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Decadal modulation of global surface temperature
by internal climate variability
Aiguo Dai1,2*, John C. Fyfe3, Shang-Ping Xie4 and Xingang Dai5

Despite a steady increase in atmospheric greenhouse gases
(GHGs), global-mean surface temperature (T) has shown no
discernible warming since about 2000, in sharp contrast to
model simulations,whichonaverageproject strongwarming1–3.
The recent slowdown in observed surface warming has
been attributed to decadal cooling in the tropical Pacific1,4,5,
intensifying trade winds5, changes in El Niño activity6,7, in-
creasing volcanic activity8–10 and decreasing solar irradiance7.
Earlier periods of arrested warming have been observed
but received much less attention than the recent period,
and their causes are poorly understood. Here we analyse
observed and model-simulated global T fields to quantify the
contributions of internal climate variability (ICV) to decadal
changes in global-mean T since 1920. We show that the
Interdecadal Pacific Oscillation (IPO) has been associated
with large T anomalies over both ocean and land. Combined
with another leading mode of ICV, the IPO explains most
of the di�erence between observed and model-simulated
rates of decadal change in global-mean T since 1920, and
particularlyover theso-called ‘hiatus’periodsinceabout2000.
We conclude that ICV, mainly through the IPO, was largely
responsible for the recent slowdown, as well as for earlier
slowdowns and accelerations in global-mean T since 1920,
with preferred spatial patterns di�erent from those associated
withGHG-inducedwarming or aerosol-induced cooling. Recent
history suggests that the IPO could reverse course and lead to
accelerated global warming in the coming decades.

ThePacificDecadalOscillation (PDO; refs 11,12), ormore gener-
ally the IPO (refs 13,14), switched from a warm phase to a cold
phase around 199915. This switch has been associated with a cooling
trend since the early 1990s over the Equatorial Central and Eastern
Pacific (ECEP; 15◦ S–15◦ N, 180◦–80◦ W) that has contributed to
the recent hiatus in global-mean T (refs 4,5). Modelling studies1,16,17
have also shown that the IPO can modulate the rate of global
warming through changes in ocean heat uptake. Given the well-
documented extra-tropical response to tropical forcings18,19, it is
not surprising that IPO-associated sea surface temperature (SST)
variations in the ECEP have had a large impact on global-mean T
(ref. 1). The recent cooling of the ECEP has been accompanied by
strengthening trade winds5 and increasing ocean heat uptake4,16,17,20,
typical of a La Niña event21 but over decadal timescales. Although
these studies all point to a major contribution of the ECEP to
the recent global warming slowdown, it is unclear how much of
the observed SST change in the ECEP is associated with ICV,
particularly the IPO, and how much is due to external forcing
change, such as stratospheric aerosols7–10. Previous analyses22,23
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Figure 1 | Time series of the near-global (60◦ S–75◦ N) mean surface
temperature anomalies (T′, all relative to the 1961–1990 mean) from 1920
to 2013. a, Annual T′ from the GISTEMP observational data set26 compared
with the ensemble mean surface air temperature from 66 historical
all-forcing runs from 33 CMIP5 models multiplied by a scaling factor of
0.863, and the scaled model T′ plus the T′ represented by the two leading
EOFs given in Fig. 2. The contribution of the two leading EOFs is shown as
the blue line in b. b, Three-year moving averaging was applied to the local T
time series before regional averaging or EOF analyses in this study and also
to the lines in b. The correlation coe�cient (r) is for the black versus red
and black versus blue lines, respectively. The scaling removes the overall
warming bias in the models and improves visual agreement between the
observations and models, but does not a�ect the decadal change patterns
(Supplementary Section 4 and Supplementary Fig. 2). The orange shading
in a represents the 95% confidence interval of the model ensemble mean
(red curve) and the blue vertical bar indicates the 10th to 90th percentile
range of the internal variability of T′ estimated using the CESM1
30-member ensemble simulations29.

1Department of Atmospheric & Environmental Sciences, University at Albany, SUNY, Albany, New York 12222, USA. 2National Center for Atmospheric
Research, PO Box 3000, Boulder, Colorado 80307, USA. 3Canadian Centre for Climate Modeling and Analysis, Environment Canada, Victoria,
British Columbia V8W 2Y2, Canada. 4Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, USA.
5RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. *e-mail: adai@albany.edu

NATURE CLIMATE CHANGE | VOL 5 | JUNE 2015 | www.nature.com/natureclimatechange 555

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nclimate2605
mailto:adai@albany.edu
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2605

−4.0 −3.2 −2.4 −1.6 −0.8 0.0 0.8 1.6 2.4 3.2 4.0

0.3
a

c

e

d

f

b

PC
 c

oe
ffi

ci
en

t
0.1

−0.1

1920 1940

PC1, 20.9%, 14.9%, r = 0.77, 0.90

1960

EOF1, mean = 0.561

IOP versus dT regression, r = 0.81

La
tit

ud
e

1980
Year Year

2000 2020
−0.3

Longitude
0° 60° E 120° E

AMO versus dT regression, r = 0.33

180° 120° W 60° W 0°

60° N

30° N

0°

30° S

60° S

La
tit

ud
e

Longitude
0° 60° E 120° E 180° 120° W 60° W 0°

60° N

30° N

0°

30° S

60° S

La
tit

ud
e

Longitude
0° 60° E 120° E 180° 120° W 60° W 0°

60° N

30° N

0°

30° S

60° S

La
tit

ud
e

Longitude
0° 60° E 120° E 180° 120° W 60° W 0°

60° N

30° N

0°

30° S

60° S

0.3

0.1

−0.1

1920 1940

EOF4, mean = 0.362

PC4, 6.3%, 6.7%, r = 0.46, 0.37

1960 1980 2000 2020
−0.3

Figure 2 | Time series of the principal components and spatial patterns of the first and fourth leading EOFs in the near-global surface temperature fields
during 1920–2013. a,b, Time series of the principal components of the first (a) and fourth (b) EOFs. Thin (thick) lines represent the annual (nine-year
smoothed) PCs for the GISTEMP (ref. 26; black) and HadCRUT4 (ref. 27; red) temperature data sets. The blue lines in a and b indicate the IPO and AMO
index, respectively, estimated as the nine-year smoothed PC2 of global SST fields from GISSTEMP and PC1 of the detrended SST over the North Atlantic
(20◦–70◦ N, 70◦ W–0◦) domain. Global-mean SST time series from observations was used to detrend the SST data locally through linear regression before
estimating the AMO PC. The percentage variance explained by the EOF mode is shown above, from left to right, for GISTEMP and HadCRUT4, respectively.
The r values shown above are, from left to right, the correlation coe�cients between the blue line and thick black line, and the blue line and thick red line,
respectively. c,d, Spatial patterns of the first (c) and fourth (d) leading EOFs. The EOFs for the HadCRUT4 (not shown) data set are similar to the GISTEMP
data set shown here. The area-weighted global mean of the EOF patterns is shown above the plots. e, Map of the IPO index (blue line in a) versus
HadCRUT4 T regression slope after detrending using its own global-mean T through linear regression. f, Map of the AMO index (blue line in b) versus
HadCRUT4 T regression slope after the global trend and IPO components have been removed. The r values above e and f are the area-weighted pattern
correlation coe�cients between the regression map and the corresponding EOF panels in c and d, respectively.

suggest that changes in theAtlanticMultidecadalOscillation (AMO;
ref. 24) may have been associated with the rapid global warming
since the late 1970s, but these and other25 studies did not address
how the AMO, IPO and other decadal modes of ICV modulated
global-mean T before the 1970s and during the early twenty-first
century. The rate of global warming from 2000 to 2013 also remains
to be fully reconciled between observations and climate models.
Furthermore, the T change patterns (Supplementary Fig. 1) suggest
that the recent warming hiatus resulted from a cancellation of
warming over most land areas and the Atlantic and Indian Oceans
by cooling concentrated over the eastern Pacific Ocean, and that
recent natural or anthropogenic aerosol forcing or GHG increases
cannot explain the observed T change patterns.

Here we quantify the contribution of ICV to the historical
evolution of global-mean T , including over the warming hiatus
period since about 2000.We average over a large number of Coupled
Model Intercomparison Project Phase 5 (CMIP5) simulations
to derive an estimate of the forced response in global-mean

T to GHG and other external forcing changes (see Methods).
Changes associated with this estimate of the forced response
in global-mean T are then removed via linear regression from
the time series of observed T (refs 26,27) at each gridpoint
(see Supplementary Information). The goal of the CMIP5-based
detrending is to remove forced T changes, so that the residual
is mostly due to ICV. We choose this over other detrending
methods for this purpose as the CMIP5 ensemble mean represents
our best estimate of the forced change. Having removed the
externally forced component in observed T , we then perform an
empirical orthogonal function (EOF) analysis (see Supplementary
Information) to examine the contributions of the leading modes
of ICV to decadal changes in global-mean T . We focus on the
1920–2013 period, as observations are sparse in the tropical
Pacific and many other regions before 1920. We note that the
CMIP5 models on average overestimate the observed warming
from 1920 to 2013 by about 14% (see Supplementary Information).
As this model bias is not the focus of our study, it is removed
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Figure 3 | Evolution of decadal trends in global-mean surface
temperatures. a, Rolling ten-year trends corresponding to the curves in
Fig. 1a, which have been pre-smoothed using three-year running averages
before computing the trend, plotted at the fifth year of the period. b, Rolling
ten-year trends for the correspondingly coloured lines in Fig. 1b. The black
line is the di�erence between the black and red lines in a. In a and b the
correlation coe�cients (r) are, from left to right, for the black versus red
and black versus blue lines, respectively. The scaling applied to Fig. 1a has
little influence on the decadal change rates shown here.

through re-scaling without affecting our overall conclusions (see
Supplementary Section 4).

We find that the first and fourth leading EOFs of the ICV can
account for the large decadal swings in observed global-mean T , for
example, by up to ±0.1 ◦C around 1925, 1940, 1950, and after 2005
(Fig. 1). These fluctuations in observed global-mean T are absent
in the corresponding model-mean time series (Fig. 1a), which
approximates the mean forced response to historical GHG and
other external forcing changes. By construction, the EOF method
maximizes the spatially integrated variance explained by the leading
EOFs, but it does not require them to explain any variations in the
global-mean T . In fact, EOFs 2 and 3 contribute little to the global-
mean T , as their spatial patterns approximately cancel each other.
Thus, it is surprising that it takes only two EOF modes to explain
most (88%) of the observed global-mean T deviations from the
forced response. The re-scaling of the model T in Fig. 1 improves
the visual agreement with the observations, but even without this
re-scaling the two EOFs still account for most (67%) of the observed
decadal T variations (Supplementary Fig. 2).

The first EOF mode (Fig. 2a,c) resembles (but is not identical to)
the temporal and spatial patterns of the previously defined PDO
(refs 11,12), or the IPO (refs 13–15), as its PC series is highly
correlated (r = 0.77 and 0.90 for the GISTEMP and HadCRUT4
cases, respectively) with the IPO index (blue line in Fig. 2a). Spatial
patterns of EOF1 over the oceans also resemble the SST patterns
associated with the PDO (refs 11,12) or IPO (ref. 15). The patterns
of the detrended T regression against the IPO index (Fig. 2e) are
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Figure 4 | Simulated time series of the near-global mean surface
temperature anomalies (relative to the 1961–1990 mean) from 1920
to 2013 . As Fig. 1 but with the black line for T′ taken from CESM1 historical
run no. 11 and the red line from the CESM1 30-member ensemble29

mean T′ (without re-scaling). The leading EOF1 and EOF2 of run no. 11 are
used in this plot. The orange shading in a represents the 95% confidence
interval of the model ensemble mean (red curve) and the blue vertical
bar indicates the 10th to 90th percentile range of the internal variability
of T′ estimated using the CESM1 30-member ensemble simulations29.

also highly correlated (r=0.81) with the patterns of EOF1 (Fig. 2c).
The EOF1 patterns over many land areas (for example, around
the Pacific rim) are spatially coherent with the SST patterns over
the oceans (Fig. 2c). Thus, we conclude that EOF1 represents the
impact of the IPO, a prominent physical mode of ICV (ref. 24),
on surface T . The fourth EOF (Fig. 2b,d), with large loading in
the Northern Hemisphere including the North Atlantic, partially
resembles the temporal and spatial structures of the AMO, as well
as the surface temperature patterns associated with the West Pacific
Oscillation28. Its temporal and spatial structures do not resemble any
known historical external forcing, but its underlying physical nature
requires further investigation.

These leading EOFmodes are similar between theGISTEMP and
HadCRUT4 data sets, although small differences exist, mainly in the
early part of the record (Fig. 2a–d). The IPO mode accounts for
more variance in the GISTEMP data set than in the HadCRUT4
data set (that is, 20.9% and 14.9%). Together, EOF modes 1 and
4 of ICV identified here explain only about 27.2% (21.6%) of the
total spatially integrated variance in the detrended annual-mean
temperature from the GISTEMP (HadCRUT4) data set, yet they
account for essentially all the decadal variations in global-mean T .
As there is little evidence that the IPO and the other decadal
mode of ICV have been significantly influenced by anthropogenic
forcing so far3, we reasonably assume them to primarily represent
unforced internal climate variations. On the basis of Figs 1 and 2,
we conclude that the decadal differences between the observed and
model-simulated global-mean T anomalies since 1920 are largely
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Figure 5 | Time series of the ECEP surface temperature anomalies (T′, all
relative to the 1961–1990 mean) from 1920–2013. a, Annual T′ from the
GISTEMP observational data set26 (black) compared with the ensemble
mean surface air temperature from 66 historical all-forcing runs from 33
CMIP5 models multiplied by a scaling factor of 0.863 (red), and the scaled
model T′ plus the T′ represented by the first leading EOF (blue).
b, GISTEMP minus the scaled model T′ di�erence (black) and the ECEP T′

represented by the first leading EOF (blue). The correlation coe�cient (r)
is, from left to right, for black versus red and black versus blue lines in a and
between the two lines in b. The orange shading in a represents the 95%
confidence interval of the model ensemble mean (red curve) and the
blue vertical bar indicates the 10th to 90th percentile range of the
internal variability of T′ estimated using the CESM1 30-member
ensemble simulations29.

accounted for by the IPO and the other leading mode of ICV
identified here.

The observed rate of change in global-mean T over individual
ten-year periods has varied widely, ranging from warming of about
0.3 ◦C per decade during the late 1930s and late 1970s to cooling of
similar magnitude in the 1940s (Fig. 3a). The corresponding rates
of change derived from the two leading modes of ICV (that is,
EOF1 and EOF4) account formost (81%) of the observation-minus-
model difference, with the IPO mode explaining most (69%) of it
(Fig. 3b). Large differences between the observed and model-mean
rates of change similar to those over the 2000–2013 period have
occurred in the past—for example, during the 1930s, 1940s and late
1950s. After accounting for the combined contribution from these
two leading EOFs, we see that the observed and simulated rates of
changematch well over the recent period from 2000 to 2013 (Fig. 3a,
black and blue curves), although somedifferences remain during the
ten-year period centred around 2002, and during earlier periods in
the 1970s and around 1990, for example. Possible causes for these
residual differences may include decadal variations in stratospheric
aerosols being misrepresented in the CMIP5 simulations8, as well
as deficiencies in simulating the cooling effects of anthropogenic
tropospheric aerosols3. However, the T change patterns induced by

volcanic or anthropogenic aerosols are inconsistent with the recent
observations (Supplementary Fig. 1).

We repeated our analysis using the CESM1 30-member ensemble
of simulations29 (Fig. 4). Global-mean T in its run no. 11 happens
to change little from 2000 to 2013, in contrast to the steady warming
in the 30-member ensemble mean. As a result, there are substantial
differences of ∼0.1 ◦C in global-mean T , comparable to those
of Fig. 1, between this run and the ensemble mean on multi-
year to decadal timescales. As in our observational analysis, these
differences can be largely accounted for by the two leading EOFs
from run no. 11 (Fig. 4). Further, the spatial patterns of these two
EOFs resemble those of the leading EOFs in a free control run by
the same model, with both leading EOFs showing IPO-like patterns
(Supplementary Fig. 3). These results support our observational
analysis that natural variability, specifically IPO, explains most of
the inter-decadal variations in global-mean T .

Spatial maps of observed T obtained after removing our estimate
of the externally forced component exhibit complex spatial patterns
that vary from period to period (Supplementary Fig. 4). These
patterns show a close resemblance to the IPO pattern (Fig. 2b) for
the hiatus period from 2000 to 2013 (Supplementary Fig. 4g, spatial
correlation r=−0.86), as well as for the accelerated warming period
from 1992 to 1998 (Supplementary Fig. 4c, where r=0.76). These
results show that there are preferred spatial patterns associated with
the slowdowns and accelerations of global-mean T , with cooling in
the central and eastern Pacific Ocean and adjacent land areas during
hiatus periods. These patterns differ from those of GHG-induced
warming3 or aerosol-induced cooling (Supplementary Fig. 1).

In the ECEP region from 1920 to 2003, the observed SSTs show
an overall upward trend that is comparable to the re-scaled CMIP5
multi-model-mean trend (Fig. 5a). However, since about 2003 the
observed SSTs in the ECEP region have decreased whereas the
CMIP5 model-mean SSTs continue to rise. Decadal pauses or de-
clines in the long-term rise of observed SSTs in the ECEP regionhave
occurred in the past—for example, from1940 to 1949 and from1968
to 1975 (Fig. 5a). However, the departures from the model-mean
trends during these periods are not as obvious as during 2000–2013,
mainly because the recent period is associated with rapid warming
in the models. The observed and simulated T differences in the
ECEP region can be largely accounted for by the IPO mode, espe-
cially since the late 1970s (Fig. 5b). From1993 to 2013, the IPO index
evolved from amaximum around 1993 to a minimum around 2012,
which induced a cooling of about 1 ◦C in the ECEP region.

We conclude that after accounting for the combined impacts of
the IPO and another decadal mode of ICV and for a systematic
model bias in global warming magnitude, the observed and
model-simulated decadal anomalies of global-mean temperature
are consistent with each other since the early twentieth century.
In particular, the recent warming hiatus from 2000 to 2013 in
observations can be primarily attributed to an IPO transition from
a positive to a negative phase. Although it is difficult to predict the
future evolution of the IPO (ref. 24), the recent history suggests that
the IPO-induced cooling trend may have run its course and reverse
soon. Should this happen, we will see accelerated global warming
rates within the next few decades.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
We used the GISTEMP (ref. 26) and HadCRUT4 (ref. 27) gridded monthly surface
T data sets, which incorporate SST observations over oceans and surface air T
observations over land. Small data gaps in the HadCRUT4 data set were filled using
spatial bilinear interpolation. Model data of monthly surface air T were obtained
from 66 historical (1919 to 2005) and RCP4.5 (2006 to 2013) simulations from 33
CMIP5 models30 (http://cmip-pcmdi.llnl.gov/cmip5/index.html). Model-mean
averages were obtained by averaging equally over the 66 available realizations. All
observed and simulated fields were interpolated onto a common 2.5◦ (longitude) by
2.5 ◦ (latitude) grid. Area-weighted EOF analyses were performed. To focus on
decadal- and longer-timescale variations, three-year moving averages were applied
to the T anomaly data. All anomalies are relative to the 1961–1990 mean.

To derive an estimate of internally generated variability in observations, we first
computed the global-mean T time series from the CMIP5 ensemble mean, and
then removed the changes and variations associated with this model T series using
linear regression from the observed T time series at each gridpoint. As the
model-mean T series contains a primarily forced response, this procedure removes
as much as possible the externally forced component from the observations.
Similar procedures have been widely used in climate detection and attribution
studies6,31. After removing the forced component, the observational T fields were
subjected to an EOF analysis. Further technical details and validations of this
procedure are provided in the Supplementary Information. Ten-year running

linear trends were estimated using the pair-wise slope method32, which was found
to outperform conventional least squares fitting for small samples (N <40) in
our tests.

The results are similar when the HadCRU4 data set is used as the observations
(Supplementary Figs 5–8), although some quantitative differences exist between
the GISTEMP and HadCRU4 cases. However, these differences do not change our
main conclusions.

To verify our method and examine whether similar conclusions can be made in
a coupled climate model, we repeated our analysis using the 30-member ensemble
of historical all-forcing runs from the NCAR CESM (ref. 28;
http://www.cesm.ucar.edu/experiments/cesm1.1/LE/). We used run no. 11 as the
target realization (‘observations’), as it had little warming during 2000–2013, and
the 30-member ensemble mean as the forced signal (without re-scaling).
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