
Summary of Hydrologic Modeling for the Delaware River 
Basin Using the Water Availability Tool for Environmental 
Resources (WATER)

Chenango

Schoharie

Greene

Ulster

Orange

Sullivan

Delaware

Broome

Susquehanna
Wayne

Pike

Luzerne Monroe

Carbon

North
ampton

Berks

Chester

Lancaster

Lehigh

Lebanon

Schuylkill

Kent

Sussex

AtlanticCecil

Cape
May

Salem

Cumberland

New
Castle

OceanBurlington

Montgomery

Gloucester

CamdenDelaware
Philadelphia

Lackawanna

Morris

Sussex

Warren

Bucks
Monmouth

Hunterdon

Mercer

42 °0 '0 "N

41 °0 '0 "N

40 °0 '0 "N

New development, in acres

2060

Temperature change factor, in degrees Celsius (°C)

0.8

1.0

1.2

1.4

0 1 2 3 4 5

●
Po

te
nt

ia
l e

va
po

tra
ns

pi
ra

tio
n 

ch
an

ge
 fa

ct
or

 (p
ro

po
rt

io
na

l)

1.0

1.2

1.4

●

1.0

1.2

1.4

●

1.0

1.2

1.4

CanESM2

NCAR-
CCSM4

GISS-
E2-H

GFDL-
ESM2G

Scientific Investigations Report 2015–5143
 

U.S. Department of the Interior
U.S. Geological Survey



Cover:  Left image shows forecasted development for 2060 in the Delaware River Basin (from figure 6B).  
Right image shows range of forecasted annual change in temperature and potential evapotranspiration for 2030 and 2060, (from figure 7B). 
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Preface

Development of the Water Availability Tool for Environmental Resources (WATER) for the 
Delaware River Basin (DRB) was done as part of a U.S. Geological Survey National Water 
Census Focus Area Study. The DRB Focus Area Study is part of implementation of the U.S. 
Department of Interior’s Secure Water Act to Sustain and Manage America’s Resources for 
Tomorrow (WaterSMART). WATER–DRB addresses multiple aspects of this WaterSMART work 
by providing a foundation on which to better understand streamflow, water use, and ecological 
water needs under current conditions and those associated with forecasted climate change and 
population expansion. This report documents data used to develop and inform the model, those 
hydrologic and hydroclimatic models encapsulated within WATER–DRB, and how this decision 
support system has been integrated with general circulation models and urbanization forecasts 
to provide resource managers with a way to objectively and consistently investigate water 
management strategies.
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[International System of Units to Inch/Pound]

Multiply By To obtain
Length

millimeter (mm) 0.03937 inch (in.)
meter (m) 3.281 foot (ft) 
kilometer (km) 0.6214 mile (mi)

Area
square kilometer (km2) 247.1 acre
square kilometer (km2) 0.3861 square mile (mi2)

Flow rate
cubic meter per second (m3/s) 35.31 cubic foot per second (ft3/s)
cubic meter per second (m3/s) 22.83 million gallons per day (Mgal/d) 
millimeter per year (mm/yr) 0.03937 inch per year (in/yr) 

Radiative forcing
watt per square meter (W/m2) 0.3170 British thermal unit per hour  

per square foot

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as:

°F = (1.8 × °C) + 32.

Temperature in degrees Fahrenheit (°F) may be converted to degrees  Celsius (°C) as:

°C = (°F – 32) / 1.8.

Datum

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Elevation, as used in this report, refers to distance above the vertical datum.

Supplemental Information

1 micrometer (µm) is 10-6 meter.

Carbon dioxide concentrations are given in parts per million (ppm).
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Abstract
The Water Availability Tool for Environmental Resources 

(WATER) is a decision support system for the nontidal part 
of the Delaware River Basin that provides a consistent and 
objective method of simulating streamflow under histori-
cal, forecasted, and managed conditions. In order to quantify 
the uncertainty associated with these simulations, however, 
streamflow and the associated hydroclimatic variables of 
potential evapotranspiration, actual evapotranspiration, and 
snow accumulation and snowmelt must be simulated and 
compared to long-term, daily observations from sites. This 
report details model development and optimization, statisti-
cal evaluation of simulations for 57 basins ranging from 2 to 
930 km2 and 11.0 to 99.5 percent forested cover, and how this 
statistical evaluation of daily streamflow relates to simulating 
environmental changes and management decisions that are 
best examined at monthly time steps normalized over multiple 
decades. The decision support system provides a database of 
historical spatial and climatic data for simulating streamflow 
for 2001–11, in addition to land-cover and general circula-
tion model forecasts that focus on 2030 and 2060. WATER 
integrates geospatial sampling of landscape characteristics, 
including topographic and soil properties, with a regionally 
calibrated hillslope-hydrology model, an impervious-surface 
model, and hydroclimatic models that were parameterized 
by using three hydrologic response units: forested, agricul-
tural, and developed land cover. This integration enables 
the regional hydrologic modeling approach used in WATER 
without requiring site-specific optimization or those stationary 
conditions inferred when using a statistical model.

Introduction
The Water Availability Tool for Environmental Resources 

(WATER) was constructed for the Delaware River Basin 
(DRB; fig. 1) to provide a decision support system (DSS) that 
could be used by regulators, managers, and other interested 
parties. The DRB WATER DSS (hereafter called WATER) 

employs a process-based hydrologic model that was imple-
mented with a spatial dataset that catalogues the spatial 
variability in topography, climate, soil properties, and anthro-
pogenic features that affect water movement in this five-state 
area (fig. 1).

WATER was developed and implemented by using his-
torical data; however, the ultimate goal was to provide a DSS 
that could simulate streamflow under a range of forecasted 
climatic and land-use scenarios. Initial work in the DRB 
focused on modeling of minimally impacted streams that were 
upstream of the reservoir system that provides public-supply 
water for the basin as well as New York City, New York. 
Streamflow was simulated for the period 2001–11, using the 
National Land Cover Database (NLCD), data from the Soil 
Survey Geographic (SSURGO) database, Daymet precipita-
tion and temperature data, and water-use data provided by 
the U.S. Geological Survey (USGS) National Water Census 
program; sources and details of these data are provided in 
the section “Framework of the WATER Decision Support 
System.” Because WATER was designed to use a standard 
set of data sources that are available for the entire study area, 
temperature-indexed equations were used to simulate snow-
pack and potential evapotranspiration (PET). To provide for 
reservoir management planning, streamflow simulations can 
be completed for inflow points to the reservoirs and formatted 
in the output required by the Delaware River Basin Commis-
sion’s DRB-Planning Support Tool (PST; DRBC [2015]), 
formerly the DRB-OASIS model (Hydrologics, 2002).  

WATER also interacts with a scenario-building tool 
(WATER Application Utilities) that provides a range of gen-
eral circulation model (also known as global circulation model 
or global climate model; GCM) datasets that use the change-
factor (delta [δ]) approach to synthesize a climate record for 
future conditions. This approach quantifies the difference for 
each GCM between historical and forecasted conditions for 
hydroclimatic variables; this difference is then applied to those 
historical data provided with WATER in order to create a new 
hydroclimatic record for the desired time period. The scenario 
builder also incorporates water-use data and reformats the 
simulated flow record into the desired output structure.
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Purpose and Scope

This report focuses on the aggregation and sampling of 
geospatial data, the hydrologic model approach, and the ability 
of WATER to simulate streamflow for historical conditions in 
the DRB. The uncertainty of historical simulations can be used 
to understand the uncertainty related to streamflow simula-
tion for forecasted conditions and scenario testing. However, 
although uncertainty associated with scenario testing is dis-
cussed in this report, results from scenario testing are intended 
to be discussed in separate publications.

Focus Area and Overall Approach of WATER

The DRB encompasses 35,075 square kilometers (km2; 
13,539 square miles [mi2]) and includes parts of Delaware, 
Maryland, New Jersey, New York, and Pennsylvania, includ-
ing the population centers of Wilmington, Delaware, Philadel-
phia, Pennsylvania, and Trenton, New Jersey, and a total popu-
lation in 2010 of approximately 8.2 million people (fig. 1). 
In addition, the basin supplies drinking water to New York 
City, N.Y. (essentially doubling the effective population), via 
an interbasin transfer that is supplied by a series of reservoirs 
in the northern part of the DRB. This interbasin transfer is 
managed in accordance with the 1954 Supreme Court decree 
that specifies a minimum flow requirement of 1,750 cubic 
feet per second (ft3/s) at Montague, NJ (U.S. Supreme Court, 
1954, 1982). A 1983 agreement later established a minimum 
flow requirement of 3,000 ft3/s at Trenton, NJ (DRBC, 2013). 
Because the DRB reservoir system is strictly managed on a 
daily basis, evaluation of WATER and the associated hydro-
climatic variables focused on basins upstream of this reservoir 
system.

Uses and Objectives of WATER

WATER was developed for users with the range of 
hydrologic understanding, geographic interest, and manage-
ment responsibility included in the DRB stakeholder group. 
Potential users include but are not limited to the following:

• university researchers focused on small subbasins 
where a historical streamflow record is not available;

• local water-resource managers tasked with determining 
the effect of new water-use permits;

• conservation managers working to establish stream-
flow-restoration goals;

• regional planners who need an objective and informed 
method for assessing expansion of developed areas in 
the coming decades; and

• those needing local or regional quantifications related 
to forecasted climate, including snowpack, grow-

ing season and presence of plant-available water for 
evapotranspiration (ET), and seasonal streamflow 
changes.

Consequently, the explanation of the hydrologic mod-
eling approach, data sources, and uncertainty (or error) of 
streamflow simulations are presented at multiple time steps 
and with different organizational approaches (for example, 
streamflow simulations can be compared as a function of land 
cover or organized by streamflow percentiles). Depending on 
the question being asked, WATER output should be used dif-
ferently and with a different approach to uncertainty, as in the 
following examples:

• Those simulating historical streamflow can use 
WATER output in its original form as daily streamflow 
because the original precipitation and temperature data 
were reported at a daily time step.

• Those asking questions involving forecasted climate 
(GCMs) are strongly discouraged from examining the 
daily WATER output. Instead, these users should focus 
on aggregated streamflow metrics, for example the 
flow-duration curve (FDC) or monthly averages across 
the entire period of record, because climate data are 
adjusted according to a forecasted, long-term, monthly 
change in climatic conditions.

The objectives of this report were to:
1. detail the spatial layers used by WATER to delineate 

basins and inform the hydrologic models;

2. document the incorporation of a 2010 snapshot of water 
use for the DRB;

3. explain how GCM data were processed and incorporated 
and how WATER simulates potential evapotranspiration 
(PET) and actual evapotranspiration (AET) for 2030 and 
2060 target conditions;

4. document the development and incorporation of land-
cover projections used to characterize 2030 and 2060 
target conditions;

5. compare hydroclimatic observations that affect the water 
budget of the landscape (snow accumulation and snow-
melt, PET, and AET) to those simulated by WATER;

6. quantify the uncertainty in daily streamflow simulations 
for the 2001–10 time period and how this uncertainty 
varies with land cover, basin size, and flow regime;

7. quantify the uncertainty in aggregated simulation results, 
including FDCs and monthly flow normals; and

8. explain how uncertainty in streamflow simulations can 
be incorporated into scenario testing.
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Framework of the WATER Decision Support 
System

WATER integrates geospatial sampling of landscape 
characteristics with a hillslope-hydrology model and an imper-
vious-surface model in order to simulate water movement to 
streams in the DRB. The hillslope-hydrology model underly-
ing WATER, TOPMODEL (Beven and Kirkby, 1979), is a 
rainfall-runoff model that is based on a water-budget approach 
and simulates hillslope water movement as a function of 
topographically defined landscape positions. TOPMODEL is 
process based and simulates the variable-source-area concept 
of streamflow generation from pervious areas (in other words, 
areas where precipitation infiltrates into the soil) by combin-
ing these topographic landscape positions with basin soil 
characteristics (Wolock, 1993). TOPMODEL assumes three 
conditions:

•	 steady-state recharge to the groundwater,

•	 a hydraulic gradient of the water table that approxi-
mates that of the surface slope, and

•	 soil-water movement that decreases exponentially with 
depth.

WATER combines streamflow simulation from TOP-
MODEL for pervious areas with an estimation of runoff 
from impervious surfaces derived by using the curve num-
ber approach described in U.S. Department of Agriculture 
(USDA) Technical Release 55 (TR–55; USDA, 1986). To 
inform these models and differentiate pervious from impervi-
ous areas, WATER geospatially samples climatic, land-cover, 
topographic, and soils data for the basin of interest (table 1 
and fig. 2; details of different DSS processes are discussed 
in the sections "Data Sources and Processing of Data for 
WATER" and "Model Development, Statistical Evaluation, 
and Validation of Hydroclimatic Components of WATER"). 
The hydrologic models are driven by a daily precipitation and 

temperature record, and WATER provides mean daily stream-
flow. Hydroclimatic variables, including PET and snow accu-
mulation and snowmelt, are simulated within DRB WATER 
through the use of temperature-indexed equations (Hamon, 
1963; U. S. Army Corps of Engineers [USACE], 1998); AET 
is calculated by TOPMODEL on a daily time step on the basis 
of a combination of PET and soil-water storage. Disposition 
of precipitation as infiltration, overland flow, and soil-water 
storage and movement are simulated by TOPMODEL as a 
function of soil characteristics, including soil thickness, pore-
size distribution, and saturated hydraulic conductivity (Ksat). 
Any remaining precipitation infiltrates into the soil, and the 
soil-water storage is then equilibrated with the rest of the soil 
thickness before gravity drainage delivers water to either a 
downslope landscape position or to streamflow. This stream-
flow is then combined with runoff generated from impervi-
ous surfaces in the basin (TR–55). Soil-water storage is then 
averaged for the entire basin as a mass balance (equation 2). 
Simulated streamflow generated from forested, agricultural, 
and developed areas are then added to obtain daily streamflow.

WATER is a DSS that is based on a regional model-
ing approach, meaning that the model works with the same 
parameterization in all areas of the basin. WATER is able to 
model areas with specificity because it uses geospatial data 
layers that catalog differences in land use, soil conditions, and 
topography on a cell size less than or equal to (≤) 30 meters 
(m), with no site-specific optimization (Williamson and others, 
2009, 2013); instead, parameters were optimized as a func-
tion of land cover. By using this regional approach, with 
no site-specific optimization, this process-based simula-
tion of streamflow and the water budget can be used to 
examine management scenarios that involve forecasted 
climate change, expansion of urban and suburban areas, 
and restoration goals of minimally impacted flow environ-
ments. In contrast, statistical models cannot be used to model 
nonstationary conditions like those associated with land-cover 
and climate change (Farmer and others, 2015).

Table 1. Data sources and citations for the Delaware River Basin Water Availability Tool for Environmental Resources.

[WATER, Water Availability Tool for Environmental Resources; SSURGO, Soil Survey Geographic; NRCS, Natural Resources Conservation Service; 
DEM, digital elevation model; TWI, topographic wetness index; HRU, hydrologic response unit]

Data source Contribution to WATER

Daymet (Thornton and others, 2012)
http://daymet.ornl.gov/index.html

Daily temperature and precipitation data for 1980–2011

National Elevation Dataset (Gesch and others, 2002)
http://ned.usgs.gov/

Elevation data (as DEM) used for basin delineation and  
TWI calculations

2011 National Land Cover Database (Jin and others, 2013)
http://www.mrlc.gov/

HRUs and impervious area

Soil Survey Geographic (SSURGO) database 
(SSURGO; NRCS, 2014)
http://datagateway.nrcs.usda.gov/

Hydrologic soil characteristics and TOPMODEL specific parameters

http://ky.water.usgs.gov/projects/waterbudget/
http://daymet.ornl.gov/index.html
http://ned.usgs.gov/
http://www.mrlc.gov/
http://datagateway.nrcs.usda.gov/
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Figure 2. How the Water Availability Tool for Environmental Resources samples geospatial data and feeds it to the two hydrologic 
models (TOPMODEL and the U.S. Department of Agriculture urban hydrology model [TR–55]). The basin is apportioned into three 
hydrologic response units (HRUs). Daily precipitation is sampled from Daymet and proportionally distributed between pervious and 
impervious areas. Potential evapotranspiration (PET) is estimated from Hamon (1963). Actual evapotranspiration (AET) is removed from 
soil-water storage in the root zone (table 2), and the remainder infiltrates into the soil. The soil-water storage is then equilibrated with 
the rest of the soil thickness before gravity drainage delivers water either to the next topographic-wetness-index (TWI) bin (bins 1 
to n–1; n=30) or to streamflow. Soil-water storage for the entire basin is then averaged using a mass balance (equation 2). Simulated 
streamflow generated from three separate HRUs is then summed to obtain daily streamflow. DEM, digital elevation model;  
ET, evapotranspiration; NLCD, National Land Cover Database; SSURGO, Soil Survey Geographic database; >, greater than; <, less than.
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The WATER developed for the DRB includes the entire 
basin. For some areas, streamflow simulations derived with 
WATER should be used cautiously. For example, WATER 
provides no method of simulating the influence of tides on 
streamflow that would be expected in stream reaches south 
of Trenton, N.J., along the Delaware River, and in tributaries 
along Delaware Bay (fig. 3). In addition, WATER does not 
take into account the daily controlled releases from dams and 
reservoirs in the basin, so it will not accurately simulate flows 
on large rivers affected by these releases. These rivers include, 
in particular, the entire length of the main-stem Delaware 
River, but also parts of the Neversink, Lackawaxen, Mongaup, 
Lehigh, Schuylkill Rivers and Brandywine Creek, as well 
as other locations (fig. 3). In anticipation of this constraint, 
WATER was designed to output data at river locations (nodes) 
known to be inflow points for the DRB-PST (DRBC, 2015) 
and is compatible with this reservoir operation support tool. If 
WATER is used to simulate streamflow for areas that include 
reservoirs, they will be treated as areas with any other water 
bodies. Consequently, users should be familiar enough with 
their area of interest to understand whether streamflow is con-
trolled by reservoir management.

Relation of Delaware River Basin WATER to 
Previous Studies

WATER is built upon a physically based hydrologic 
model that simulates the variable-source-area concept of 
streamflow and is an extension of the TOPMODEL code 
described in Wolock (1993). The TOPMODEL code was origi-
nally developed by Beven and Kirkby (1979); however, many 
researchers have extensively modified the code, and numer-
ous versions of TOPMODEL now exist in several program-
ming languages (e.g. Robson and others, 1992; Romanowicz, 
1997; Metcalfe and others, 2014). TOPMODEL has been used 
to study a variety of hydrologic research topics, including 
topographic effects on water quality (Wolock, 1988; Wolock 
and others, 1990; Wolock and McCabe, 1999), topographic 
effects on streamflow (Beven and Wood, 1983; Beven and oth-
ers, 1984; Kirkby, 1986), spatial-scale effects on hydrologic 
processes (Sivapalan and others, 1987; Beven and others, 
1988; Wood and others, 1988; Sivapalan and others, 1990; 
Wood and others, 1990; Famiglietti and Wood, 1991; Fami-
glietti, 1992), and the geomorphic evolution of basins (Ijjász-
Vásquez and others, 1992). TOPMODEL has also been used 
for estimating regional-scale variability in hydrologic prop-
erties in the United States (Wolock, 2003), flood frequency 
(Beven, 1986a, b), effects of climate change on hydrologic 
processes (Wolock and Hornberger, 1991), soil-water storage 
(Williamson and others, 2014), carbon budgets (Band and 
others, 1991), base-flow residence times (Vitvar and others, 
2002), and ecological-flow factors (Kennen and others, 2008). 
Finally, TOPMODEL has been used to reveal interactions 
among variables in model-parameter calibration (Hornberger 
and others, 1985; Wolock, 1988; Wolock and McCabe, 1995; 

Williamson and others, 2013), including how input data must 
change with a change in digital-data resolution (Brasington 
and Richards, 1998).

WATER for the DRB builds on previous hydrologic 
modeling in New Jersey (Kennen and others, 2008) and is an 
updated version of the DSS developed in Kentucky (William-
son and others, 2009, 2013). New functionality in WATER for 
the DRB includes estimates of snow accumulation and melt-
ing as well as implementation of a hydrologic response unit 
(HRU) approach that is based on three general land-cover cat-
egories: forested, agricultural, and developed areas. This HRU 
refinement enabled multiple aspects of the WATER approach 
by differentiating the interaction among the topography, soil 
characteristics, and hydroclimatic variables critical to TOP-
MODEL and how it simulates the water-budget and hillslope 
processes among the HRUs. Consequently, data sources and 
parameterization discussed in the following section are unique 
to WATER for the DRB.

Data Sources and Processing of Data 
for WATER

WATER is provided with a database of model inputs for 
the 2001–11 period because this is the temporal overlap of the 
many data layers required to inform the model. Limitations 
leading to the selection of this time period are the intersection 
of the historical climate record (1980–2011), the generation 
of land-cover data (2011), and the water-use snapshot (2010). 
Other data (for example, topography and soil data) are not 
time sensitive. Each of these data sources is encapsulated 
within WATER to provide all of those data required to simu-
late streamflow and water availability. Unless otherwise stated, 
all geospatial data are at a 10-m resolution in the North Ameri-
can Datum of 1983 Albers Equal Area Projection using the 
Geodetic Reference System 1980 spheroid. All geoprocessing 
was done with ArcMap 10.0 (https://www.arcgis.com). Output 
of the hydrologic simulations is provided on daily (WATER.
txt), monthly (WATERMonth.txt), and annual (WATERAn-
nual.txt) time steps and can be imported by the user into a 
spreadsheet or statistical program for analysis.

As described in the section “Framework of the WATER 
Decision Support System,” WATER uses a hydrologic model-
ing approach that depends on the accompanying spatial layers 
of topography, soil properties, and climatic data to simulate 
precipitation disposition throughout the DRB (fig. 2). HRUs 
are delineated by intersecting an individual basin (either delin-
eated by WATER or provided by the user) with the land cover 
in order to separate forested, agricultural, and developed areas; 
each HRU may include multiple, discontinuous areas with 
similar land cover. WATER then calculates an arithmetic mean 
for each spatial layer for each HRU; currently, this process 
uses the Spatial Analyst extension in ArcGIS 10.0. To optimize 
the incorporation of these geospatial data with the hydrologic 
modeling, a subset of ten parameters (table 2) that control the 

https://www.arcgis.com
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Table 2. Parameters optimized for regional hydrologic simulations with the Water Availability Tool for Environmental Resources. These 
parameters control the soil-plant-water interactions and how they differ among hydrologic response units. These parameters also equip 
the model for scenario testing in terms of both land-cover and climate forecasts.

[Color coding is included to highlight the parameters related to TOPMODEL (white), interaction with water bodies (grey), impervious-surface runoff (blue), 
snow accumulation (purple), and evapotranspiration (green). AET, actual evapotranspiration; ET, evapotranspiration; >, greater than; km2, square kilometers; 
NLCD, National Land Cover Database; TR–55, U.S. Department of Agriculture Technical Release 55; USDA, U.S. Department of Agriculture;  
mm/d/°C, millimeters per day per degree Celsius; USACE, U.S. Army Corps of Engineers; PET, potential evapotranspiration; HRU, hydrologic response unit]

Parameter Parameter alias Application and unit
Hydrologic response unit

Forested Agricultural Developed

Spatial coefficient spatialcoeff Used to calculate scaling parameter (m)  
for TOPMODEL

0.4 0.3 0.25

Topographic  
adjustment

wiadjustment Adjusts topographic-wetness-index values  
in histogram for TOPMODEL

1 1 0.5

Rooting depth factor rootdepthfactor Proportion of soil thickness used for ET in  
TOPMODEL

0.75 0.25 0.75

Travel through  
macropores

percentmacropore Proportion of precipitation that bypasses ET  
soil thickness in TOPMODEL

0.15 0.15 0.2

Water-body delay lakedelay days—proportional increase in days that water  
is delayed if upstream of a water body;  
water bodies >10 acre (0.04 km2) 

15 1.5 1.5

Effective impervious effimpervious Multiplied by NLCD value to change total  
impervious surface for study area

0.7 1 1

Impervious runoff 
delay

imperviousrunoff Proportion of precipitation delayed to next day  
from impervious surface and TR–55 calculations

0.1 0.5 0.1

Impervious curve 
number

imperviouscurve TR–55 parameter that characterized type of  
impervious surface (USDA, 1986)

90 90 100

Snowmelt coefficient snowcoeff mm/d/°C above 0 (USACE, 1998) for snowmelt 2 2 4

Rain-on-snowmelt 
coefficient

rainonsnowcoeff mm/d/°C above 0 (USACE, 1998) for snowmelt 3 4 6

Exponent for  
seasonal AET etexponent

Exponent

calculated storagesoilmaximum
storagesoilPETAET 










×=

0.5 
(growth)

5 
(dormant)

Growing season  
trigger

growtemp °C—transitions to/from growing season  
exponent for AET calculation 15
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Figure 3. Parts of the Delaware River system for which streamflow information from the  
Water Availability Tool for Environmental Resources should be used cautiously because of stream 
regulation and tidal influences.
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interaction of topography and vegetation with precipitation 
disposition was regionally optimized for the individual DRB 
HRUs (forested, agricultural, and developed land cover) to 
create the best fit for streamflow observations in basins with 
relatively homogeneous land cover. This regional approach 
to HRU optimization followed Williamson and others (2009) 
and incorporated parameter exploration (Doherty, 2008); this 
approach was used instead of site-specific optimization to 
identify a single set of HRU parameters that work throughout 
the DRB. An additional four parameters were optimized for 
simulation of snowmelt and accumulation as well as ET.

Data sources can be separated into those that inform the 
hydrologic models, those used for optimization and statisti-
cal validation of WATER simulations, and those that enable 
scenario testing. Data that inform the hydrologic models and 
those that enable scenario testing are included in the WATER 
database and WATER Application Utilities. The optimiza-
tion and statistical validation discussed in the section “Model 
Development, Statistical Evaluation, and Validation of Hydro-
climatic Components of WATER” provides a reference for 
understanding the potential error and uncertainty associated 
with hydrologic simulation (1) where no observations exist 
and (2) for forecasted or proposed scenarios in basin manage-
ment or environmental change.

Data That Inform the Models

Data required for the hydrologic models (TOPMODEL 
and TR–55) to run include daily precipitation and temperature 
as well as basin characteristics that quantify topography and 
the potential to store water in the soil. In addition, parameters 
that describe how these basin characteristics interact and how 
water moves through the soil to the stream are derived with 
these same data.

Topography
Topographic data are from the 10-m resolution National 

Elevation Dataset (NED; Gesch and others, 2002). These data 
are used for three purposes: (1) basin delineation, (2) devel-
opment of a digital elevation model (DEM)-derived stream 
network, and (3) development of the topographic wetness 
index (TWI). Because WATER was developed to analyze 
basins from physiographically diverse terranes, hydrologic 
parameters such as stream-channel width and the drainage 
area required to initiate channelized streamflow had to be uni-
formly defined. To estimate stream-cell area, the stream net-
work raster was developed by applying the following criteria:

1. Streams were defined as 1 cell wide for the entire net-
work.

2. Streams were initiated after accumulating a total of 
0.3 km2 (3,000 10-m cells) upstream area by using the 
Arc Hydro Flow Accumulation tool (with a single-flow-
direction algorithm; https://www.arcgis.com).

These two flow-accumulation criteria area were estab-
lished to include first-order, perennial, channelized drainages 
while excluding small, ephemeral, hillslope systems.

Basins are delineated within WATER by using a com-
bination of flow-direction and flow-accumulation rasters, 
combined with 3,736 predelineated, DEM-derived polygons 
that range in size from 0.0001 to 132.4 km2, with a mean area 
of 9.4 km2 and median of 7.6 km2. These predelineated basins 
were produced by using Arc Hydro (https://www.arcgis.com) 
and make the basin delineation process faster by providing a 
sequenced network of basins that can be aggregated into the 
site-specific basin delineation. Although the USGS National 
Hydrography Dataset (http://nhd.usgs.gov; U.S. Geological 
Survey and others, 2009) is used to help orient the user in 
the WATER graphical user interface (GUI), WATER uses the 
DEM-derived stream network to delineate basins and calculate 
stream area. The result is that WATER can be used to delineate 
a new basin from a pour-point (basin outlet) that is anywhere 
on the DEM-derived stream network.

The TWI raster used by TOPMODEL (discussed below) 
was developed from these same flow-direction and flow-accu-
mulation rasters. Because TWI values along stream channels 
do not reflect hillslope processes (Quinn and others, 1997), 
these high values were removed. This prevents cells with high 
TWI values from altering the TWI distribution for a given 
basin while still maintaining a representative riparian zone to 
serve as a variable source area for streamflow.

Climate Data
The Daymet historical climate record was originally at a 

resolution of 1 km2 (Thornton and others, 2012), and a geospa-
tial mean was sampled by using the 3,736 DEM-derived poly-
gons and processed by the USGS Geo Data Portal (http://cida.
usgs.gov/gdp/). These Daymet data were geospatially sampled 
and supplied as part of the database in order to provide a long 
period of record with a minimum of processing time, and 
they include a historical record from January 1, 1980, through 
December 11, 2011. These data include maximum daily 
temperature and total daily precipitation. Total daily precipi-
tation is randomly distributed during each day by WATER 
using a set seed, or starting point, so that the randomization is 
the same every time the model is run—this insures reproduc-
ibility of results and comparability of results among histori-
cal and forecasted conditions. This randomization distributes 
the daily total of precipitation to individual hours in the day; 
TOPMODEL functions on an hourly time step on days with 
precipitation. WATER uses maximum daily temperature to 
estimate daily PET (Hamon, 1963), and the accumulation and 
melt of snow (USACE, 1998), by using temperature-indexed 
equations; this is discussed in “Hydroclimatic Water-Budget 
Components” in more detail. Precipitation and temperature 
data are stored in the WATER database as text files for those 
3,736 DEM-derived polygons.

https://www.arcgis.com
https://www.arcgis.com
http://cida.usgs.gov/gdp/
http://cida.usgs.gov/gdp/
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Land Cover
The land-cover raster in the WATER database is NLCD 

2011 (Jin and others, 2013), although initial development of 
WATER proceeded with NLCD 2006 until more recent data 
were published. The NLCD 2011 dataset has a 30-m resolution 
and is used for two purposes: (1) delineation of the forested, 
agricultural, and developed HRUs and (2) calculation of basin 
averages of impervious area.

These HRUs are a simplification of land cover into three 
categories: forested (deciduous, evergreen, mixed, shrubland, 
and wetland areas; NLCD classes 41–43, 51–52, and 90–95), 
agricultural (pasture and cropland; NLCD classes 81 and 
82), and developed (all remaining categories; NLCD classes 
21–24, 31, and 71). The DSS initially classifies open water 
(NLCD class 10) as developed because it does not match 
either the forested or agricultural land-cover categories, but 
the DSS later  reassigns it as water.

The proportion of impervious surface area in the basin is 
estimated from a combination of the 2011 NLCD and a road 
layer (10-m resolution 2010 NAVTEQ; Homeland Security 
Infrastructure Program [2012]). WATER allocates a propor-
tion of precipitation to the TR–55 impervious flow model on 
the basis of the proportion of impervious surface in the basin. 
The remaining precipitation is distributed for the pervious 
portion of the basin as a function of hillslope hydrology by 
TOPMODEL.

Soils Data
Representative values of soil parameters were aggregated 

from the SSURGO database by using a series of queries in 
Microsoft Access; these parameters include Ksat, soil thickness, 
field capacity (fc), total porosity, and available water-holding 
capacity (awc). Similarly to the case with NLCD, develop-
ment of WATER originally proceeded with data downloaded 
in 2012 (Natural Resources Conservation Service [Soil Survey 
Staff [NRCS], 2012]), but the newer SSURGO (Soil Survey 
Staff [NRCS], 2014) product was used to replace these 2012 
data during the validation process, and are provided in the 
WATER database; this was done to incorporate recent correla-
tions among counties on the basis of discussion with NRCS. 
Soil-property data were upscaled from soil-layer data (cor-
responding to one or more horizons) to component-weighted 
means (corresponding to one or more soil series) for each 
soil-mapping unit after Williamson and others (2014) and were 
joined to spatial data by using the unique identifiers of soil-
mapping-unit polygons. These polygons, attributed with indi-
vidual soil parameters, were then converted to a 10-m raster to 
match that of the DEM and used for geospatial statistics.

For compilation of this database, soil thickness was 
defined as the sum of the soil layers for which the representa-
tive Ksat reported in the SSURGO database was greater than 
(>) 1 micrometer per second (µm/s)—approximately the con-
ductivity of a silty sand (Dingman, 2002). This is equivalent 

to choosing all soil layers for which Ksat is “moderately high 
or higher” as defined by the Natural Resources Conservation 
Service (Soil Survey Staff [NRCS], 1993). The elimination 
of layers with Ksat ≤1 µm/s is based on previous work that 
showed that these subsoil layers are not involved in the daily 
hydrologic processes simulated by TOPMODEL (William-
son and others, 2009). Consequently, the first query run on 
SSURGO data eliminated all soil layers that did not meet this 
criterion. The remaining soil layers were used to determine the 
soil thickness. Other soil properties, including fc, total poros-
ity, and awc were upscaled by using the same soil layers.

Linking Topographic and Soil Data for Hydrologic 
Models

In addition to the soil properties listed above, two other 
hydrologic properties—the conductivity multiplier (conmult) 
and the scaling parameter—were calculated for each mapping 
unit. The conmult estimates the relative change in Ksat with 
depth:

 
  
conmult = Ksat-high

Ksat-low , (1) 

where
 Ksat-high is maximum Ksat value for the soil map unit 

and
 Ksat-low is minimum Ksat value for the soil map unit for 

which the representative Ksat is >1µm/s in 
the SSURGO database.

A smaller conmult indicates less change in Ksat with depth. 
Within the WATER database, the minimum conmult is 2, 
indicating that the Ksat at the surface is twice that at the base 
of the soil. TOPMODEL incorporates this vertical change in 
Ksat movement to simulate soil-water movement through the 
hillslope. 

The scaling parameter (m) incorporates the conmult 
and is used by TOPMODEL to estimate spatial variability in 
saturation deficit across the landscape by linking the mean 
saturation deficit, or unfilled pore space in the soil, with the 
local difference in the topography (after Beven, 1984):

                                                                     ,                     (2)

where
 Sx is local saturation deficit in a grid cell  

(10-m cells);
 

S S SpCf m TWI TWIx x= + × −( )( )

S  is mean saturation deficit in basin;
 m is scaling parameter;
 SpCf is HRU-specific spatial coefficient determined 

during model optimization; 
 TWI  is mean topographic wetness index in basin 

(discussed below); and
 TWIx is local topographic wetness index in grid 

cell;
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with                                                               ,                          (3)m porosity field capacity
f

≡
−  

. (4)

Optimization for the individual HRUs, following the approach 
of Williamson and others (2009) and incorporating param-
eter exploration (Doherty, 2008), showed that streamflow 
simulation improved when the m directly calculated from 
the SSURGO database was multiplied by the HRU-specific 
spatial coefficient (SpCf; table 2) to empirically fit the relation 
between soil-water deficit and topography, given the resolution 
of those spatial data and the three different land-cover types. 
The scaling parameter (m) acts directly on the deficit calcula-
tion (equation 2). The magnitude of this parameter is critical 
to how much water is retained in the soil pores during dry 
periods and to the resultant hydrograph response in terms of 
flood peaks. A larger m results in an exaggeration of the topog-
raphy (quantified by the TWI), resulting in more downslope 
movement of soil water and smaller peak flows in the stream. 
To optimize discharge estimates, some TOPMODEL-based 
research has estimated the conmult and m parameters with-
out always maintaining the numerical link indicated by the 
equations (for example Band and others, 1993; Pellenq and 
others, 2003); this type of parameterization is not feasible 
without site-specific optimization, so it is not done for the 
regional approach used by WATER. Brasington and Richards 
(1998) showed that the magnitude of m is related to the spatial 
resolution of the input data and that, when DEM rasters on 
the order of 20 m are used, a laboratory-determined Ksat and 
correspondingly small m value produced the most accurate 
results. Use of this HRU-specific spatial coefficient (SpCf) 
allows the regional modeling approach to proceed by inform-
ing the model with spatially detailed soils data. At the same 
time, this spatial coefficient makes use of an optimization that 
has shown that the relation between the soil and topography 
differs for the different HRUs.

TOPMODEL uses a numerical characterization of land-
scape position called the topographic wetness index (TWI) to 
simulate streamflow and hillslope hydrology:

and ln conmultf
soil thickness

=

                    

ln
tan

ATWI
β

 
=  

 
 ,         (5)

where
 A is upslope contributing area per unit contour 

width (meters) and
 β is local slope (degrees) of individual cells 

(that is, in the 10-m DEM resolution).
In general, lower TWI values indicate drier positions on the 
landscape (such as drainage divides and steep slopes); higher 
TWI values indicate wetter landscape positions (such as 
riparian areas). However, because the TWI incorporates both 
local slope and upslope area, it is possible for the TWI value 

to either decrease or increase from one cell to another in a 
downslope direction. Therefore, instead of basing computa-
tions on the TWI value of individual cells in a basin, TOP-
MODEL classifies the cells into a histogram (WATER uses a 
30-bin histogram), and each bin of cells from the histogram, 
a quantitative representation of landscape position, is dealt 
with as a group on the basis of the mean TWI value of that 
bin; this mean TWI value is adjusted for developed areas by 
using the topographic adjustment parameter to decrease the 
topographic gradient and account for localized water retention 
(table 2). All of the cells from each bin are treated the same 
way for all future calculations; the TWI value for each bin for 
an individual basin is a constant and is used to calculate the 
changes in the local saturation deficit (equation 2 and fig. 2) 
on the principle that cells with a similar TWI value will have 
a similar hydrologic response (Beven and Kirkby, 1979). It is 
the integration of this approach to topography with a spatially 
detailed description of soil properties that enables the regional 
hydrologic modeling approach used in WATER without requir-
ing site-specific optimization.

Data Used for Validating Simulations

Although a primary intention of WATER is to provide the 
ability to estimate streamflow at ungaged locations, the model 
development, optimization, and statistical evaluation docu-
mented in this report would be impossible without long-term 
streamflow monitoring sites. Statistical evaluation of model 
performance is an important part of developing WATER for 
a large region like the DRB—this involves comparison of 
WATER simulations to observations from long-term stream-
flow gages and other types of hydroclimatic monitoring. This 
statistical evaluation, in turn, allows the user to have confi-
dence in WATER simulations and incorporate these results 
into the decision-making process.

Historical Streamflow and Optimization-
Validation Basins

Observed mean daily streamflow (National Water 
Information System [NWIS] parameter code 00060; http://
waterdata.usgs.gov/nwis) was first used to optimize hydro-
logic parameters (table 2) and then used to statistically 
evaluate mean daily streamflow simulated by WATER and 
to validate model output after development was completed. 
USGS streamgage sites were selected on the basis of the 
availability of streamflow data for 3 to 10 years during the 
2001–10 time period. An additional selection criterion was 
that gaged streams be unaffected by reservoir releases or flow 
regulation. WATER parameters (table 2), most of which are 
HRU-specific, were optimized by using observations from 
21 streamgage sites in the DRB (table 3 and fig. 4), each of 
which consisted primarily of a single HRU (either forested 
[>75 percent], agricultural [>60 percent], or developed [>70 
percent] land cover); one of these sites, USGS site 01466500, 

http://waterdata.usgs.gov/nwis
http://waterdata.usgs.gov/nwis
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Table 3. Fifty-eight USGS streamgage sites in the Delaware River Basin used for model optimization and statistical evaluation 
of simulations of the Water Availability Tool for Environmental Resources (WATER). Those 21 basins with relatively homogeneous 
land cover, consisting primarily of a single hydrologic response unit (HRU), were used for optimization of select WATER parameters 
(table 2); mixed land-cover basins were used to statistically evaluate select WATER parameters and to optimize incorporation of 
water-use data; nine basins were set aside for final testing of model performance. Basins were only included if the streamgage 
period of record overlapped with the climatic and land-cover datasets used by WATER. Only complete water years (October through 
September of the following year) were included. Locations are shown in figure 4.—Continued

[Optimization and statistical evaluation use numbers, with percentages based on NLCD 2006: a, greater than (>) 60 percent agricultural; d, >70 percent  
developed; f, >75 percent forested; m, mixed land cover; t, test basin. USGS, U.S. Geological Survey; ID, identification number; mi2, square miles;  
km2, square kilometers; %, percent; NJ, New Jersey; NY, New York; PA, Pennsylvania; U.S. United States; DE, Delaware; PET, potential evapotranspiration; 
AET, actual evapotranspiration]

USGS site ID and name

Drainage area Hydrologic response unit (%)
Optimization 

and
validation 

use 

Period of 
record

(water years)
Begin      End

Complete 
years(mi2) (km2) Forested Agricultural Developed

01411500 Maurice River at 
Norma NJ

111.3 288.3 48.5 23.6 27.9 m 1933 2010 9

01413500 East Branch 
Delaware River 
at Margaretville 
NY

163.2 422.9 87.6 8.2 4.2 f 1937 2010 9

01414500 Mill Brook near 
Dunraven NY

25.1 65.1 93.8 3.9 2.3 f 1937 2010 9

01415000 Tremper Kill near 
Andes NY

33.1 85.7 79.0 17.3 3.7 f 1937 2010 9

01420500 Beaver Kill at 
Cooks Falls NY

242.4 628.0 93.2 2.4 4.4 f 1914 2010 9

01421618 Town Brook 
southeast of 
Hobart NY

14.3 37.0 64.9 32.4 2.7 t 1999 2010 9

01421900 West Branch 
Delaware River 
upstream from 
Delhi NY

134.4 348.2 64.0 31.0 5 t 1937 2010 9

01422389 Coulter Brook 
near Bovina 
Center NY

0.8 2.0 99.5 0.0 0.5 f 1999 2010 7

01422500 Little Delaware 
River near 
Delhi NY

49.8 129.1 75.4 19.5 5.1 f 1938 2010 9

01422738 Wolf Creek at 
Mundale NY

0.6 1.6 69.2 26.5 4.3 m 2000 2010 7

was only used for estimating a monthly water budget for ET 
optimization because it is a swamp, so it does not meet the 
underlying requirements for using TOPMODEL. An additional 
28 streamgage sites with a mix of land cover were then used 
for validation of optimized model parameters and refinement 
of how water-use data were incorporated (discussed in “Water-
Use Data Provided in WATER Application Utilities”). Finally, 

nine streamgage sites were tested after all model development 
had been completed. This brings the total to 57 sites that were 
used to statistically evaluate hydrologic simulations. In the 
remainder of the report, the terms “site” and “basin” are used 
interchangeably because WATER samples basin properties and 
simulates streamflow generated within a basin that delineates 
the total area upstream of a site along a stream.
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Table 3. Fifty-eight USGS streamgage sites in the Delaware River Basin used for model optimization and statistical evaluation of 
simulations of the Water Availability Tool for Environmental Resources (WATER). Those 21 basins with relatively homogeneous land 
cover, consisting primarily of a single hydrologic response unit (HRU), were used for optimization of select WATER parameters (table 
2); mixed land-cover basins were used to statistically evaluate select WATER parameters and to optimize incorporation of water-use 
data; nine basins were set aside for final testing of model performance. Basins were only included if the streamgage period of record 
overlapped with the climatic and land-cover datasets used by WATER. Only complete water years (October through September of the 
following year) were included. Locations are shown in figure 4.—Continued

[Optimization and statistical evaluation use numbers, with percentages based on NLCD 2006: a, greater than (>) 60 percent agricultural; d, >70 percent devel-
oped; f, >75 percent forested; m, mixed land cover; t,  test basin. USGS, U.S. Geological Survey; ID, identification number; mi2, square miles; km2, square 
kilometers; %, percent; NJ, New Jersey; NY, New York; PA, Pennsylvania; U.S. United States; DE, Delaware; PET, potential evapotranspiration;  
AET, actual evapotranspiration]

USGS site ID and name

Drainage area Hydrologic response unit (%)
Optimization 

and
validation 

use 

Period of 
record

(water years)
Begin      End

Complete 
years(mi2) (km2) Forested Agricultural Developed

01422747 East Brook east of 
Walton NY

24.7 63.9 63.9 31.3 4.8 m 2000 2010 9

01423000 West Branch  
Delaware River 
at Walton NY

331.9 859.9 67.2 27.1 5.7 m 1951 2010 9

01424108 Sherruck Brook 
Tributary near 
Trout Creek NY

1.3 3.3 97.7 0.0 2.3 m 1999 2007 6

01428750 West Branch 
Lackawaxen 
River near 
Aldenville PA

40.6 105.1 60.8 31.0 8.2 t 1987 2010 9

01435000 Neversink River 
near Claryville 
NY

66.7 172.7 98.9 0.2 0.9 f 1938 2010 9

01439500 Bush Kill at Shoe-
makers PA

117.2 303.7 89.7 0.0 10.3 f 1909 2010 9

01440000 Flat Brook near 
Flatbrookville 
NJ

65.1 168.5 89.3 6.2 4.5 f 1924 2011 9

01440400 Brodhead Creek 
near Analomink 
PA

67.5 174.8 90.2 1.0 8.8 f 1958 2010 9

01442500 Brodhead Creek at 
Minisink Hills 
PA

260.6 675.0 74.5 4.0 21.5 f 1951 2010 9

01443500 Paulins Kill at 
Blairstown NJ

126.1 326.7 59.4 23.9 16.7 m 1922 2011 9

01445000 Pequest River at 
Huntsville NJ

31.0 80.2 66.0 17.2 16.8 m 1940 2011 8

01445500 Pequest River at 
Pequest NJ

106.1 274.9 60.5 26.1 13.4 m 1922 2011 9

01446000 Beaver Brook near 
Belvidere NJ

36.6 94.9 52.8 37.0 10.2 m 1923 2011 7

01447500 Lehigh River at 
Stoddartsville 
PA

91.8 237.7 88.2 0.3 11.5 t 1944 2010 9
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Table 3. Fifty-eight USGS streamgage sites in the Delaware River Basin used for model optimization and statistical evaluation of 
simulations of the Water Availability Tool for Environmental Resources (WATER). Those 21 basins with relatively homogeneous land 
cover, consisting primarily of a single hydrologic response unit (HRU), were used for optimization of select WATER parameters (table 
2); mixed land-cover basins were used to statistically evaluate select WATER parameters and to optimize incorporation of water-use 
data; nine basins were set aside for final testing of model performance. Basins were only included if the streamgage period of record 
overlapped with the climatic and land-cover datasets used by WATER. Only complete water years (October through September of the 
following year) were included. Locations are shown in figure 4.—Continued

[Optimization and statistical evaluation use numbers, with percentages based on NLCD 2006: a, greater than (>) 60 percent agricultural; d, >70 percent devel-
oped; f, >75 percent forested; m, mixed land cover; t,  test basin. USGS, U.S. Geological Survey; ID, identification number; mi2, square miles; km2, square 
kilometers; %, percent; NJ, New Jersey; NY, New York; PA, Pennsylvania; U.S. United States; DE, Delaware; PET, potential evapotranspiration;  
AET, actual evapotranspiration]

USGS site ID and name

Drainage area Hydrologic response unit (%)
Optimization 

and
validation 

use 

Period of 
record

(water years)
Begin      End

Complete 
years(mi2) (km2) Forested Agricultural Developed

01449360 Pohopoco Creek 
at Kresgeville 
PA

49.8 129.0 56.4 19.9 23.7 t 1967 2010 9

01450500 Aquashicola 
Creek at  
Palmerton PA

76.6 198.4 69.6 19.8 10.6 m 1940 2010 9

01451500 Little Lehigh 
Creek near  
Allentown PA

81.9 212.2 24.9 38.7 36.4 m 1946 2010 9

01451800 Jordan Creek near 
Schnecksville 
PA

53.0 137.3 29.7 59.4 10.9 m 1967 2010 9

01452000 Jordan Creek at 
Allentown PA

76.2 197.5 29.7 53.1 17.2 m 1945 2010 9

01452500 Monocacy Creek 
at Bethlehem 
PA

43.3 112.1 9.0 54.9 36.1 m 1949 2010 9

01464500 Crosswicks Creek 
at Extonville NJ

80.7 209.2 48.8 26.2 25 t 1938 2010 9

01464907 Little Neshaminy 
Creek at Valley 
Road near  
Neshaminy PA

27.0 70.1 21.3 12.0 66.7 t 2000 2010 9

01465798 Poquessing Creek 
at Grant Avenue 
at Philadelphia 
PA

21.4 55.4 13.4 4.9 81.7 d 1966 2010 9

014665001 McDonalds 
Branch in  
Byrne State 
Forest NJ

2.3 6.1 92.6 0.0 7.4 f 1954 2010 9

01467048 Pennypack Creek 
at Lower 
Rhawn Street 
Bridge,  
Philadelphia PA

49.8 129.1 20.1 1.9 78 d 1966 2010 9
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Table 3. Fifty-eight USGS streamgage sites in the Delaware River Basin used for model optimization and statistical evaluation of 
simulations of the Water Availability Tool for Environmental Resources (WATER). Those 21 basins with relatively homogeneous land 
cover, consisting primarily of a single hydrologic response unit (HRU), were used for optimization of select WATER parameters (table 
2); mixed land-cover basins were used to statistically evaluate select WATER parameters and to optimize incorporation of water-use 
data; nine basins were set aside for final testing of model performance. Basins were only included if the streamgage period of record 
overlapped with the climatic and land-cover datasets used by WATER. Only complete water years (October through September of the 
following year) were included. Locations are shown in figure 4.—Continued

[Optimization and statistical evaluation use numbers, with percentages based on NLCD 2006: a, greater than (>) 60 percent agricultural; d, >70 percent devel-
oped; f, >75 percent forested; m, mixed land cover; t,  test basin. USGS, U.S. Geological Survey; ID, identification number; mi2, square miles; km2, square 
kilometers; %, percent; NJ, New Jersey; NY, New York; PA, Pennsylvania; U.S. United States; DE, Delaware; PET, potential evapotranspiration;  
AET, actual evapotranspiration]

USGS site ID and name

Drainage area Hydrologic response unit (%)
Optimization 

and
validation 

use 

Period of 
record

(water years)
Begin      End

Complete 
years(mi2) (km2) Forested Agricultural Developed

01467086 Tacony Creek at 
County Line, 
Philadelphia PA 

16.2 42.0 13.2 0.3 86.5 d 1966 2010 5

01467150 Cooper River at 
Haddonfield NJ

17.1 44.3 25.9 0.8 73.3 d 1964 2010 9

01468500 Schuylkill River at 
Landingville PA

137.1 355.3 74.8 4.0 21.2 m 1948 2010 9

01470500 Schuylkill River at 
Berne PA

358.3 928.2 71.1 12.5 16.4 m 1948 2008 9

01470779 Tulpehocken 
Creek near 
Bernville PA

70.4 182.5 11.0 71.9 17.1 a 1976 2008 9

01471980 Manatawny Creek 
near Pottstown 
PA

85.5 221.5 43.6 36.5 19.9 m 1975 2004 3

01472157 French Creek near 
Phoenixville PA

59.0 153.0 51.3 29.7 19 m 1969 2008 9

01472198 Perkiomen Creek 
at East  
Greenville PA

37.7 97.5 42.6 31.3 26.1 m 1982 2008 9

01472199 West Branch 
Perkiomen 
Creek at  
Hillegass PA

23.1 59.8 44.9 32.8 22.3 m 1982 2008 9

01475530 Cobbs Creek at 
U.S. Highway 1 
at Philadelphia 
PA

4.8 12.4 11.9 0.1 88 d 1965 2008 6

01475850 Crum Creek 
near Newtown 
Square PA

15.8 41.0 39.3 24.3 36.4 m 1982 2008 9

01477120 Raccoon Creek 
near  
Swedesboro NJ

26.0 67.3 29.6 49.0 21.4 m 1967 2010 9

01477800 Shellpot Creek at 
Wilmington DE

7.3 19.0 18.9 0.1 81 d 1945 2010 9
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Table 3. Fifty-eight USGS streamgage sites in the Delaware River Basin used for model optimization and statistical evaluation of 
simulations of the Water Availability Tool for Environmental Resources (WATER). Those 21 basins with relatively homogeneous land 
cover, consisting primarily of a single hydrologic response unit (HRU), were used for optimization of select WATER parameters (table 
2); mixed land-cover basins were used to statistically evaluate select WATER parameters and to optimize incorporation of water-use 
data; nine basins were set aside for final testing of model performance. Basins were only included if the streamgage period of record 
overlapped with the climatic and land-cover datasets used by WATER. Only complete water years (October through September of the 
following year) were included. Locations are shown in figure 4.—Continued

[Optimization and statistical evaluation use numbers, with percentages based on NLCD 2006: a, greater than (>) 60 percent agricultural; d, >70 percent devel-
oped; f, >75 percent forested; m, mixed land cover; t,  test basin. USGS, U.S. Geological Survey; ID, identification number; mi2, square miles; km2, square 
kilometers; %, percent; NJ, New Jersey; NY, New York; PA, Pennsylvania; U.S. United States; DE, Delaware; PET, potential evapotranspiration;  
AET, actual evapotranspiration]

USGS site ID and name

Drainage area Hydrologic response unit (%)
Optimization 

and
validation 

use 

Period of 
record

(water years)
Begin      End

Complete 
years(mi2) (km2) Forested Agricultural Developed

01478000 Christina River at 
Coochs Bridge 
DE

20.9 54.0 27.3 25.0 47.7 t 1943 2010 9

01479000 White Clay Creek 
near Newark DE

89.1 230.8 29.4 32.7 37.9 m 1932 2010 9

01480000 Red Clay Creek at 
Wooddale DE

47.3 122.6 33.6 33.3 33.1 m 1943 2010 9

01480300 West Branch  
Brandywine 
Creek near 
Honey Brook PA

18.5 47.8 23.9 59.9 16.2 m 1961 2008 9

01480675 Marsh Creek near 
Glenmoore PA

8.5 22.1 44.9 37.3 17.8 m 1967 2008 9

01482500 Salem River at 
Woodstown NJ

14.6 37.8 18.2 70.1 11.7 a 1940 2010 8

01484000 Murderkill River 
near Felton DE

12.5 32.5 34.7 57.5 7.8 m 1932 2009 1

01484050 Pratt Branch near 
Felton DE

3.1 8.1 12.6 64.4 23 a 1905 2009 1

01484100 Beaverdam Branch 
at Houston DE

3.5 9.1 37.4 58.3 4.3 t 1958 2010 9

01484270 Beaverdam Creek 
near Milton DE

6.9 17.9 34.7 54.4 10.9 m 1966 2005 3

1This basin was used only for statistical evaluation of PET and AET because of its proximity to three Ameriflux sites (Clark and others, 2012).
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Figure 4. U.S. Geological Survey (USGS) streamgages and other monitoring sites used for model optimization and statistical evaluation 
of the Water Availability Tool for Environmental Resources (WATER) streamflow simulation and hydroclimatic variables for the Delaware 
River Basin. Details for each site are in tables 3 and 4. Basin color coincides with the optimization and statistical-evaluation use indicted 
in table 3. ID, identification number; %, percent.
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Hydroclimatic Variables
To optimize the simulation of snow accumulation and 

snowmelt as well as both potential evapotranspiration (PET) 
and actual evapotranspiration (AET), simulated values were 
compared to observed values for basins with relatively homo-
geneous forest cover. For each of these hydroclimatic com-
ponents of the water budget, the observed values were mostly 
point data, most of which were near (less than [<] 10 kilome-
ters [km] away), but not within, the basins that had coincident 
streamflow observations (table 4 and fig. 4). Additionally, 
observations of snowpack thickness were available for only 
four sites in the DRB and were recorded monthly and (or) 
weekly during winter. In contrast, the daily WATER-simula-
tions of snow accumulation and melting and PET are based on 
a maximum daily temperature that is an areal average for the 
entire basin. Consequently, no statistical analysis of these data 
is presented, and validation of these data is limited to a visual 
analysis.

Data That Enable Scenario Testing

Those process-based hydrologic models (TOPMODEL 
and TR–55) incorporated within WATER simulate how precip-
itation is transferred to streamflow. However, in much of the 
basin, water-resource management alters this relation. Incor-
poration of water-use data improves the ability of WATER to 
simulate streamflow in areas where streamflow withdrawals 
and returns significantly affect mean daily streamflow. The 
regional, process-based approach encapsulated by WATER 
also provides a DSS that can simulate streamflow under a 
range of forecasted climatic and land-use scenarios; it is esti-
mated that maximum daily temperature will increase approxi-
mately 5.5 degrees Celsius (°C) and that precipitation will 
increase by 10 percent by 2100 (Frumhoff and others, 2007).

Water-Use Data Provided in WATER Application 
Utilities

Water-use data were acquired from the USGS National 
Water Census effort in the DRB (Hutson and others, in press). 
Data included in the model are seasonal totals for surface-
water and groundwater use. Data are from 2010 except for 
New Jersey and Pennsylvania, for which multiyear data 
were available and the median values were used. Seasons are 
defined as January–March, April–June, July–September, and 
October–December; these breakdowns enable comparison 
to both calendar and water years (October to September). 
Water-use data are provided as million gallons per day for 12 
categories (table 5) that can be differentiated as

•	 12 groundwater and 12 surface water sources, or

•	 17 withdrawal, 5 return, and 2 transfer types, or

•	 19 point-specific and 5 areally-averaged classes.
Surface-water-use and groundwater-use data are in 

separate datasets for each category; withdrawals and return 
flows are also provided separately. However, the DSS applies 
a single, daily water-use total. Point data are included for 
over 6,000 sites (fig. 5) but do not include water use from 
Maryland (21 km2 of the 35,075 km2 DRB total). Areally 
averaged categories include irrigation, livestock, and domestic 
self-supply; for these categories, county-wide estimates were 
integrated with land-use and population data to provide a bet-
ter spatial understanding of where this water use interacts with 
the hydrologic system. The reader is referred to Hutson and 
others (in press) for a detailed explanation of these water-use 
categories and their distribution in the basin.

Table 4. Sources of point observations used to optimize hydroclimatic components of water budget in the Delaware River Basin.  
Locations are shown in figure 4.

Hydroclimatic variable Source Site Period of record

Evapotranspiration Ameriflux (Clark and others, 2012) Cedar Bridge, Fort Dix, and Silas Little, 
New Jersey

2006–8

Evapotranspiration Office of the New Jersey State  
Climatologist at Rutgers  
University (Mathieu Gerbush,  
written commun., April 25, 2013)

Cream Ridge, Pequest, Upper Deerfield, 
and Woodbine, N.J.

2009–11

Snow accumulation  
and snowmelt

National Weather Service (2012) ESHN6, HMTN6, NKGN6, SPDN6 2003–11
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To protect the privileged information associated with 
these water-use data, point data were originally aggregated 
to 12-digit hydrologic unit code (HUC–12) basins for use in 
WATER. However, during optimization of WATER using the 
28 mixed land-cover basins, it became apparent that data were 
distributed too generally for accurate streamflow simulation, 
so data were reaggregated to the 3,736 DEM-derived poly-
gons; this is the spatial unit with which these water-use data 
are provided in the WATER database.

Water-use data are applied with the WATER Application 
Utilities that are provided with WATER. These utilities allow 
the user to increase, decrease, or remove individual water-use 
categories by using a factor approach. The water-use fac-
tor ranges from zero (no water use) and, for example, if the 
factor is set to 1, the data provided by the USGS National 
Water Census (Hutson and others, in press) are used without 
adjustment. A sum of seasonal water use is applied on a daily 
time step after the natural streamflow has been simulated for 
the entire period so that the user can compare the natural and 
water-use-affected records (two separate variables in WATER.
txt output); no distinction is made between groundwater and 
surface-water sources. However, when considering water-use 
effects, users should remember that a seasonal median of the 
daily volume of water use is being used and that no daily or 
annual variability of water use is available.

Land-Cover Projection and Urbanization 
Forecasts Used to Replace the National Land 
Cover Database 2011 for Future Time Periods

To provide a land-cover snapshot that is contemporane-
ous with the 25-year climate records provided with WATER 
(centered on 2030 and 2060), two forecasted land-cover 
datasets are provided with WATER in addition to the 2011 
NLCD (fig. 6). These forecasts were developed by using 
a stochastic (a random probability distribution) simulation 
model to forecast urbanization in large watersheds. The model 
was originally developed by the USGS for the Chesapeake 
Bay watershed and hence is called the Chesapeake Bay 
Land Change Model (CBLCM; table 6; Claggett and others 
[2014]). The CBLCM was parameterized and applied to the 
DRB to forecast urbanization from 2010 to 2060 in decadal 
increments. The CBLCM stochastically simulates the spatial 
location and extent of residential and commercial develop-
ment; for the DRB, this simulation was run over 101 iterations 
for each time interval. The model is driven by exogenous 
projections of population produced by using the U.S. Envi-
ronmental Protection Agency’s Integrated Climate and Land 
Use Scenarios (ICLUS) model (ICLUS; U.S. Environmental 
Protection Agency, 2009). Historical population and employ-
ment data were analyzed for the period 1990–2010 to develop 
county-level trends in the ratio of population to employment. 
These trends were extrapolated to 2060 and multiplied by the 
population projections to estimate future employment.

Table 5. Water-use categories.

Water-use category
Type of water use

Surface water or 
groundwater

Withdrawal or 
return

Point data or 
areal average

Aquaculture Both Withdrawal Point

Commercial Both Withdrawal Point

Domestic self-supply Groundwater Withdrawal Areally averaged

Industrial Both Both Point

Irrigation Both Both Both

Livestock Groundwater Withdrawal Both

Mining Both Withdrawal Point

Remediation Groundwater Withdrawal Point

Thermoelectric Both Withdrawal Point

Public water supply Both Both Point

Sewage treatment Surface water Return Point

Interbasin transfer Surface water Both Point
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Figure 5. Water-use locations in the Delaware 
River Basin (DRB). Median, seasonal values of 
water use were provided as part of the DRB 
water-use effort (Hutson and others, in press) 
and are incorporated in the WATER Application 
Utilities. Surficial geology was used to isolate 
regions where streamflow simulation was less 
accurate after water use was incorporated. 
Consequently, groundwater withdrawals and 
returns were removed from the unconsolidated 
Coastal Plain as well as the carbonate region in 
the central part of the basin.
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To spatially simulate development, a probability surface 
raster was created by relating observed changes in developed 
land cover (as captured by NLCD 2001 and 2011) with prox-
imity to urban areas, proximity to recent growth in housing, 
and topographic slope (using NED; Gesch and others, 2002). 
The probability surface informed the likelihood of future 
growth at a given location. The sizes of simulated patches of 
residential and commercial development were informed by 
the cumulative frequency distribution of historical patches of 
developed land cover. The shapes of simulated patches were 
based on proximity to roads. In the model, growth occurs 
preferentially near roads, resulting in elongated patch shapes 
along roads and circular shapes far from roads. For each future 
decade, from 2020–60, the CBLCM was applied in a Monte 
Carlo simulation routine to produce 101 iterations of residen-
tial and commercial development mosaicked with the 2011 
NLCD.

For each iteration, attribute data associated with indi-
vidual patches of development were summarized over all itera-
tions and all decades by HUC–12 (USGS and others, 2009). 
Data reported by HUC–12 included statistics on the mean, 
median, maximum, and minimum acres of commercial and 
residential development, forest and farmland acres converted 
to development, total employment, total population, total 
households, and median residential lot size. For all HUC–12s, 
the raster iterations representing the median amount of total 
development (commercial plus residential) were extracted and 
mosaicked together to spatially represent the median amount 
of future development in 2030 and 2060 throughout the DRB 
(fig. 6). The forecasted areas of commercial and residential 
growth in all 505 iteration rasters (five decadal snapshots for 
each of 101 iterations), in addition to the composite 2030 
and 2060 median-condition rasters, were then translated into 
development intensities and impervious-surface values con-
sistent with the 2011 NLCD and informed by the underlying 
housing densities.

Table 6. Data Sources for the Chesapeake Bay Land Change Model.

[The Chesapeake Bay Land Change Model (CBLCM) (Claggett and others, 2014). EPA, U.S. Environmental Protection Agency; USGS, U.S. Geological Sur-
vey; USDA, U.S. Department of Agriculture; NRCS, Natural Resources Conservation Service; GAP, Gap Analysis Program; NJDEP, New Jersey Department 
of Environmental Protection; Delaware OMB, Delaware Office of Management and Budget]

Data source Contribution to CBLCM

2000 and 2010 U.S. Decennial Census of Population and Housing
(U.S. Census Bureau, 2012)

Decadal housing and population values 

2010 NAVTEQ Streets (Homeland Security Infrastructure  
Program, 2012), supplied through license agreement with  
the U.S. Environmental Protection Agency.

Production of asymmetric housing maps and refinement of  
urban land cover

Longitudinal Employer-Household Dynamics database
(U.S. Census Bureau, 2013)

Estimates of total employment by census block

Integrated Climate and Land Use Scenarios v1.3.2  
Population Forecasts (2005–2100) (US EPA, 2009)

Population projections 

2010 Census TIGER/Line files (U.S. Census Bureau, 2011) Census county and block boundaries, 
National Watershed Boundary Database  

(USGS and others, 2009)
Summary units for reporting data; Delaware River Basin  

boundary
2001 and 2011 National Land Cover Database  

(Jin and others, 2013)
Patterns of growth and urban patch size distributions

National Elevation Dataset (Gesch and others, 2002) Derive slope (percent) as a constraint on areas suitable for  
development

Protected Areas Database, v1.3 (USGS GAP, 2012) Constrains areas suitable for development
2007 New Jersey land-use dataset (NJDEP, 2007) Refines areas suitable for growth; refines estimates of housing 

and employment densities
2007 Delaware land-use dataset (Delaware OMB, 2007) Refines areas suitable for growth; refines estimates of housing 

and employment densities
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Figure 6. Land-cover data for the Delaware River Basin provided with the Water Availability Tool for Environmental Resources.  
A, Land-cover rasters for 2011 (National Land Cover Database; Fry and others, 2011), 2030, and 2060. The latter two are aggregations  
of Hydrologic Unit Code 12 (HUC–12) basins from the median of 101 Chesapeake Bay Land Change Model iterations. B, Forecasted 
development in each of 426 HUC–12 basins according to the median iterations of 101 simulations for 2030 and 2060. —Continued
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General Circulation Models and Projections of 
Future Climate

A selection of general circulation models (GCMs) is pro-
vided with the WATER Application Utilities that characterize a 
range of how forecasted changes in precipitation, temperature, 
and available energy (surface net radiation minus ground heat 
flux) may alter streamflow and water availability in the DRB. 
These changes can be assessed in terms of the following:

•	 snow accumulation and timing of snowmelt;

•	 evapotranspiration (both potential and actual), frost-
free days, and growing-season days in the year; and

•	 aggregated effects on seasonal streamflow variability.
GCM data are provided for two target time periods; these 

data forecast 25-year monthly normals (means) centered on 
2030 and 2060. Change factors were derived for each of four 
Coupled Model Intercomparison Project Phase 5 (CMIP5; 
Taylor and others, 2011) GCM datasets (fig. 7 and table 7; 
Taylor and others, 2011) and two representative concentration 
pathways (RCPs) that forecast different amounts of change in 
the chemical composition of the atmosphere (representative 
concentration pathways 4.5 and 8.5; table 8). Change factors 
for the four GCMs and two RCP scenarios provide for consid-
eration of how differences among individual climate models 
affect forecasts of streamflow; some researchers have found 
that these differences create an uncertainty that is larger than 
that associated with hydrologic modeling (for example Teng 
and others, 2011); consequently, this suite of GCMs provides a 
means of incorporating this range of forecasted conditions. All 
of these GCMs should be included in scenario testing and the 
overall trend among all models considered when results are 
interpreted.

These CMIP5 data are at a spatial resolution ranging 
from approximately 105-km to 310-km tile spacings; Daymet 
data were geospatially sampled by using the 3,736 DEM-
derived polygons, which averaged 9.4 km2 in size. To keep 
the spatial resolution provided by the initial Daymet historical 
climate record, monthly change factors, or deltas (δ), between 
the current and target time period were calculated for precipi-
tation and temperature and are applied to the original climate 
record by the WATER Application Utilities (figs. 7B and 8).

A 25-year period was selected for the historical dataset 
provided with each CMIP5 model (1981–2005) and for the 
2030 (2018–42), and the 2060 (2048–72) targets. Monthly-
normal δ were calculated for precipitation (a multiplicative 
factor) and daily maximum temperature (an additive factor) 
by using the 25-year periods to estimate a monthly-normal δ 
between the historical and target time periods provided with 
each model and scenario combination; WATER then simulates 
snowpack on a daily time step by using the adjusted Daymet 
daily values of precipitation and temperature (fig. 8).

Previous researchers (for example Milly and Dunne, 
2010) have noted a likely overestimation of PET when calcu-
lated by using a temperature-indexed approach and daily tem-
peratures indicated by future climate projections. This concern 
is relevant to a Hamon (1963)-derived estimation of PET, such 
as that incorporated in WATER, because the equation used 
to estimate PET is based on a historical, empirical relation 
between temperature and energy availability that cannot be 
assumed to hold under anthropogenic climate change. For this 
reason, the forecasted PET in WATER can be calculated from 
a multiplicative δ factor based on a radiation-based PET (in 
energy units; Priestley and Taylor, 1972):

 PET R Gn=∝
∆

∆ +
−( )

γ
, (6)

where
 α is 1.26 and is calibration constant (Priestley 

and Taylor, 1972);
 Δ is slope of the saturation vapor pressure 

temperature curve—a function of 
temperature;

 γ is psychrometric constant and is related to air 
pressure;

 Rn is net radiation; and
 G is heat flux density to the ground.

To implement this approach, a monthly-normalized δ was 
calculated for the available energy term (Rn–G) by using the 
ratio of the historical sum to the forecasted sum of the sensible 
heat flux and latent heat flux. This ratio was used as the change 
factor and was applied to the PET values calculated from the 
Daymet temperature record by using Hamon (1963):

 PET PETFC Hh PETptFC= ∂* , (7)

where
 PETFC is the daily PET value for forecasted 

conditions;
 PETHh is daily PET calculated using the Hamon 

(1963) method and the Daymet maximum 
daily temperature for the 1985–2005 time 
period; and

 δPETpfFC is the monthly, 25-year normalized δ 
for Priestley-Taylor-derived PET for 
the forecasted condition relative to the 
historical condition for that GCM.
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Figure 7. Summary of general circulation models (GCMs). A, Four GCM tile extents provided with the Water Availability Tool for 
Environmental Resources (WATER). All were accessed through the Coupled Model Intercomparison Project Phase 5 data portal  
(http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html). Tile size differs among these GCMs (table 7). Those tiles in the NCAR_CCSM4 model 
marked with asterisks have been replaced, because of the small areas they cover, with data from the adjacent tile (63 or 43).  
B, Forecasted change factors (δs) for two time periods (2030 and 2060) and two scenarios (representative concentration pathways [RCP]  
4.5 and 8.5) for four GCMs. Note that precipitation and potential evapotranspiration (PET) δs are both multiplicative and are shown with 
the same scale; a value of one indicates no change.  Precipitation and PET are shown as a function of the forecasted change in the 
maximum daily temperature; this δ is additive and a value of zero indicates no change.
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Figure 7. Summary of general circulation models (GCMs). A, Four GCM tile extents provided with the Water Availability Tool for 
Environmental Resources (WATER). All were accessed through the Coupled Model Intercomparison Project Phase 5 data portal  
(http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html). Tile size differs among these GCMs (table 7). Those tiles in the NCAR_CCSM4 model 
marked with asterisks have been replaced, because of the small areas they cover, with data from the adjacent tile (63 or 43).  
B, Forecasted change factors (δs) for two time periods (2030 and 2060) and two scenarios (representative concentration pathways [RCP] 
4.5 and 8.5) for four GCMs. Note that precipitation and potential evapotranspiration (PET) δs are both multiplicative and are shown with 
the same scale; a value of one indicates no change.  Precipitation and PET are shown as a function of the forecasted change in the 
maximum daily temperature; this δ is additive and a value of zero indicates no change.—Continued
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Table 7. General circulation models provided as part of the WATER database. The differences among models are detailed by  
Forster and others (2013).

Source Abbreviation
General  

circulation model
Tile size  

(kilometers)
Documentation

National Oceanic and Atmospheric Administration—
Geophysical Fluid Dynamics Laboratory

GFDL_NOAA ESM2G 200 Dunne and others 
(2012)

National Aeronautics and Space Administration— 
Goddard Institute for Space Studies

GISS E2-H 220 Nazarenko and others 
(2015)

National Center for Atmospheric Research— 
Community Climate System Model

NCAR_CCSM4 CCSM4 105 Gent and others 
(2011)

Canadian Centre for Climate Modelling and Analysis CanESM2 CGCM4 310 von Salzen and others 
(2013)

Table 8. Representative concentration pathways (RCP; summarized from van Vuuren and others, 2011)—
data are provided for RCPs 4.5 and 8.5 (bolded). For comparison, the January 2015 global mean  
CO2 concentration was 400.14 parts per million (ppm), up from 397.42 ppm in January 2014  
(Earth System Research Laboratory, 2015; verified March 25, 2015).

[RCP, representative concentration pathway; W/m2, watts per square meter; ppm, parts per million]

Representative  
concentration  

pathway
Radiative forcing

Approximate  
carbon dioxide  
concentration

RCP 8.5 Rising radiative forcing to 8.5 W/m2 by 2100 1,370 ppm CO2

RCP 6 Stabilization at 6 W/m2 after 2100 850 ppm CO2

RCP 4.5 Stabilization at 4.5 W/m2 at 2100 650 ppm CO2

RCP 2.6 Peak at about 3 W/m2 before 2100 and then decline  
to 2.6 W/m2 by 2100

490 ppm CO2
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Figure 8. Example of how the monthly change factor (δ) is A, calculated and B, applied in order 
to incorporate general circulation model (GCM) data. The change factor is multiplicative for both 
precipitation and potential evapotranspiration. For temperature, the change factor is a difference  
instead of a ratio. mm, millimeter.
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Evaluating Uncertainty for Scenario 
Testing

Statistical evaluation, validation, and uncertainty of 
WATER simulations are discussed in subsequent sections in 
terms of daily, mean monthly, and normalized mean monthly 
(that is, mean monthly averaged over the 25-year simulation 
period) streamflow simulations. These different time steps 
account for the difference in temporal resolution as one navi-
gates from

•	 the historical record of daily precipitation to

•	 incorporation of seasonal median of water use to

•	 application of the monthly-normal δ used for forecasted 
climate to the historical climate record.

It is important to note, however, that only one land-cover data-
set is provided for each target time period. These land-cover 
datasets are specific to 2011, 2030, and 2060. The simulations 
do not include the potential changes in land cover associated 
with the climate record. Instead, the 25-year climate record 
centered on each target year is used to understand the poten-
tial range of streamflow associated with this time period. It 
also follows that streamflow for the historical record will not 
incorporate land-cover and water-use changes between 1980 
and 2010. Also, because the temperature-, precipitation-, and 
PET-δ factors are each based on a 25-year monthly normal, a 
similar time step should be used to identify significant changes 
in streamflow associated with these forecasted changes in cli-
mate. For example, mean monthly streamflow rather than daily 
streamflow should be assessed, and significant differences in 
mean mean-monthly streamflow for the period of record (that 
is, 25-year normals of mean monthly streamflow) are the best 
indicator of potential changes in streamflow and water avail-
ability due to forecasted climate change.

Model Development, Statistical 
Evaluation, and Validation of 
Hydroclimatic Components of WATER

Optimization and validation of different components of 
WATER proceeded concurrently and as data became avail-
able. Development and optimization of WATER used stream-
flow observations that extended from 2001–11. This time 
period was selected because it is at the intersection of those 
data available from NLCD (2006 and 2011; Fry and others, 
2011) and the Daymet historical record of precipitation and 
temperature (Thornton and others, 2012). Although daily 
streamflow values simulated for the period before 2001 are 
expected to have more error because of changes in land and 
water use, WATER does provide a streamflow record extend-
ing from 1981–2011 because this longer record is critical in 

the consideration of aggregated streamflow metrics (monthly 
streamflow normals and flow-duration curves [FDCs]) that are 
of interest when incorporating land-cover and climate change 
forecasts. Streamflow was optimized and validated using the 
period 2001–10, including nine complete water years.

Hydroclimatic Water-Budget Components

The hillslope-hydrology model underlying WATER, 
TOPMODEL, is based on a water-budget approach. Inde-
pendent aspects of the water budget, including PET and 
snow accumulation and snowmelt, are temperature indexed 
according to the daily precipitation and temperature provided 
by Daymet (Thornton and others, 2012). Daily precipitation 
amounts are randomly distributed within WATER as hourly 
precipitation amounts, with the model shifting to an hourly 
time step on days with precipitation. In its current configura-
tion as a desktop DSS, WATER uses the same temperature 
time series for simulating both PET and snow to minimize 
processing time. As the following section explains, WATER 
uses the maximum daily temperature for both.

Accumulation and Melting of Snow
The maximum daily temperature (Tmax; Thornton and oth-

ers, 2012) is used by the model to simulate when precipitation 
occurs as rainfall as opposed to snowfall. Any simulated snow-
fall accumulates to create a snowpack that is melted using 
the temperature-indexed method of the USACE (1998); total 
snowmelt can not exceed standing snowpack. Each HRU uses 
a separate combination of snowmelt and rain-on-snowmelt 
coefficients (table 2) that apply the potential melt (Ms) to the 
standing snowpack:

 M C T Cs m= − °( )max 0 . (8)

Simulation of snow accumulation and melt was evaluated 
with data from four National Weather Service (NWS) National 
Operational Hydrologic Remote Sensing Center stations 
(table 4; NWS, 2012). Daymet was also considered for evalu-
ation of snowpack simulation; however, the transition between 
individual calendar years creates a bias after January 1 (Thorn-
ton and others, 2012). Consequently, only point data that are 
reported weekly or monthly were available for this comparison 
(figs. 4 and 9), and a direct, statistical comparison between 
observed and simulated values cannot be made. WATER 
converts precipitation from rain to snow (1 mm precipitation 
= 10 mm snow) when the temperature (averaged for the entire 
basin) is <0 °C; these basin-average values are reported in the 
WATER.txt file as snowpack (millimeters of snow) but are 
handled by the water budget as snow-water equivalent (mil-
limeters of water). On the basis of comparison to the available 
observations, it was determined that the maximum daily tem-
perature (Tmax) was necessary in order to accurately model the 
accumulation and melt of snow. When the mean daily temper-
ature was used, too much snow accumulated and the snowpack 
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Figure 10. A north-south transect of maximum daily temperature for three basins with U.S. Geological Survey (USGS) gages.  Basins 
are representative of the forested hydrologic response unit (more than 75 percent forested). A value of 15 degrees Celsius (°C) 
transitions the evapotranspiration protocol from dormancy to growing conditions. Sites are shown in figure 4.
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Figure 11. Comparison of observed and Water 
Availability Tool for Environmental Resources (WATER)-
derived A, potential evapotranspiration (PET) and B, 
actual evapotranspiration (AET) at a range of sites in the 
Delaware River Basin, each of which primarily consists 
of one of the three hydrologic response units—forested, 
agricultural, or developed (table 3). Sites are shown in 
figure 4. U.S. Geological Survey (USGS) basins were 
selected for proximity to both Ameriflux and Mesonet 
sites (table 4) as well as minimization of the latitudinal 
difference. PET simulated within WATER by using the 
basin-average maximum daily temperature is bracketed 
by observations at the Ameriflux and New Jersey 
Mesonet sites. AET, which is controlled by basin-average 
soil-water availability within WATER, is higher during fall 
and winter relative to observations at Ameriflux sites and 
estimates from the Simplified Surface Energy Balance 
(SSEB) model (Senay and others, 2013). The PET at the 
forested USGS site (01466500) is lowest, but this site 
experiences the highest AET as simulated by both WATER 
and the SSEB. Also, both WATER and SSEB indicate that 
AET is lowest in the developed basin (01467150).
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Figure 12. Water-budget components from Water Availability Tool for Environmental Resources simulations 
for homogeneous basins in the Delaware River Basin. Each is an annual sum normalized for the 9-year period of 
record from October 2001 through September 2010. The actual evapotranspiration portion of the water budget was 
used to help optimize the simulation of observed streamflow. Streamflow was normalized for basin area; both the 
observed and simulated values are shown. All water-budget components are in millimeters.
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Figure 13. Statistical evaluation of actual evapotranspiration from the Water Availability Tool for Environmental Resources (WATER).  
A, Comparison of WATER-derived actual evapotranspiration (AET) at 21 sites in the Delaware River Basin to areal estimates from  
the Simplified Surface Energy Balance (SSEB) model (Senay and others, 2013). Sites are shown in figure 4. B, Scatterplot of observed 
versus simulated AET basin averages. WATER consistently estimates higher AET than SSEB does. However, a Spearman rank 
correlation test shows these two different estimates are significantly correlated (p-value = 0.0007), indicating that the relative AET is 
similar among the sites.
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did not melt until late spring (fig. 9); this is in contrast to the 
normal melt period historically occurring by April. The melt 
coefficients (table 2) create an environment in which snowmelt 
is slowest in forested areas and most rapid in developed areas. 
This is logical given the protection provided by the forest 
canopy as well as the acceleration and management of melt 
that would be expected on the pavement and exposed land of 
urban areas (through salt application and snow removal).

Evapotranspiration
Potential evapotranspiration (PET) was simulated in 

WATER by using a temperature-indexed approach (Hamon, 
1963), which combines daily temperature with estimates of 
day length and solar radiation that are based on latitude. The 
Tmax was used as the daily temperature, and the evapotranspira-
tion (ET) exponents (table 2) were used to control the relation 
between the daily PET and the soil-water storage calculated on 
the basis of the daily mean saturation deficit (S in equation 2). 
Because the model was designed to examine the potential 
effects of forecasted changes in climate, including increases in 
winter temperatures by as much as 6.5 °C (12 °Fahrenheit [F]; 
Frumhoff and others, 2007), instead of triggering the growing 
season by a calendar date, a temperature of 15 °C (60 °F) was 
selected to trigger the transition from dormancy to growing 
conditions and back. During the early season, before plant ET 
accelerates, only direct evaporation from the soil is expected 
to be underway. This growth-temperature threshold is applied 
on a daily time step—the beginning and end of the growing 
season may be punctuated by periods of decreased ET. For 
the historical time period (2001–11), this generally resulted 
in growing conditions and aggressive ET from approximately 
May through October and as early as April in the southern part 
of the basin (figs. 10 and 11). Comparison to observations at 
a combination of forested Ameriflux sites and mixed land-use 
Mesonet sites (table 4) shows that PET simulated in WATER 
is bounded by these observations. 

WATER calculates actual evapotranspiration (AET) on a 
daily time step; the calculation is based on soil-water avail-
ability in the soil thickness that is accessible to roots, and it 
uses parameters that were optimized to differentiate dormancy 
from growing conditions (table 2). For each group of homoge-
neous land-cover basins, AET was used as a means of empiri-
cally optimizing streamflow as part of the overall water budget 
for each basin (fig. 12). As a consequence of these ET and soil 
parameters, more water is accessed for AET in the forested 
areas (table 2 and figs. 11–13), relative to agricultural and 
developed areas, because of a combination of the following:

• the smaller percentage of water that bypasses the root-
zone as a function of macroporosity,

• the larger proportion of the soil that is accessible to 
roots, and

• the effect of the larger m, which slows movement of 
soil-water downslope towards the stream.

AET estimates from WATER are consistently higher than 
point observations from the Ameriflux sites (fig. 11B), each 
of which is from the top of the forest canopy. AET was also 
compared to estimates from the Simplified Surface Energy 
Balance (SSEB) model (Senay and others, 2013), which 
was geospatially sampled for each of the 21 homogeneous 
land-cover basins in the DRB by using the USGS Geo Data 
Portal. WATER consistently estimates a significantly higher 
AET than that from the SSEB (paired Wilcoxon signed-rank 
test, p-value <0.0001; figs. 11 and 13A); however a Spearman 
rank correlation test shows these estimates are significantly 
correlated (rho=0.6974; p-value = 0.0006), indicating that the 
relative AET is similar among the sites regardless of which 
model is used (fig. 13B). Most of this excess AET is in the fall 
and winter months; the spring AET estimates from WATER 
are bounded by observations from the Ameriflux sites and 
SSEB simulations. The range of AET estimates in the WATER 
simulations differs from the range of estimates in the SSEB 
simulations, with more similarity among land-cover types in 
the WATER estimates than the SSEB estimates. This may be 
related to the difference in spatial resolution. WATER simula-
tions use 10-m resolution topography combined with tempera-
ture averaged for 3,736 DEM-derived basins that average 9.4 
km2. In contrast, SSEB uses topographic and satellite data at a 
resolution of 1 km2 (Senay and others, 2013).

Optimization of Remaining Hydrologic 
Parameters and Differentiation of Hydrologic 
Response Units

After optimization of individual hydroclimatic variables, 
including PET and snow accumulation and snowmelt, the 
remaining parameters that link topography, soils, and land 
cover were evaluated (first eight parameters in table 2). Each 
of these was optimized by using 21 relatively homogeneous 
basins (table 3), and the resultant combination was validated 
by using those 28 basins with mixed land cover—no addi-
tional changes were made on the basis of statistical evaluation 
of those mixed land-cover basins. Each of these parameters 
would be expected to vary among the HRUs because of a 
combination of differences in preservation of natural soil prop-
erties, natural and managed plant communities, anthropogenic 
infrastructure, and connectivity of impervious surface. For 
example, the importance of individual parameters for hydro-
logic simulation of forested areas follows:

• The relatively large spatial coefficient (SpCf; 0.4) 
preserves the topographic gradient characterized by the 
TWI and enables storage of soil water in the landscape 
that provides base flow.

• The topographic adjustment (1) focuses on the natural 
topography instead of the anthropogenic infrastructure.
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• The proportion of the soil available to plant roots 
(0.75) reflects the perennial vegetation and permanent, 
deep roots that characterize the forest environment.

• The percentage of precipitation (15 percent) that is 
routed through macropores by the model is similar to 
natural estimates and does not assume tile- or storm-
drains that might cause water to bypass the root zone 
and AET.

• The long water-body delay (15 days) reflects the size of 
the water-bodies and resultant storage.

• The effective-impervious multiplier (0.7) decreases the 
percentage of impervious area estimated from NLCD 
for forested areas, where impervious areas are likely 
discontinuous, in order to simulate how much of the 
water falling on impervious areas can run onto pervi-
ous areas and infiltrate the soil instead of being routed 
by the model directly to the stream.

• The impervious runoff delay (0.1) is relatively low, 
causing the majority of the precipitation that falls on 
impervious areas to be delivered to the stream that day 
instead of delaying the runoff in retention basins that 
might be present in more developed areas.

• The impervious curve number (90) is lower than that 
used in developed areas and causes the TR–55 model 
(USDA, 1986) to generate relatively less runoff for the 
same amount of impervious area in developed areas.

Incorporation of Water-Use Data
Water-use data were originally aggregated to a HUC–12 

basin in order for this study to stay aligned with the rest of 
the water-use reporting for the USGS Water Census Focus 
Area Studies. However, optimization of the incorporation of 
these water-use data, by using the 21 homogeneous basins 
that were used to optimize the rest of the modeling approach 
(“f,” “a,” and “d” in table 3) plus 28 additional basins of 
mixed land-cover (“m” in table 3), indicated that the aggrega-
tion of data to a HUC–12 basin caused excessive error in the 
streamflow simulations. Use of the original point locations 
improved model performance. However, there were still areas 
of poor performance, where summer and fall withdrawals 
were far in excess of streamflow, in the unconsolidated sedi-
ments of the Coastal Plain as well as the carbonate regions 
(fig. 5). Residents in these areas of the DRB are dependent on 
groundwater from deep aquifers (Hutson and others, in press). 
Surficial geology (fig. 5) was used to isolate these regions, 
and groundwater withdrawals and returns in the Coastal Plain 
and carbonate regions were removed from the point database 
because each of these areas includes groundwater withdraw-
als from deep aquifers that are a combination of confined and 
unconfined aquifers (in the Coastal Plain) or fracture systems 

(in the carbonate regions) that are not in equilibrium with the 
daily hydrology simulated by TOPMODEL. Point data were 
then reaggregated to those 3,736 DEM-derived polygons; this 
protects the individual locations by placing them in areas  >0.1 
km2; these basins have a mean area of 9.4 km2 and a maximum 
area of 132.4 km2.

Statistical Evaluation, Validation, and 
Uncertainty of Streamflow Simulated 
by Using WATER

A total of 57 basins were used for statistical evaluation 
of hydrologic simulation by the WATER DSS (table 3). As 
discussed previously, 21 of these basins, used for optimization 
of model parameters (table 2), were relatively homogeneous 
in land cover that corresponded to the HRUs used by WATER; 
one basin was excluded from streamflow validation because it 
drains a hardwood swamp with a surface water-groundwater 
interaction that is not captured by this TOPMODEL approach 
(USGS site 01466500, McDonalds Branch in Lebanon State 
Forest, N.J.; Mast and Turk [1999]). The remaining 37 basins 
were mixed in land cover. Twenty-eight of these mixed basins 
were used to validate model parameters and to optimize the 
incorporation of water-use data. Nine mixed basins were set 
aside and used as test basins for final validation that WATER 
would perform similarly in areas not used to optimize the 
hydrologic models or datasets. The WATER output discussed 
in this section uses streamflow estimates that have been 
adjusted by seasonal water-use-median totals for specific point 
locations (discussed in “Incorporation of Water-Use Data”); 
these are streamflow estimates from WATER to which water-
use data were applied with WATER Application Utilities.

Goodness-of-Fit Statistics

A series of goodness-of-fit statistics were run on observed 
versus simulated streamflow by using the USGS EflowStats 
R-statistics package (Thompson and Archfield, 2014) to evalu-
ate overall model performance as well as the ability of the 
model to distinguish individual streamflow components asso-
ciated with high-streamflow, midrange, and low-streamflow 
conditions. A combination of statistics for evaluating overall 
model performance is presented; each statistic evaluated a 
comparison of daily streamflow for the period of October 2001 
through September 2010 (3,287 days; 12 sites had 366–2,922 
days; table 3); these statistics were run with only complete 
water years. Groups were compared through paired, Wilcoxon 
signed-rank tests, and the comparisons are two sided unless 
otherwise noted. Statements of significance indicate a p-value 
<0.05. The goodness-of-fit statistics used included those 
described as follows:
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• The Nash-Sutcliffe efficiency (Ef) statistic ranges from 
negative infinity to 1 (Nash and Sutcliffe, 1970):

                               
∑
∑

−

−
−= 2

2

)(
)(

1
xx
xy

E
i

ii
f

.                             (9)

A value of 1 indicates that the simulation perfectly 
matches those observed data for each day of the 
comparison. A value of zero indicates that the simula-
tion provides no more information than a mean annual 
streamflow value. Each of the Ef values reported was 
calculated by using the natural log (ln) of the daily 
streamflow (observed [xi] and simulated [yi]) to better 
represent all parts of the hydrograph and not concen-
trate on the largest streamflow events.

• The normalized root mean squared error (RMSEn) 
calculates the error as a multiple of the daily observed 
streamflow value:

            RMSEn
y x x
n
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−∑ ( ) / )2 .       (10)

The RMSEn provides an estimation of uncertainty for 
the simulations that can be transitioned to simulations 
at ungaged sites and those involving scenario testing; 
this statistic is essentially a proportional error relative 
to daily streamflow. This same statistic also is used to 
estimate uncertainty for aggregated streamflow. 

• The ratio of the root mean squared error to the standard 
deviation of the observed streamflow (RSR) calculates 
the error as a proportion of variability in observed 
streamflow:

                                                                            .            (11)
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The RSR helps to identify those sites and seasons dur-
ing which observed streamflow variability caused by 
anthropogenic controls (such as water use) or weather 
patterns (such as snowmelt) may affect the ability to 
simulate streamflow because of water storage or redis-
tribution that is not represented in those datasets used 
by WATER.

•	 The Spearman rank correlation coefficient (rho) incor-
porates ranks (R) of daily observed and simulated 
streamflow within the entire record:
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This statistic quantifies the ability of the simulation to 
accurately separate individual streamflow components 

in terms of how individual days rank among the entire 
streamflow record.

•	 The bias (B) calculates error as a percentage of the 
daily streamflow value:
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*100 .        (13)

The bias helps to identify whether the model consis-
tently overestimates or underestimates streamflow for 
individual sites or time periods. A positive bias indi-
cates that WATER overestimates streamflow.

Evaluation of Daily Streamflow
This group of goodness-of-fit statistics shows how 

WATER performs throughout the DRB (fig. 14). Fifty-three of 
57 basins have an Ef between 0.39 and 0.83. Normalized root 
mean squared error ranges from 0.32 to 3.11, and RSR ranges 
from 0.45 to 1.64. Bias ranges from -26.7 to 27.4 percent, 
with 35 of 57 basins between ±10 percent. The Spearman rank 
correlation coefficient ranges from 0.69 to 0.92 (not shown in 
figure 14).

Three basins in particular have poor performance relative 
to the other validation basins. Two of these (01451500—Little 
Lehigh Creek at Allentown, Pa.; and 01452500—Monocacy 
Creek near Bethlehem, Pa.) are populated regions in the 
carbonate area of the DRB, where groundwater use makes 
it difficult to simulate streamflow (fig. 5). A third basin 
(01484270—Beaverdam Creek near Milton, Del.) is in the 
Coastal Plain region and may be influenced by high tides 
(fig. 3). The RMSEn of several basins in the midlatitudes of 
the DRB, including basins where the land cover is relatively 
equally split among the three HRUs, ranges from 0.76 to 0.90; 
daily water use may be more difficult to characterize from 
seasonal estimates for the mixed land-cover environment than 
for basins with primarily one HRU. The RMSEns of several 
basins in the northern part of the DRB shows relatively high 
values; however, comparison to the observed variability (RSR) 
suggests that there is a high variability in daily streamflow 
for these basins. For each basin, a 3-day moving average 
of streamflow significantly improved model performance 
(p<0.01); this 3-day average accounts for the random distribu-
tion of precipitation events, the potential for a precipitation 
event to span more than 1 day, and the variable snow-water 
equivalent among and within events. There is no apparent 
spatial pattern in the bias.

For an understanding of the accuracy of hydrologic 
simulations for different streamflow conditions, streamflows 
were divided into six percentiles (≤10 percent, >10–25 per-
cent, >25–50 percent, >50–75 percent, >75–90 percent, and 
>90 percent) and compared to overall model performance 
(fig. 15). The RMSEn (fig. 15A) indicates no significant dif-
ference in model performance for streamflows larger than 
the 25th percentile, and the average value is less than 1 for 
these streamflows. The RMSEn is significantly larger for the 
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Figure 16. Goodness-of-fit streamflow-percentile statistics grouped as a function of basin area and 
percentage of forested area. Forested-area categories are 0–25 percent (%), >25–50 percent, >50–75 
percent, and >75–100 percent. Basin-area categories are 0–25 square kilometers (km2), >25–50 km2, 
>50–100 km2, >100–250 km2, >250–500 km2, and >500–928 km2; points are shown at basin average for the 
range. For each statistic, the overall mean for all 48 sites is shown at 0 percent forested area on left.  
>, greater than; <, less than.



smallest streamflows (<25th percentile). However, when the 
root mean squared error is normalized by the natural vari-
ability for each basin (RSR; fig. 15B), there is no significant 
difference among those streamflows smaller than the 90th 
percentile. This suggests that the larger error in streamflow 
simulation, as indicated by the RMSEn, is a function of 
day-to-day variability in observed streamflow that might be 
caused, for example, by temporal distribution of precipitation 
events or actual water use during summer and fall. The RSR 
also shows that for the largest streamflows (90–100th percen-
tiles), on average the root mean squared error is equal to the 
standard deviation of observed streamflow for this streamflow 
percentile (RSR=0.98) and is similar to that for all stream-
flows (RSR=0.73).

The Spearman rank correlation coefficient (fig. 15C) 
shows that within individual streamflow percentiles, the 
simulations are less accurate when the entire flow record is 
considered; there is no significant difference in performance 

for streamflows <75th percentile. However, the notably higher 
value for all streamflows (rho=0.84) indicates that the model 
successfully differentiates individual daily streamflow in 
terms of where these rank in the entire streamflow record. The 
evaluation of bias (fig. 15D) shows the most difference among 
the streamflow percentiles. Overall, the largest streamflows 
show a positive bias (30 percent), indicating that these largest 
streamflows are overestimated; this is likely a function of how 
precipitation is randomly distributed within WATER, making 
it difficult to accurately simulate the timing of peak stream-
flow. The average bias for the entire streamflow record in all 
basins is -1.14 percent, and streamflows from the 90th–25th 
percentile have a bias of approximately -7 percent and a simi-
lar distribution of positive and negative bias among individual 
basins. The two smallest streamflow percentiles (>25-10th 
and <10th) also show a similar spread of positive and nega-
tive bias, but with a more negative average bias (-13 and -25 
percent, respectively). In both cases, the absolute percent 
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44  Summary of Hydrologic Modeling for the Delaware River Basin Using the Water Availability Tool for Environmental Resources (WATER)

Figure 17. Normalized root mean squared error (RMSEn) as a function of percentage of forested area. Forested-
area categories are 0–25 percent, >25–50 percent, >50–75 percent, and >75–100 percent. Note that U.S. Geological 
Survey site 01422389 has zero-streamflow days in September and October, so no RMSEn is reported for those months 
or as annual value and only five forested sites are shown for these time periods.
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Figure 18. Root mean squared error/standard deviation (RSR) as a function of percentage of forested area. Forested-area 
categories are 0–25 percent, >25–50 percent, >50–75 percent, and >75–100 percent.
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Figure 19. Normalized root mean squared error (RMSEn) as a function of basin area. Area categories are  
0–25 square kilometers (km2), >25–50 km2, >50–100 km2, >100–250 km2, >250–500 km2, and >500–928 km2. Note that  
U.S. Geological Survey site 01422389 has zero-streamflow days in September and October, so no RMSEn is reported  
for those months or as an annual value and only five forested sites are shown for these time periods.
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Figure 20. Root mean squared error/standard deviation (RSR) as a function of basin area. Area categories are  
0–25 square kilometers (km2), >25–50 km2, >50–100 km2, >100–250 km2, >250–500 km2, and >500–928 km2.
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bias is significantly larger for the smallest streamflows than 
for the 25–50th streamflow component (p-value = 0.018 and 
p-value <0.001, respectively); the difficulty in simulating these 
small streamflows is compounded by the day-to-day deviation 
of the seasonal water-use estimate from the actual daily value.

Individual streamflow percentiles were also assessed 
in order to understand if there was a relation of streamflow 
to land-cover distribution (0–25 percent, >25–50 percent, 
>50–75 percent, >75–100 percent) or basin size (0–25 km2, 
>25–50 km2, >50–100 km2, >100–250 km2, >250–500 km2, 
and >500 km2) (fig. 16); each of the four goodness-of-fit 
statistics was averaged for sequential ranges of basin area and 
percentage of forested area. The RMSEn, RSR, and Spearman 
rho all show similar trends for each of the streamflow percen-
tiles when evaluated as a function of basin area and percentage 

of forested area. The largest streamflows (≥90th percentile) 
are the general exception to this and exhibit different bias and 
RSR relative to the other streamflow percentiles. For example, 
the RSR for the largest streamflows is lower than that for 
the other streamflow percentiles; this is true in terms of both 
forested area and basin size. This is further evidence that bias 
in the largest streamflows is a function of how precipitation 
is distributed in the model as opposed to other aspects of the 
model, because this error is consistent regardless of location 
within the DRB, basin size, or land-cover distribution. Simi-
larly, those basins smaller than 25 km2 have the largest RSR 
and lowest Spearman rho for streamflows <90th percentile; an 
accurate and precise precipitation distribution, beyond what 
is available in WATER, is critical in these small basins, where 
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Figure 21. Comparison of four goodness-of-fit statistics for 48 optimization basins and 9 test basins. Note that for each statistic, the 
nine test basins perform comparably to those basins use for optimization.
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Figure 22. Observed and simulated streamflow for October 1, 2009, through September 30, 2010, with and without water use, together 
with cumulative streamflow for the 2001–10 period in A, a forested basin (01420500 Beaver Kill at Cooks Falls, NY) and B, an agricultural 
basin (01470779 Tulpehocken Creek near Bernville, PA). Note that for the forested basin, there is little change when water use is 
applied. All plots are at the same scale. Site-specific statistics have also been included. Ef(ln), Nash-Sutcliffe efficiency of the natural 
log of streamflow; RMSEn, normalized root mean squared error; RSR, ratio of the root mean squared error to the standard deviation of 
observed streamflow.
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Figure 22. Observed and simulated streamflow for October 1, 
2009, through September 30, 2010, with and without water use, 
together with cumulative streamflow for the 2001–10 period in A, 
a forested basin (01420500 Beaver Kill at Cooks Falls, NY) and B, 
an agricultural basin (01470779 Tulpehocken Creek near Bernville, 
PA). Note that for the forested basin, there is little change when 
water use is applied. All plots are at the same scale. Site-specific 
statistics have also been included. Ef (ln), Nash-Sutcliffe efficiency 
of the natural log of streamflow; RMSEn, normalized root mean 
squared error; RSR, ratio of the root mean squared error to the 
standard deviation of observed streamflow.—Continued
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response to individual events can be rapid and directly reflects 
the magnitude and duration of precipitation as well as local 
soil-water storage capacity; in contrast, spatial and temporal 
differences in precipitation and soil-water storage are masked 
by channel storage and tributary integration that occurs in 
larger basins (Dingman, 2002). Finally, those basins with the 
smallest percentage of forested area, where the variability in 
daily water use combines with localized snowpack manage-
ment, have a relatively large RSR for streamflows <90th 
percentile.

To further understand the variability in streamflow 
simulation, the RMSEn and RSR were examined as a function 
of both percentage of forested area and basin size by using 
monthly streamflow distributions (figs. 17–20). The highest 
monthly RMSEn (fig. 17) is in September for 01422738—
Wolf Creek at Mundale, N.Y., the smallest basin evaluated 
(1.6 km2); this is one of the two months for which a nearby 
basin (01422389–Coulter Brook near Bovina, N.Y. [2.0 km2]) 
has zero-streamflow days. In general, RMSEn is higher in 

the warmer and drier months (July–October) when individual 
plant species, beyond the specification of the forested HRU, 
can increase their rooting depth in response to soil-water stress 
and access deeper soil layers not used during the rest of the 
growing season. Those basins with >75-percent-forested area 
also have higher RMSEn in January relative to the Febru-
ary–June period—most of these basins are in the northern 
part of the DRB, where simulation of daily snow accumula-
tion and snowmelt processes are likely compounding model 
error. The RSR of these same basins is larger in October and 
June, a month later in the spring than for those basins with 
25–50-percent-forested area (fig. 18). This may be related to 
the transition into and out of the aggressive ET period of the 
year, which starts later in the northern part of the DRB, where 
those basins with >75-percent-forested area are concentrated 
(fig. 4). The highest monthly RSR is in August for USGS site 
01484000—Murderkill River near Felton, Del.; this site is at 
the fringe of the tidally influenced area, where the low stream-
flows may be impacted by high tides (fig. 3).
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Figure 23. Examples of observed and simulated streamflow for A, a forested basin and B, an agricultural basin with four different 
uncertainty ranges: ±1 normalized root mean squared error from individual sites (RMSEn), ±2 RMSEn, ±1 normalized root mean 
squared error averaged from all sites (RMSEn57), and ±2 RMSEn57.
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Figure 23. Examples of observed and simulated streamflow for A, a forested basin and B, an agricultural basin with four different 
uncertainty ranges: ±1 normalized root mean squared error from individual sites (RMSEn), ±2 RMSEn, ±1 normalized root mean 
squared error averaged from all sites (RMSEn57), and ±2 RMSEn57.—Continued
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Figure 24. Examples from A, a forested basin (01420500 Beaver Kill at Cooks Falls, NY) and B, an agricultural basin (01470779 
Tulpehocken Creek near Bernville, PA) of observed and simulated streamflow with site-specific uncertainty ranges from normalized root 
mean squared error (±1 RMSEn and ±2 RMSEn from figure 23) and for individual streamflow components (±1 RMSEn-percentile and ±2 
RMSEn-percentile, values shown as inset). Note that axis has been shifted for agricultural basin B but that the range shown includes 
the same orders of magnitude.
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Figure 24. Examples from A, a forested basin (01420500 Beaver Kill at Cooks Falls, NY) and B, an agricultural basin (01470779 
Tulpehocken Creek near Bernville, PA) of observed and simulated streamflow with site-specific uncertainty ranges from normalized root 
mean squared error (±1 RMSEn and ±2 RMSEn from figure 23) and for individual streamflow components (±1 RMSEn-percentile and ±2 
RMSEn-percentile, values shown as inset). Note that axis has been shifted for agricultural basin B but that the range shown includes 
the same orders of magnitude.—Continued
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Table 9. Number of days of observed streamflow not bounded by normalized root mean squared error 
(RMSEn)-based confidence intervals over the period of record at two sites in the Delaware River Basin,  
including the site-specific RMSEn, the average RMSEn from 57 sites, and the site-specific RMSEn for the 
observed streamflow percentile.

[n=3,287 days. USGS, U.S. Geological Survey; ID, identification number; RMSEn, normalized root mean squared error; %, percent]

USGS
site ID

Observed streamflow not bounded by  
confidence interval, in days

+1 RMSEn -1 RMSEn +2 RMSEn -2 RMSEn

Site specific

01420500 345 (10%) 108 (3.3%) 163 (5.0%) 0 (0%)
01470779 1165(35%) 39 (1.2%) 219 (6.7%) 0 (0%)

Average for all sites (n=57)

01420500 207 (6.3%) 0 (0%) 74 (2.3%) 0 (0%)
01470779 618 (19%) 1 (0.03%) 42 (1.3%) 0 (0%)

By observed streamflow percentile

01420500 414 (12.6%) 147 (4.5%) 208 (6.3%) 0 (0%)
01470779 1165 (35.4%) 39 (1.2%) 219 (6.7%) 0 (0%)
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Figure 25. The proportion of days, over the period of record for all 57 statistical evaluation sites in the Delaware River Basin, on which 
observed streamflow is not bounded by the confidence interval based on the average normalized root mean squared error (RMSEn57) for 
all sites. Only Monocacy Creek near Bethlehem, Pennsylvania, has less than 90 percent of the streamflows bounded by +2/-1 RMSEn. 
Data are shown both as individual points, with basin types differentiated, and as a boxplot for all 57 observations.



When these same statistics are considered as a function 
of basin area (figs. 19 and 20), the error in the smallest basins 
appears to follow a seasonal trend, with higher error optimiza-
tion in winter and summer relative to spring and fall. These 
small basins include those with 11.9–99.5-percent-forested 
area, so this error is not interpreted to be a function of land 
use. Again, this higher error is likely a function of the random 
distribution of precipitation by the model, which is unlikely to 
perfectly mimic actual events; this precipitation distribution 
is especially important in smaller basins where response to 
individual events can be rapid (Dingman, 2002). The seasonal 
trend in error becomes less apparent as basin size increases.

Nine basins, ranging in size from 2 to 348 km2, were used 
to test model performance for basins not included in any part 
of the optimization process (figs. 4 and 21). For each statistic, 
these test basins performed comparably to those 48 basins 
used for optimization of WATER parameters and incorporation 

of water-use data. When these nine sites are incorporated, the 
mean RMSEn for all sites increases from 0.875 to 0.939, and 
the median changes from 0.614 to 0.762; the mean RMSEn for 
the nine test basins is 1.27, and the median is 1.04.

Two basins will be used as examples to further illustrate 
model performance; one is predominantly forested (fig. 22A), 
and the other is predominantly agricultural (fig. 22B). Over the 
9-year period evaluated, there was an average underestimation 
of cumulative streamflow of 62.3 millimeters per year (mm/yr; 
49.1 mm/yr without water use) in the forested basin. The agri-
cultural basin had an average underestimation of 20.8 mm/yr 
(36.0 mm/yr without water use).

90 75 50 25 10

Flow exceedance, in percent

−100

   0

 100

 200

 300

 400

 E
rr

or
, i

n 
pe

rc
en

t

Largest flows Smallest flows

4.9 7.2
-4.6 -7.6

2.7

Absolute error, in percent

Maximum value

Minimum value

Extreme outlier
Outliers
 

75th percentile

Median
25th percentile

EXPLANATION

Median  
Mean 

  9.99
18.76

11.83
18.56

16.36
18.76 

25.91
29.46

29.38
54.66

Statistical Evaluation, Validation, and Uncertainty of Streamflow Simulated by Using WATER  57

Figure 26. The percentage of error for each streamflow percentile (n=57 sites) in the flow-duration curve; 
median error is notated on the graph. Median and mean values of absolute error for each percentile are 
summarized at bottom. All data are shown. 
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Estimating Uncertainty for Daily Streamflow 
Simulations by Using the Normalized Root Mean 
Squared Error

The RMSEn provides an estimation of uncertainty for the 
simulations that can be transitioned to simulations at ungaged 
sites and those involving scenario testing; this statistic is 
essentially a proportional error of daily streamflow simulation. 
For each of the 57 sites, the site-specific RMSEn was applied 
to the simulated discharge and compared to uncertainty 
bounds by using the mean RMSEn (an average of the RMSEn 
for all 57 sites; RMSEn57) as well as the site-specific RMSEn 
for each streamflow percentile as indicated by the observed 
streamflow. For the two basins shown (figs. 23 and 24), on the 
basis of the site-specific RMSEn, >90 percent of the stream-
flows are bounded by the addition of 2 RMSEn and subtrac-
tion of 1 RMSEn (+2/-1 RMSEn; fig. 23); this is also true for 
the mean RMSEn57 (0.939; n=57) and for the RMSEn specific 
to the observed streamflow percentile for each site (fig. 24 and 
table 9). When all 57 sites are considered (fig. 25) by using 
the mean RMSEn57, only Monocacy Creek near Bethlehem, 
Pa., has <90 percent of the streamflows bounded by +2/-1 
RMSEn57; the remaining 56 sites have >93 percent of the 
individual days bounded by +2/-1 RMSEn57, and 53 of these 
have >95 percent of days bounded by +2/-1 RMSEn57. Note 
that this error is not a function of land cover as is shown by 
the distribution of the different land-cover groupings (table 3) 
in the plot.

Evaluation of Daily Streamflow Distribution by 
Using the Flow-Duration Curve

As was discussed in a comparison of hydrologic flow 
models for the southeast U.S. (Farmer and others, 2015), the 
daily flow-duration curve (FDC) is a representation of the dis-
tribution of daily streamflow at a given site. The FDC is used 
to understand the average streamflows and extreme events in 
a basin for the period of record by quantifying, for example, 
the streamflow value that exceeds 90 percent of the streamflow 
record (percentile = 0.9). Five streamflow percentiles (0.1, 
0.25, 0.5, 0.75, 0.9) were evaluated for each of the 57 evalu-
ated sites by using the RMSEn and bias statistics used for 
daily streamflow. When this cumulative distribution function 
is compared for each site (n=5 streamflow percentiles), there 
is a median RMSEn of 0.44 for all sites. When the streamflow 
percentiles are evaluated independently (n=57 sites; fig. 26 
and table 10), there are significant differences in percentage of 
error (100 × [sim–obs]/obs) among the streamflow percentiles, 
with absolute error decreasing as the magnitude of streamflow 
increases. This is consistent with the statistical evaluation of 
daily streamflow, which indicates that the smallest streamflows 
have the largest proportion of error; however these smallest 
streamflows also have the largest observed variability (fig. 15). 

Together, this statistical evaluation of daily streamflow and 
the aggregated streamflow percentiles indicates that although 
there is a difference in the ability to differentiate among the 
individual streamflow percentiles, the higher observed vari-
ability during low-streamflow conditions, relative to those that 
exceed the smallest 25 percent of streamflows, suggests that 
uncertainty is similar for the entire streamflow record.

Evaluation of Mean Monthly Streamflow 
Simulations by Using Normalized Root Mean 
Squared Error

The WATER DSS was developed to provide a modeling 
environment that could be used to evaluate land-cover, cli-
mate, and water-use-allocation scenarios. For scenario testing, 
each of these variables is altered on a monthly, seasonal, and 
(or) decadal time step. Consequently, it is recommended that 
the change associated with scenarios be evaluated at a monthly 
time step that is normalized for the 25-year climatic record.

Evaluation of mean monthly streamflow simulations 
focused on the RMSEn, a statistic that quantifies error as a 
percentage of the streamflow value so can be most easily 
transferred to streamflow simulation at ungaged sites; site 
period of record ranged from 12 to 108 months for 57 sites. 
Two sites, Beaver Kill at Cooks Falls, N.Y., and Tulpehocken 
Creek near Bernville, Pa., were used to illustrate the difference 
in observed and simulated mean monthly streamflows over the 
2001–10 time period (fig. 27). The RMSEn for mean monthly 
streamflows ranged from 0.226–6.253 for all 57 sites, with 
a mean of 1.15 and a median of 0.526. However, when only 
those 45 sites with a full 108 months (9 years) were included 
(table 1), the maximum was 1.61, the mean was 0.527, and 
the median was 0.400. This mean RMSEn for (0.527, n=45) 

Table 10. Results of Wilcoxon signed-rank test comparing the 
error for each streamflow percentile from the flow-duration curve 
for all 57 sites in the Delaware River Basin. Values shown are 
p-values from paired tests. Significant differences are indicated 
by asterisks (*). For example, there is no significant difference 
(p-value = 0.263) between error in simulation of the lowest 10 
percent of streamflows and the error in simulation of the highest 
10 percent of streamflows (90th percentile). Data are shown in 
figure 26.

[%, percent, <, less than; —, not applicable]

p-values
 Streamflow percentile

25% 50% 75% 90%

Streamflow
percentile

10% <0.001* 0.001* 0.201 0.263
25% — 0.505 0.029* 0.066
50% — — <0.001* 0.008*
75% — — — 0.703
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Figure 27. Examples from A, a forested basin (01420500 Beaver Kill at Cooks Falls, NY) and B, an agricultural basin  (01470779 
Tulpehocken Creek near Bernville, PA) of observed and simulated mean-monthly streamflow with uncertainty ranges from normalized 
root mean squared error (RMSEn) averaged from all sites in the Delaware River Basin with 108-month (9-year) records  
(RMSEn45-mon = 0.527).
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Figure 28. The proportion of period of record during which the mean monthly observed streamflow is not bounded 
by the confidence interval based on the normalized root mean squared error (RMSEn) over the period of record for all 
45 validation sites in the Delaware River Basin with an observation period of 108 months (RMSEn45-mon=0.527). Fourteen 
sites have less than 90 percent of the streamflows bounded by +2/-1 RMSEn45-mon. Data are shown both as individual 
points, with basin types differentiated, and as a boxplot for all 57 observations.



Table 11. Number of months of observed mean monthly streamflow not bounded by the 
confidence interval based on the mean normalized root mean squared error (RMSEn) over 
the period of record for all 45 validation sites in the Delaware River Basin with an observation 
period of 108 months (RMSEn45-mon=0.527), for Beaver Kill, New York, and Tulpehocken Creek, 
Pennsylvania, sites in the Delaware River Basin.

[USGS, U.S. Geological Survey; ID, identification number; RMSEn, normalized root mean squared error;  
%, percent]

USGS site ID
 Months not bounded by confidence interval, as total (and percentage)

+1 RMSEn -1 RMSEn +2 RMSEn -2 RMSEn

01420500 9 (8.3%) 1 (0.9%) 4 (3.70%) 0 (0%)
01470779 27 (25.0%) 1 (0.9%) 2 (1.85%) 0 (0%)
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Figure 29. Root mean squared error (RMSEn) for mean monthly streamflow normalized for the period of record for all 57 sites 
in the Delaware River Basin and for the 45 sites with a 9-year period of record (in parentheses).
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Figure 30. Observed and simulated mean-monthly streamflow normals for 2001–10 time period for 57 sites in the 
Delaware River Basin. Asterisk (*) indicates that observed and simulated monthly normals significantly differ for 
those 45 sites with a full 108-month period of record.
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Figure 31. Proportion of mean monthly-streamflow normals (n=12 months) not bounded by simulated 
discharge if using either the month-specific (shown in figure 29) or averaged nomralized root mean 
squared error (RMSEn) of the normalized mean-monthly streamflow (RMSEn57mon-PORnorm) for all 57 sites 
in the Delaware River Basin.



64  Summary of Hydrologic Modeling for the Delaware River Basin Using the Water Availability Tool for Environmental Resources (WATER)

was used to estimate uncertainty for mean monthly streamflow 
simulations (RMSEn45-mon). Similarly to the daily simulations, 
a confidence interval of +2/-1 RMSEn45-mon bounds >95 per-
cent of the streamflows for the two example sites (fig. 28 and 
table 11). When these uncertainty bounds are applied to all 57 
validation sites, two sites have >10 percent of mean monthly 
streamflows not bounded by +2 RMSEn45-mon, and 12 sites 
have >10 percent of mean monthly streamflows that are not 
bounded by -1 RMSEn45-mon. Monocacy Creek near Bethle-
hem, Pa., is the most poorly estimated, with 24 of 108 months 
not included in the +2 RMSEn45-mon/-1 RMSEn45-mon uncertainty 
bounds. Again, it should be noted that this uncertainty is not 
a function of land-cover; this is critical if scenario testing will 
incorporate land-cover forecasts.

When the mean monthly streamflow is normalized for 
the period of record, with a single mean for each month for 
each site, error is generally highest during the late summer 
and fall (fig. 29), although this seasonal difference is smaller 
when only those sites with a full 9-year period of record are 
included. When the observed and simulated mean streamflow 
for each month are compared for all 57 sites, only March, 
June, and October significantly differ (fig. 30). When the  
mean monthly streamflow normalized for the period of  
record is bounded by using the mean RMSEn uncertainty  
(RMSEn57mon-PORnorm=0.3255), a +2/-2 RMSEn57mon-PORnorm is 
needed to bound >90 percent of the monthly streamflow esti-
mates (fig. 31). Depending on the question being asked, one 
could use the RMSEn normalized for each month (fig. 31); 
however, there is little difference between this and using the 
overall mean.

Evaluating the mean monthly streamflow over the 
period of record used for validation is analogous to evaluat-
ing mean monthly streamflows by using monthly normals 
when implementing scenario testing for land-cover, climate, 
or water-use changes. Consequently, applying an uncertainty 
of +2/-2 RMSEn57mon-PORnorm (0.3255 × mean monthly stream-
flow) is recommended for quantifying expected streamflow 
magnitudes.

Summary 
The Water Availability Tool for Environmental Resources 

(WATER) decision support system (DSS) was developed to 
provide the Delaware River Basin community an ability to 
investigate the potential effects of different management deci-
sions, forecasted changes in climate, and land-cover change. 
Although the WATER DSS can be used for the entire Dela-
ware River Basin, there are some streams, including those 
downstream of regulated reservoirs and those within the tidal 
zone, where simulations should only be used for general infor-
mation. WATER provides consistent simulation of hydrologic 
conditions, including high and low streamflows, for basins 
with ranges of size, land cover, and location within the Dela-
ware River Basin. Individual hydroclimatic components of the 

water budget are also effectively simulated. Consequently, this 
process-based, regionally calibrated DSS can be used to inves-
tigate the sustainability and resiliency of water-resources as a 
result of forecasted environmental and management scenarios. 
Scenario testing can be accomplished because the WATER 
DSS provides for potential changes in both the natural and 
the anthropogenic environment by independently incorporat-
ing land-cover, climate, and landscape (topography and soils) 
characteristics. 

Ultimately, it is the responsibility of the user to interpret 
results. However, some precautions and suggestions for use of 
the WATER DSS follow:

1. An uncertainty range of +2/-1 normalized root mean 
squared error averaged from all sites (RMSEn57; 0.939) 
is recommended for daily streamflow simulations.

2. For those scenarios involving general circulation model 
(GCM) data and land-cover change, mean monthly 
streamflows, not mean daily streamflows, should be the 
finest unit considered because GCM data are applied 
by using a monthly normal and land-cover simulations 
were derived at a decadal time step. Normalized mean 
monthly streamflow (in other words, streamflow aver-
aged for each month for the 25-year climate record) 
should be used with the normalized root mean squared 
error that has been normalized for the period of record 
for all 57 sites (RMSEn57mon-PORnorm; 0.3255) to quantify 
the forecasted range of streamflow and water availability 
for a given scenario.

3. All scenarios should be compared to simulation of 
the same site by using the historical conditions (2011 
National Land Cover Database and 2010 water use) 
provided with the DSS. This is similar to the approach 
illustrated with the determination of the GCM change 
factor calculations. Multiple GCMs and representa-
tive concentration pathways should be incorporated in 
scenario testing, and the overall trend in streamflow and 
other hydroclimatic variables among multiple GCM 
simulations should be used to plan for forecasted change.
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