Souris, and J. Clark Salyer NWRs, respectively,
and core and site descriptions are presented in table 1.

Soil Core Collection and Analysis

When conditions allowed, sediment cores were collected
from a boat using a piston corer (Rowley and Dahl, 1956).
Samples from the deep-water locations (fig. 3, Cores US3 and
US5) of Lake Darling (not labeled on fig. 3) were collected
during the winter months by drilling through the ice. The
10.8-cm diameter collection tube was manually inserted as far
into the substrate as possible. Lengths (sediment depth) and
compaction of individual cores differed among sites (table 1)
because of variability in substrates. Cores were shipped to the
U.S. Geological Survey St. Petersburg Coastal and Marine
Science Center for processing and analysis. Each core was
segmented into 1-cm (upper 20 cm) or 2-cm (depths greater
than 20 cm) segments and analyzed for cesium-137 ('3’Cs),
lead-210 (*'°Pb), and radium-226 (**Ra) specific activity, bulk
density (wet and dry), particle size, loss on ignition (LOI), and
water content. Laboratory methods follow those of Robbins
and others (2000), Marot and Smith (2012), and Gleason and
others (2003a). For a subset of 14 cores (table 1), one-half
of the segments were analyzed for 62 trace elements using
inductively coupled plasma mass spectrometry (ICP-MS) and
inductively coupled plasma optical emission spectrometry
(ICP-OES). Additionally, surface sediments were collected
near 31 core sampling locations (only 29 cores were analyzed
for isotopes) and analyzed for 59 agrichemicals commonly
used in the region. The North Dakota Department of Health
Division of Laboratory Services analyzed soils for agrichemi-
cals following analytical methods referenced in the Index to
Environmental Protection Agency (EPA) Test Methods (EPA
Web site, accessed October 1, 2012, at http.//www.epa.gov/
regionl/info/testmethods/pdfs/testmeth.pdf).

Supported >'°Pb activity was approximated as the activ-
ity of 2°Ra and unsupported *'°Pb activity was calculated as
the difference between total 2!°Pb activity and ***Ra activity
(Binford, 1990; Holmes, 1998). Total '*’Cs inventory for each
core was calculated as the sum of bulk density adjusted '*’Cs
activity (Ritchie and McHenry, 1990). Bulk density was not
determined for 11 segments of 7 cores. For these segments,
bulk density was estimated by averaging the segments directly
above and below the segment that was missing bulk density.
For example, if a value was missing from the 8-cm segment,
a mean value from the 7-cm and 9-cm segment was applied.
Bulk density also was not determined for cores US3 and USS.
To allow for a rough estimation of the total '*’Cs inventory,
bulk density was estimated for these two cores using data from
the nearby core US2. A mean bulk density was calculated
for core US2 by 5-cm increments, and these estimates were
applied to cores US3 and USS5 by depth. Radium-226 often
was determined only for every other segment deeper than
10-20 cm. Similar to methods for estimating bulk density, the
missing values were estimated by calculating an average of
the segments directly above and below the segment that was
not analyzed.
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Location of sample sites within Des Lacs National Wildlife Refuge.
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Figure 3.

Location of sample sites within Upper Souris National Wildlife Refuge.
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Soil Core Collection and Analysis
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10 Assessment of Sediments in the Riverine Impoundments of National Wildlife Refuges in the Souris River Basin, N. Dak.

Determination of Sediment Accretion
Rates

The ¥"Cs and ?'°Pb isotopes have been determined to
be ideal for dating sedimentary dynamics during the past
100 years (DeLaune and others, 1989; Ritchie and McHenry,
1990; Callender and Robbins, 1993; Holmes, 1998; Gleason
and others, 2003a; Van Metre and others, 2004; Wingard and
others, 2007; Ritchie and Ritchie, 2008; Schottler and Eng-
strom, 2011). Isotopic data for each core were analyzed along
the depth profile to identify key time markers and to estimate
sediment accretion rates following standard methods described
elsewhere (for example, Binford, 1990; Holmes, 1998; Glea-
son and others, 2003a). A general overview of these methods
is provided below.

¥7Cs is a product of nuclear testing and has a half-life
0f 30.3 years. Atmospheric fallout of '*’Cs began in the early
1950s, with detectable levels in soils beginning in 1954 and
peak quantities in 1963—64 (Ritchie and McHenry, 1990).

In general, the vertical distribution of '*’Cs in the sediment
profile can be related to these time markers; hence, it can be
used to estimate the amount of sediment that has accumulated
since 1954 (Holmes, 1998). The '*’Cs profile of each core
was inspected visually to identify key time markers that could
be used to estimate accretion rates. It was assumed that the
first detection (greatest depth) of '*’Cs activity in each core
approximated the initial date of detectable fallout from the
nearest monitoring site [Vermillion, S. Dak. (not shown)] in
1957. Ideal (undisturbed) sediment cores are expected to have
a well-defined *’Cs peak that is associated with maximum
fallout that took place around 1963; thus, attempts to identify
this time marker also were made. Once these time markers
were identified, sediment accretion rates were calculated by
dividing the associated depth by the number of years between
deposition and collection of the core (that is, years from depo-
sition to sample collection in 2004 or 2005).

The total measured '*’Cs inventory from the soil cores
was compared to the expected '’Cs inventory to assess
potential sediment accretion. The expected '*’Cs inventory
was calculated by adjusting annual fallout for radioactive
decay (fig. 5). Strontium-90 (*°Sr) fallout data were obtained
for Vermillion, S. Dak. (U.S. Department of Energy, Environ-
mental Measurements Laboratory Web site, accessed February
21, 2014, at http://www.wipp.energy.gov/NAMP/EMLLe-
gacy/), and ¥’Cs was calculated by multiplying *°Sr by 1.65
(Robbins, 1985).

219Pb is naturally found in the atmosphere and has a
half-life of 22.3 years. It is a member of the uranium decay
series and is the daughter of radon-222. Radon-222, a daughter
of 2°Ra, diffuses from the Earth’s crust into the atmosphere
where it decays to 2'°Pb, which is subsequently entrapped in
rainfall and returned to earth. Atmospheric residence time
of 21°Pb is about 10 days and the concentration of 2'°Pb in
rainwater is believed to have remained constant with time
(DeLaune and others, 1989; Holmes, 1998). The activity of
219Pb returned to Earth (unsupported) is greater than that of
background activity in the soil (supported); thus, it is possible
to estimate the age of sediments by examining the distribution
of unsupported ?'°Pb. Most of the sediment cores were char-
acterized by unsupported 2!°Pb profiles that do not conform to
the monotonic decrease in activity with depth as described for
an ideal profile (Binford, 1990; Holmes, 1998). Because of
the apparent variability in sedimentation with time, the age of
each core segment was estimated using the Constant Rate of
Supply (CRS) model (Appleby and Oldfield, 1978; Binford,
1990). Once cores were dated, vertical accretion rates were
calculated by dividing depth of each segment by age.

Assessment of Trace Elements and
Agrichemicals

Raw data and generalized summary statistics are pro-
vided for the sediment chemistry data. Although no statistical
analyses were done, boxplots representing surface sediment
concentrations of trace elements and agrichemicals collected
near each core sample (boxplots represent core depth seg-
ments) were constructed to assess whether concentrations of
chemical constituents changed noticeably along the general
upstream to downstream gradient.

Radioisotopes and Physical
Characteristics of Sediment Cores

Radioisotope specific activity, bulk density, particle size,
LOI, and water content are presented by depth for each core
in appendix 1. General patterns of these variables indicate
that refuge impoundments for the Souris River Basin are
characterized by episodes of sediment accretion, mixing, and
removal. For example, the proportions of sands and silts often


http://pubs.usgs.gov/sir/2014/5018/downloads/Appendix1_2JAN2014.xlsx

Radioisotopes and Physical Characteristics of Sediment Cores 1"

vary greatly along the depth profile (for example, cores DL6,
DL10, US3, and JC2; fig. 6), suggesting high variability in
factors, such as river flows, that affect the volume of fluvial
material that can be moved and the distribution of this mate-
rial. This conclusion is supported by the variability of other
soil characteristics, such as LOI and bulk density, within and
among cores (for example, cores US10, JC2, JC9, and JC10;
fig. 7), which indicates variability in the depth of organic
and other depositional materials. Further, some cores display
uniform '*’Cs and ?'°Pb profiles (figs. 8—18) that are indicative
of mixing [for example, cores DL12 (fig. 11), US2 (fig. 12),
and US6 (fig. 13)], whereas others are characterized by ideal
37Cs profiles with near-surface peaks indicative of sediment

transport or removal [for example, cores US1 (fig. 12), JC8
(fig. 17), and JC11 (fig. 18)]. Moreover, transport of sediments
likely is variable throughout the system because of differences
in sediments contributed from the watershed, river flows, and
water-control structures. For example, areas above a stop-log
structure would likely accumulate sediments, whereas areas
associated with a radial gate would likely be characterized by
greater sediment transport. Collectively, the general inference
of episodic riverine environments also is supported by highly
variable observed stream flows for the Des Lacs and Souris
Rivers (fig. 19). For example, figure 19 shows low peak flows
for the Des Lacs and Souris Rivers during the 1960s followed
by extremely high peak flows during the 1970s.

2'5||||||||||||||||||||||||||||||||||||||||||||||||||30
EXPLANATION -
® —8— (s deposition
"1Cs inventory — 25
20 —

05 —

Cesium-137 ('¥'Cs) deposition, in disintegrations/minute/square centimeter

0.0

Year

1955 1960 1965 1970 1975 1980

12.33 d/min/cm?

Cesium-137 ("*’Cs) inventory, in disintegrations/minute/square centimeter (d/min/cm?)

1985 1990 1995 2000 2005

Figure 5. Annual fallout and estimated inventory of cesium-137 for Vermillion, South Dakota.
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Loss on ignition and bulk density by depth for four sediment cores.
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Figure 8. Radioisotope profiles for cores from Pool 2 and the north end of Pool 4 within Des Lacs National Wildlife Refuge. The
difference between total lead-210 (?°Pb) and radium-226 approximates unsupported 2'°Ph.
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Figure 9. Radioisotope profiles for cores from main body of Pool 4 within Des Lacs National Wildlife Refuge. The
difference between total lead-210 (?°Pb) and radium-226 approximates unsupported #°Ph.
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Figure 10. Radioisotope profiles for cores from Pool 4A and Pool 5 within Des Lacs National Wildlife Refuge. The difference between
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Figure 11. Radioisotope profiles for cores from Pool 6 within Des Lacs National Wildlife Refuge. The difference between total lead-210
(?'°Pb) and radium-226 approximates unsupported 2'°Ph.
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Figure 12. Radioisotope profiles for
cores from Lake Darling within Upper
Souris National Wildlife Refuge. The
difference between total lead-210
(?'°Pb) and radium-226 approximates
unsupported #°Ph.
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Figure 13. Radioisotope profiles for cores from Pool A within Upper Souris National Wildlife Refuge. The difference between total
lead-210 (?°Pb) and radium-226 approximates unsupported 2'°Pb.
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Figure 15. Radioisotope profiles for cores from Pool 96 within Upper Souris National Wildlife Refuge. The difference between total
lead-210 (?°Pb) and radium-226 approximates unsupported 2'°Pb.
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Figure 16. Radioisotope profiles for
cores from Pool 320 within J. Clark
Salyer National Wildlife Refuge. The
difference between total lead-210
(?'°Pb) and radium-226 approximates
unsupported #°Ph.
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Figure 17. Radioisotope profiles for cores from Pool 326 within J. Clark Salyer National Wildlife Refuge. The
difference between total lead-210 (?°Pb) and radium-226 approximates unsupported ?°Ph.
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Figure 18. Radioisotope profiles for cores from Pool 332 within J. Clark Salyer National Wildlife Refuge. The
difference between total lead-210 (?°Pb) and radium-226 approximates unsupported 2°Ph.
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Figure 19. Daily discharge (1950-2005) from U.S. Geological Survey
(USGS) streamgages located on A, the Souris River upstream of
Upper Souris National Wildlife Refuge (NWR) (USGS 05114000 Souris
River near Sherwood, N. Dak.); B, the Des Lacs River downstream
from Des Lacs NWR (USGS 05116500 Des Lacs River at Foxholm,

N. Dak.); and C, the Souris River upstream from J. Clark Salyer NWR
(USGS 05122000 Souris River near Bantry, N. Dak.).
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Sediment Accretion Rates

The high variability in soil characteristics that suggest the
distribution and volume of sediments at a given location are in
a constant state of flux makes it extremely difficult to accu-
rately estimate sediment accretion rates using radioisotopes.
Nonetheless, *’Cs and ?'°Pb activity within each core was
examined and attempts were made to estimate accretion rates
when feasible. The expected '*’Cs inventory at the end of 2004
was estimated at 12.33 disintegrations/minute/square centime-
ter (fig. 5). All of the cores, except core US2, had detectable
levels of ¥’Cs in some part of the profile (figs. 8—18); how-
ever, only 8 of the 29 cores with sufficient data to calculate
the total *’Cs inventory had values that exceeded the expected
level (fig. 20). Core US3 was approximately 180 percent of
the expected value; no other cores exceeded the expected
value by more than 17 percent (fig. 20). No obvious patterns
in total *’Cs inventory were evident when examined along the
upstream to downstream gradients within and among NWRs
(fig. 20). Based on the '*’Cs inventories, it was evident that
sediments transported from the surrounding watershed were
not accumulating on a broad scale. Instead, these results sug-
gest that sediments likely are regularly mobilized and depos-
ited elsewhere in the system.

Dating of sediment cores was based on a combination of
137Cs time markers for all cores and ?'°Pb dates obtained using
the CRS model for segments of 17 cores. The first detection
of ¥7Cs was assumed to be 1957 (fig. 5), but the 1963 time
marker for peak deposition only was identified in cores USI,
JC2,]C8, and JC11 (figs. 12, 16, 17, and 18, respectively). The
lack of a well-defined 1963 marker was likely because of mix-
ing or periodic redistribution of sediment, which confounded
interpretation of results. Given these constraints, our ability to
determine sediment accretion rates based on the 1963 marker
was limited to four cores (table 2). Estimated mean accre-
tion rates for all cores were 0.35 cm per year (cm/year) and
0.22 cm/year based on the 1957 (27 cores) and 1963 (4 cores)
137Cs time markers, respectively (table 2). Mean accretion rate
from the 2'°Pb analyses was 0.32 cm/year (table 2). In addi-
tion to variation in accretion rates among the three methods of
determination, there also were no obvious upstream to down-
stream patterns within or among refuges (fig. 21). Cores were
compacted during collection of most samples (table 1), and
this could bias calculations of sediment density and accretion
rates. However, for most cores the soft sediments and muds
primarily were located in the upper part of the cores (sediment
surface), and although the cores were shortened they still rep-
resent the complete sediment profile and provide a depiction
of the depositional history. Further, accretion rates calculated
using depth (for example, *’Cs peak) and time likely are con-
servative when using compacted cores.
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Figure 20. Cesium-137 ("Cs) inventory of sediment
cores collected from Des Lacs, Upper Souris, and

J. Clark Salyer National Wildlife Refuges. Cores

are sorted along the approximate upstream to
downstream gradient and color-coded by individual
impoundment. The vertical dashed line indicates
the expected '"¥Cs inventory of 12.33 disintegrations/
minute/cubic centimeter.
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Table 2. Estimated sediment accretion rates based cesium-137 and lead-210 from soil cores collected from
impoundments of Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges in North Dakota.

[NWR, National Wildlife Refuge; '¥’Cs, cesium-137; cm, centimeter; 2!°Pb, lead-210; --, no data]

Core 1957 ¥Cs 1963%Cs  '“Cs-derived accretion rate, cm/year 2'°Pb-(.ierived
NWR identifier depth, depth, 1957-2004 1963-2004 accretion rate,
cm cm (47 years) (41 years) cm/year
Des Lacs DL1 10.5 -- 0.22 -- --
DL3 12.5 - 0.27 - _
DL5 19.5 -- 0.41 -- 0.37
DL6 11.5 -- 0.24 -- 0.16
DL7 15.5 -- 0.33 -- 0.23
DL9 11.5 - 0.24 - _
DL10 10.5 -- 0.22 --
DLI11 13.5 - 0.29 - 0.17
DLI12 4.5 -- 0.10 -- -
Upper Souris US1 10.5 4.5 0.22 0.11 0.2
uUSs2 -- -- - - -
US3 19.5 -- 0.41 -- -
USS -- -- -- - -
use6 25.0 -- 0.53 -- 0.38
Us7 23.0 -- 0.49 -- 0.34
US8 5.5 -- 0.12 -- -
US9 31.0 -- 0.66 -- 0.34
US10 6.5 -- 0.14 -- -
US12 23.0 -- 0.49 -- 0.3
J. Clark Salyer JC2 18.5 9.5 0.39 0.23 0.23
JC13 47.0 -- 1.00 -- 0.46
JC3 12.5 -- 0.27 -- -
JC4 10.5 -- 0.22 -- 0.43
JC6 27.0 -- 0.57 -- 0.62
JC7 15.5 -- 0.33 -- -
JC8 14.5 11.5 0.31 0.28 0.21
JC9 13.5 -- 0.29 -- 0.16
JC10 14.5 -- 0.31 -- 0.45

JC11 13.5 10.5 0.29 0.26 0.34
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Figure 21. Sediment accretion rates for cores collected from Des Lacs, Upper Souris, and J. Clark

Salyer National Wildlife Refuges (NWR). Accretion rates were calculated using the estimated 1957
and 1963 peaks in cesium-137 activity and unsupported lead-210 activity (see table 2). Cores are sorted
(left to right) along the approximate upstream to downstream gradient.

Trace Elements and Agrichemicals

Summary statistics for 60 of 62 analyzed elements are
presented by NWR in table 3; the remaining two elements,
germanium and tantalum, were not detected in any samples.
Raw elemental data for each core are presented by depth in
appendix 2. Based on overall means, elements with the great-
est concentrations included iron, calcium, aluminum, magne-
sium, manganese, and sulfur (table 3). Horowitz and Stephens
(2008) determined national baseline values for major and trace
elements, nutrients, and carbon from fluvial bed sediments.
Twenty-nine of the 60 elements considered for this study were
included in the Horowitz and Stephens (2008) study. Based
on overall means (table 3), most of the 29 elements fell within
the reported baseline ranges, and no elements exceeded the
maximum presented values.

Because of limited sample sizes, statistical analyses of
elemental and agrichemical concentrations were not carried
out. However, qualitative assessments suggested slightly
increasing patterns in the concentration of some elements. For

example, concentrations of aluminum, boron, and vanadium
in sediment cores (figs. 22-24) were lowest in the upstream
NWRs (Des Lacs, Upper Souris) and greater in the down-
stream NWR (J. Clark Salyer). However, these apparent
patterns should be interpreted cautiously and further study

is warranted before making conclusions as to the accumula-
tion of elements in the downstream part of the Souris River
Basin. Concentrations for all 59 agrichemicals were below the
analytical detection limits presented in table 4; however, the
list of chemicals is extensive and not all of them are presently
(2013) used in area. Further, it is not uncommon for studies of
aquatic sediments to report nondetects for agrichemicals (for
example, Nowell and others, 2000; Tangen and others, 2003;
Juracek, 2004; Wax, 2006a; Wax, 2006b; Juracek, 2010).

The probability of detection can be dependent on solubility,
persistence (half-life), the timing of chemical application in
relation to sampling, as well as weather and landscape factors
associated with the generation of runoff. Therefore, no strong
conclusions should be made based on the absence of detected
agrichemicals.


http://pubs.usgs.gov/sir/2014/5018/downloads/Appendix2_2JAN2014.xlsx
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Figure 22. Boxplots of aluminum concentration representing all depth segments for each sediment core. Cores are sorted (left to
right) along the approximate upstream to downstream gradient.
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Figure 23. Boxplots of boron concentration representing all depth segments for each sediment core

along the approximate upstream to downstream gradient.
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Figure 24. Boxplots of vanadium concentration representing all depth segments for each sediment core. Cores are sorted (left to
right) along the approximate upstream to downstream gradient.



Trace Elements and Agrichemicals

Table 4. Analytical detection limits for agrichemicals from surface sediment samples. Some
chemicals have two detection limits because the mass of individual samples varied. In most cases,
samples with greater mass supported analyses that resulted in lower detection limits.

[ng/g, micrograms per gram; MCPA, 2-(4-chloro-2-methyl-phenoxy) acetic acid; BHC, benzene hexachloride]

Detection limit,

Detection limit,

Chemical Chemical

ng/g Hg/g
2,4,5-T 0.015 Dieldrin 0.01, 0.02
2,4,5-TP 0.02 Dinoseb 0.03
2,4-D 0.03 Endosulfan I 0.012, 0.025
3,5 Dichlorobenzoic acid 0.022 Endosulfan II 0.012, 0.025
Acifluorfen 0.03 Endosulfan Sulfate 0.012, 0.025
Alachlor 0.038,0.075 Endrin 0.012,0.025
Aldrin 0.038,0.075 Endrin Aldehyde 0.012, 0.025
Arochlor 1016 0.125, 0.25 Endrin Ketone 0.012, 0.025
Arochlor 1221 0.125, 0.25 Ethalfluralin 0.008, 0.015
Arochlor 1232 0.125,0.25 Far-Go (Triallate) 0.01, 0.02
Arochlor 1242 0.125, 0.25 Fenvalerate 0.062, 0.125
Arochlor 1248 0.125,0.25 Heptachlor 0.008, 0.015
Arochlor 1254 0.125,0.25 Heptachlor Epoxide 0.008, 0.015
Arochlor 1260 0.125,0.25 Hoelon 0.075
Arochlor 1262 0.125, 0.25 Lindane 0.008, 0.015
Atrazine 0.312,0.625 Malathion 0.025, 0.05
Bentazon 0.08 MCPA 3.75
BHC (alpha) 0.008, 0.015 Methoxychlor 0.025, 0.05
BHC (beta) 0.008, 0.015 Metolachlor 0.11,0.22
BHC (delta) 0.008, 0.015 Metrabuzine 0.025, 0.05
Bromoxynil 0.008 Parathion Ethyl 0.025, 0.05
Chlordane (alpha) 0.012, 0.025 Parathion Methyl 0.025, 0.05
Chlordane (gamma) 0.012, 0.025 Pendimethalin 0.012, 0.025
Chlorpyrifos 0.012, 0.025 Pentachlorophenol 0.006
DDD 0.012,0.025 Picloram 0.015
DDE 0.012, 0.025 Simazine 0.312,0.625
DDT 0.012,0.025 Toxaphene 0.25,0.5
Diazinon 0.012, 0.025 trans-Nonachlor 0.008, 0.015
Dicamba 0.015 Treflan (Trifluralin) 0.008, 0.015
Dichlorprop 0.04
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Summary

Sedimentation of riverine impoundments located on
national wildlife refuges is a concern for U.S. Fish and
Wildlife Service personnel charged with managing these
systems for migratory birds and other wildlife. The addition of
sediments can alter aquatic habitats (for example, distribution
and composition of vegetation) by reducing maximum pool
depths, and water quality can be reduced through addition
of sediment-associated chemical constituents (for example,
heavy metals, nutrients) and increased turbidity. Although
sedimentation of managed impoundments and large reservoirs
has been identified as a major problem in the United States,
comprehensive information pertaining to sedimentation rates
and chemical characteristics are lacking for most national
wildlife refuges.

Sedimentation rates were estimated and sediments were
characterized across a range of sites within Des Lacs, Upper
Souris, and J. Clark Salyer National Wildlife Refuges to sup-
port habitat management. It was apparent when examining
physical properties and radioisotopic activity profiles of sedi-
ment cores along the depth profile that depositional processes
associated with sedimentation of refuge impoundments were
highly variable with time. For example, the percentage of
sands and silts often varied greatly along the depth profile,
suggesting episodes of variable river flows and fluvial loads.
This conclusion was supported by highly variable streamflows
of the Des Lacs and Souris Rivers over a 55-year period.
Further, peak levels of '*’Cs associated with past deposition
often were observed in the near-surface sediments, indicating
sediment removal or mixing or both.

137Cs and 2'"Pb activity from the sediment cores was used
to estimate accretion rates for impoundments within the Souris
River Basin refuges that ranged from 0.22-0.35 cm/year,
depending on method of determination. These estimates are in
line with low estimates from similar systems in northeastern
South Dakota and northwestern Minnesota, and likely rep-
resent comparatively natural rates for these impoundments.
Moreover, no patterns in sedimentation rates were identified
along the upstream to downstream gradient, either within or
among refuges. Based on comparisons between the actual and
expected ¥’Cs inventory there does not appear to be signifi-
cant sediment accumulation as only 8 of 29 cores exceeded
the expected inventory, and only a single core exceeded the
expected inventory by more than 17 percent. Further, because
approximately 70 percent of cores had less *’Cs activity than
expected, there appears to be a high degree of sediment mobi-
lization and transport. Although the average accretion rates

among the three methods of determination only differed by
0.13 cm/year, variability did exceed 0.5 cm/year when exam-
ined on a core by core basis. This variability demonstrates the
difficulty of using radioisotopes to estimate sediment accre-
tion in systems with mixed sediments and low accumulation
rates. Nonetheless, radioisotope dating did provide sufficient
estimates for assessing overall sedimentation of the impound-
ments within Souris River Basin refuges.

A subset of sediment cores were analyzed for elements
and, based on overall mean concentrations and comparisons to
reported values, no elements were reported at levels deemed
excessively high. Similarly, surface sediment samples from all
sites were analyzed for agrichemicals, with no detectable lev-
els reported. Although concentrations of all elements appeared
to be within acceptable ranges, visual inspection of boxplots
indicated that concentrations of some elements, such as alumi-
num, boron, and vanadium, may be greater in the downstream
impoundments of J. Clark Salyer National Wildlife Refuge
than in the upstream impoundments of Des Lacs and Upper
Souris National Wildlife Refuges. However, no conclusions
should be drawn based on these apparent patterns without
further study.

Data pertaining to sedimentation rates and sediment qual-
ity of impoundments of the Souris River Basin refuges were
collected in response to an expressed management information
need. Based on information presented in this report, sediments
and their associated chemical constituents do not appear to
be accumulating to a great extent in refuge impoundments.
Instead, sediments seem to be regularly mixed, mobilized, or
redistributed elsewhere in the system. Further, transport of
sediments likely is variable throughout the system because
of differences in sediments contributed from the watershed,
river flows, and water-control structures. For example, areas
above a stop-log structure would likely accumulate sediments,
whereas areas associated with a radial gate would likely be
characterized by greater sediment transport.

This study was designed to provide an initial assessment
of impoundments in the Souris River Basin refuges by char-
acterizing a diversity of locations within each refuge that were
anticipated to cover a potential sedimentation gradient from
low to high. Future monitoring and research should focus on
areas with high potential for sediment accumulation, such as
upstream areas adjacent to dams, to identify critical or emerg-
ing management issues before habitats are negatively affected.
Further, assessments of suspended sediments transported in
the Des Lacs and Souris Rivers would augment interpreta-
tion of sedimentation data by identifying potential sediment
sources and areas with the greatest potential for accumulation.
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