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Future fish distributions constrained by depth in
warming seas
Louise A. Rutterford1,2,3†, Stephen D. Simpson1*†, Simon Jennings3,4, Mark P. Johnson5,
Julia L. Blanchard6, Pieter-Jan Schön7, DavidW. Sims8,9,10, Jonathan Tinker11 and Martin J. Genner2

European continental shelf seas have experienced intense
warming over the past 30 years1. In the North Sea, fish
have been comprehensively monitored throughout this period
and resulting data provide a unique record of changes in
distribution and abundance in response to climate change2,3.
We use these data to demonstrate the remarkable power of
generalized additive models (GAMs), trained on data earlier
in the time series, to reliably predict trends in distribution
and abundance in later years. Then, challenging process-based
models that predict substantial and ongoing poleward shifts
of cold-water species4,5, we find that GAMs coupled with
climate projections predict future distributions of demersal
(bottom-dwelling) fish species over the next 50 years will
be strongly constrained by availability of habitat of suitable
depth. This will lead to pronounced changes in community
structure, species interactions and commercial fisheries,
unless individual acclimation or population-level evolutionary
adaptations enable fish to tolerate warmer conditions or move
to previously uninhabitable locations.

Although the temperature of the world’s oceans has gradually
risen through the twentieth century, the northeast Atlantic has
experienced particularly intense warming, resulting in the North
Sea mean annual sea surface temperature increasing by 1.3 ◦C over
the past 30 years1, a rate four times faster than the global average6.
Predictions for the North Sea suggest a further 1.8 ◦C rise in sea
surface temperatures during the next five decades (Hadley Centre
QUMP_ens_00 model, unpublished data supplied by J. Tinker)
(Fig. 1). Impacts of recent warming on northeast Atlantic marine
ecosystems have been diverse, including reorganization of the
plankton community7, modification to the phenology of fish
spawning8,9, and alterations of ecosystem interactions10,11. Owing
to its longstanding economic importance to fisheries (reported
landings in 2007 valued at $1.2 billion1) and other industries, the
ecology of theNorth Sea has been intensivelymonitored throughout
this period of recent warming.

Analyses of North Sea fish surveys have revealed northerly range
expansions of warmer-water species12, population redistributions
to higher latitudes2 and deeper water13, and widespread changes
in local abundance associated with warming, with impacts on
community structure3. This substantial modification to fish

community composition in the region has had an observable
economic impact on fisheries, with landings of cold-adapted
species halved but landings of warm-adapted species increasing
by a factor of 2.5 since the 1980s3; a pattern also identified in
other marine ecosystems14. With a uniquely rich fish abundance
time series from the period of warming, it is possible to split
the data to assess how predictions made using data from earlier
years match observations from later years; a validation approach
which has been promoted for terrestrial systems15. Existing
studies have used survey data to describe past changes2,3,12,13,
or adopted process-based climate-envelope models to predict
future abundance without validation16. Thus there is a need to
compare the predictions of climate-envelope models with those
from more structurally complete data-driven models that have
been developed and tested using spatially and temporally explicit
abundance data.

The GAM approach makes no a priori assumptions about
the nature of associations between predictors and response
variables17 and has been used to assess the importance of different
environmental drivers on patterns of distributions and relative
abundance in marine ecosystems18–20. Here we developed GAMs
to predict changes in the distribution and abundance of the ten
most abundant North Sea demersal (bottom-dwelling) fish species,
which accounted for 68% of commercial landings by North Sea
fisheries between 1980 and 2010 (www.ices.dk/marine-data/
dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx).
We used a two-step approach. First, predictive models with
different sets of variables were compared using data earlier in the
time series to train the models and predict known distributions and
abundances later in the time series. Second, models were used to
predict changes in species distributions over the next 50 years.

Predictors of species’ abundance were identified from a wider
array of potential variables (annual sea surface and near-bottom
temperatures; seasonal sea surface and near-bottom temperatures;
depth; salinity; fishing pressure: all of which are expected to
influence fish abundance and distribution—see, for example,
refs 2,3,13,21). For each species we calculated from summer and
winter monitoring surveys themean annual abundance per grid cell
in a ten-year time slice (2000–2009, inclusive) and used these data
to train GAM models based on different combinations of variable
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Figure 1 | Physical environment of the North Sea. a, Bathymetry with an overlay showing locations of the 84 1◦× 1◦ latitude–longitude cells in which fish
abundance, distribution and sea temperature were reported and predicted. b, Mean sea surface temperature (SST, red) and near-bottom temperature
(NBT, black) in the study cells from 1980–2060 in summer (July–September, solid line) and winter (January–March, dashed line) from the QUMP_ens_00
northwest European shelf seas climate model. Mean decadal values (as used in the model) are overlaid in the corresponding colours for SST and NBT for
each season.

sets to predict the same data.We then analysed associations between
the predictions and original observations. All model combinations
performed well with predictions against known data, all exceeding
correlation coefficients of 0.67 and only marginal changes with
the loss of each variable for each species (Supplementary Table 1).
Following an assessment of the performance of alternate GAMs
(Supplementary Fig. 4 and Tables 1 and 2), a model that included
temperature, depth and salinity variables was applied to each species
(Fig. 2a and Supplementary Table 1). The selected models excluded
the metric for fishing pressure as this was a relatively poor predictor
variable in themajority of cases (Fig. 2a and Supplementary Table 1).

To assess the most appropriate length of time series to use for
future projections, we developed models to predict the abundance
of species across the region in a decade using annual and seasonal
temperature, salinity and depth data from the periods 10, 20 and
30 years beforehand. There was no consistent improvement in
model fit with increasing periods of training data (Fig. 2b and
Supplementary Fig. 1), thus we used ten-year training periods for all
subsequent projections. The final stage of the model development
stage was to assess the ability of GAMs, using an effective set of
variables, to predict distributions for 10, 20 and 30 year periods
into the future and compare with observations. Predictions closely
matched observations for eight of the ten species using both survey
data sets (Fig. 2c and Supplementary Fig. 1).

Following model development and testing, models trained on
data from 2000–2009 were used to predict future distributions,
abundance and thermal occupancy of the eight species for which
the models were effective, based on environmental conditions
forecast with the Hadley Centre QUMP_ens_00 model (Fig. 3 and
Supplementary Fig. 1). Predictions based on independent winter
and summer fish surveys showed congruent temperature occupancy
patterns, with species predicted to experience warmer conditions
and maintain existing distributions, rather than maintaining

their preferred temperature ranges by redistributing to other
locations (Fig. 3).

We quantified latitudinal ranges, a commonly used estimator of
distributions, which showed considerable overlap between present
and future conditions, with no consistent pattern among species
in predicted changes in distributions (Fig. 3). This indicates that
poleward advances of North Sea demersal fish following preferences
for colder waters are unlikely to be commonplace, and highlights
how process-based models that predict northward shifts may
underestimate dependence on non-thermal habitat. Importantly,
predicted depth ranges were also similar for present and future
conditions (Fig. 3), implying that depth-associated niches are the
primary drivers and constraints of the distributions of demersal
species. One species predicted here to have the most marked
reduction in abundance alongside a proportionate increase in
individuals in deeper water was dab (Fig. 3). As a shallow water
species predominantly found in the southern North Sea their
current thermal experience is expected to be exceeded through the
projection period (Supplementary Fig. 2), suggesting that expected
climate change may force the species into less optimal habitats.

Seasonal temperatures, depth and salinity and likely co-varying
habitat variables, seem to be major determinants of current species
distributions of commercially important demersal species in the
North Sea, and were good predictors of past changes in distribution
for many species. Looking to the future, our results suggest that the
strong associations of species with specific habitats may ultimately
prevent further poleward movement of species in response to
warming as previously predicted16. A recent study demonstrated
that 1.6 ◦C of warming across the European continental shelf over
the past 30 years locally favoured some demersal species suited to
warmer waters, but drove local declines in cold-adapted species,
despite long-term stability in spatial patterns of species presence–
absence3. Dependence of species on specific non-thermal habitat,
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Figure 2 | Predictive ability of generalized additive models (GAMs). a, Fits of predicted to observed species abundance using 2000–2009 data. Variables
were sequentially removed. Model fits were evaluated using correlation (mean± s.e.m. Pearson’s r coe�cient across species) and weighted Akaike
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together with spatially contrasting local changes in responses to
warming3, may explain why mean latitudinal range shifts are
apparent only in some species2, and are not detected in others
despite sharing similar temperature preferences. Dependence on
specific non-thermal habitat has been observed in tagged Atlantic
cod (Gadus morhua), where fish occupied suboptimal thermal
habitat for extended periods with likely costs to metabolism and
somatic growth22. Indeed a dominant driver of changes in the
central distributions of cod in the North Sea seems to have been
intense fishing pressure over the past century rather than warming,
which has depleted former strongholds in the western North
Sea, driving an eastward longitudinal shift in relative population
abundance but no apparent poleward shift21. These factors, together
with potential indirect effects of warming potentially not captured
in our models (for example, from changes to prey abundance),
may explain why models based on depth and temperature were
not effective for longer-term projections for Atlantic cod and

whiting (Merlangius merlangus). It is necessary to evaluate the
performance of alternate predictor variables for data-driven models
of these species.

Mean depth distributions of North Sea fish that had preferences
for coolerwater increased by approximately 5mduring thewarming
of the 1980s, but tended to slow or stabilize thereafter13. On the
basis of the GAM results we do not expect or predict substantial
further deepening for cooler water species, because depth is such a
strong predictor of distribution. Collectively, the studies imply that
the capacity of fish to remain in cooler water by changing their depth
distribution had been largely exhausted in the 1980s and that fish
with preferences for cooler water are being increasingly exposed to
higher temperatures, with expected physiological, life history and
population consequences.

In the absence of substantial distributional shifts thatwould allow
fish to occupy different habitats and depths, North Sea populations
are likely to experience 3.2 ◦C of warming over the coming century
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Figure 3 | Observed and predicted abundances of eight focal species along depth, latitude and mean annual near-bottom temperature (NBT) and sea
surface temperature (SST) gradients. Analyses were based on both the summer and winter survey data sets. Distribution averages for each time period
are shown using arrows of corresponding colours along the x-axis.

(J. Tinker, Hadley Centre). Although such temperature increases
are within observed thermal limits for these species, the ecological
consequences are unknown, especially when warmer conditions
are closer to thermal preferences of other species using the same
habitats. Furthermore, physiological theory suggests that responses
of species to projected warming will eventually reach thermal
thresholds. As species’ Pejus temperatures are reached, increased
metabolic costs will compromise growth, with associated declines
in population productivity23. Capacity to tolerate warming will
thus depend on scope for thermal acclimation24 and adaptation25,
with the degree of connectivity between thermally adapted sub-
populations across the geographic range of species influencing
the rate of adaptation to future warming. Unless adaptation or
acclimation can track the rate of warming, it is likely that stocks
will be affected, both directly through individual physiological
tolerances, and indirectly through climate-related changes to the
abundance of prey, predators, competitors and pathogens.

Our study demonstrates the power of data-driven GAM models
for predicting future fish distributions. In contrast to process-based
models that attempt to integrate discrete ecological mechanisms
such as dispersal and density dependence, GAMs are grounded
by past net responses of populations to all these processes, in
addition to interspecific interactions and habitat associations that
are not typically considered in process-based modelling, perhaps
explaining the strong predictive power of our GAM approach

for predicting known future conditions. The results of this study
suggest that we should be cautious when interpreting process-based
model projections of distributional shifts, and that interpretations
should be informed by data-drivenmodelling approaches, especially
when using predictions for policy and management planning. Our
projections suggest that if populations fail to adapt or acclimatize to
a warmer environment, warming will change fishing opportunities
for currently targeted species in the North Sea over the next
century. Historically, fishing pressure has substantially modified
the North Sea26, and ongoing changes in management will play
an important role in shaping future fisheries resources. Species
responses to temperature should be considered when planning
future fisheries management strategies to ensure that anticipated
long-term benefits of management are ecologically feasible in this
period of intense warming.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Fish surveys.We used two long-term monitoring surveys that give detailed
descriptions of the distribution and abundance of demersal (bottom-dwelling) fish
in the North Sea. The Centre for Environment, Fisheries and Aquaculture Science
UK (Cefas) time series is a summer survey (August–September) conducted since
1980. The survey encompasses 69 1◦×1◦ latitude–longitude cells with at least three
hauls conducted in each decade. The International Council for the Exploration of
the Sea (ICES) International Bottom Trawl Survey (IBTS) time series is a winter
survey (January–March) conducted since 1980. The survey encompasses
84 1◦×1◦ cells with at least three hauls conducted in each decade. Both surveys are
conducted using otter trawling gear (Granton trawl for pre-1992 Cefas surveys,
otherwise Grande Ouverture Verticale (GOV) trawls). Raw catch data were
fourth-root transformed to reduce skewness that is inherent in ecological
abundance data.

Our study focused on the ten most abundant demersal species targeted by
commercial fisheries or taken as bycatch (Fig. 2c), which together accounted for
68% of commercial landings (by weight) in the North Sea fishery from 1980–2010
(www.ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-
assessment.aspx). For both surveys, we grouped data into three ten-year time slices
and one three-year time slice for the analyses: 1980–1989, 1990–1999, 2000–2009
and 2010–2012. The limited 2010–2012 time slice was used only for testing
predictions from the GAMs. To ensure a balanced design, mean values for each
decadal time period were used. This method controls for the variable numbers of
survey hauls taken in each cell and ensures that longer-term responses to climate
change are identified rather than year-on-year variability. All data were fourth root
transformed before being subject to GAMmodelling, and individual cell
predictions were back-transformed before calculation of
correlation coefficients.

Depth.We used mean 1◦×1◦ cell in situmeasures of depth taken during the hauls
for each survey (Supplementary Fig. 3), which closely matched data from the
1◦×1◦ resolution GEBCO Digital Atlas (summer survey, r= 0.91; winter survey,
r=0.90; www.gebco.net/data_and_products/gebco_digital_atlas)3.

Temperature and salinity.We calculated sea surface temperature (SST),
near-bottom temperature (NBT) and salinity (Supplementary Fig. 3) for
the period 1980–2012 using the UKMeteorological Office Hadley Centre
QUMP_ens_00 standard model for the northwest European shelf seas.
Modelled temperatures closely matched data from the Hadley Centre global
ocean surface temperature database (HadISST1.1; 92 cells, Pearson’s r=0.84;
www.metoffice.gov.uk/hadobs/hadisst). Data from the QUMP_ens_00model
were provided as monthly means for 1◦×1◦ cells, enabling mean winter
(January–March), summer (July–September) and mean annual values to be
calculated (Fig. 1).

Fishing pressure.We calculated a spatially explicit metric of fishing pressure for
each ten-year time slice by combining annual multispecies fishing mortality (F)
estimates for North Sea demersal species (mean estimates of regional F for cod,
dab, haddock, hake, lemon sole, ling, long rough dab, plaice, saithe and whiting,
weighted by spawning-stock biomass, from ICES stock assessments;
www.ices.dk/datacentre/StdGraphDB.asp)3 with mean otter and beam trawling
effort for each 1◦×1◦ cell based on hours of fishing27 (Supplementary Fig. 3). This
integrated metric, combining temporal trends in fishing mortality and spatial
distribution of fishing effort, enabled us to test the importance of fishing pressure
as a predictor of abundance.

Identifying key predictors.We used GAMmodels, coded using themgcv
package in R (www.r-project.org), to test the performance of GAMs for predicting
changes in fish species’ distribution and identify the importance of different
variables to these predictions. The s smooth was used with k=7 for all variables to
limit the degrees of freedom in line with the number of data points. The Gaussian
model was used. Assessment of the plots for each variable using the gam.plot
function showed that increasing the k value did not improve the model fit to each
variable. The gam.check function was used to check the k index was above or close
to 1, with non-significant p values. Analysis of the residuals showed no obvious

deviations from normal distributions, and the response to fitted values relationship
was close to linear.

Data from 2000–2009 were used to test sets of variables, as this period had the
greatest survey intensity. To identify variables that most strongly influenced
prediction we first developed a model with all variables (annual temperatures,
seasonal temperatures, depth, salinity and fishing), and a subsequent five models
each excluding one set of variables (Supplementary Table 1). Sea surface and
near-bottom temperatures from both the summer and winter were grouped
together to characterize seasonal fluctuations. This suite of potentially correlated
variables captured the extremes of temperatures that all species may experience at
different life stages, and ensured that thermal conditions with and without the
seasonal thermocline, annually varying ocean currents and land mass effects are all
included. We compared the performance of models based on: the strength of
correlation r between observed and predicted data, weighted AIC (ref. 28) using
data from the AIC function in R, and using generalized cross validation (GCV,
through summary.gam in R). Inclusion of interaction terms between depth and
seasonal temperature extremes either reduced or had little influence on model
performance (Supplementary Table 2 and summaries based on Akaike weights in
Supplementary Fig. 4).

Model development.We developed predictive GAMs with a set of variables that
were effective across all species. The correlation coefficient r , AIC values and GCV
values of modelled and observed data were compared. Across-species inclusion of
depth, seasonal temperature, annual temperature, salinity and fishing effort all
improved the predictions (Fig. 2a). A key finding from this model development
stage is that variables that are readily measured and projected in climate models
effectively predict species distributions. On average, models that excluded fishing
effort were most similar to the all-variable models (Supplementary Table 1 and
Fig. 2a). As this metric had little predictive value, and we have no robust models of
future fishing effort, we excluded it when making future predictions.

Training period and predictive performance. To assess the influence of the
duration of training data on predictive power, GAMs trained on sets of one, two
and three decades of data for each species were used to predict ten years into the
future (Supplementary Fig. 1), and the associations between predicted and known
data compared. We also assessed the performance of the model to predict further
into the future within the historic records available (Supplementary Fig. 1). We
compared predictions with known abundance data for each species for each
forecasting period (0 to 30 years).

Forecasting future distributions.We used surface and near-bottom annual and
seasonal temperature projections from the QUMP_ens_00model, surface and
near-bottom salinity, and average depths from surveys between 1980–2012 as the
environmental variables for our predictions. We predicted fish abundances for
sequential decades from 2000–2009 to 2050–2059 (Supplementary Figs 5 and 6)
using environmental variables (Supplementary Figs 3 and 7), and observed fish
abundances from 2000–2009. Throughout the projection period many cells do not
experience temperatures outside of the range used to train the model
(Supplementary Fig. 2). For the widespread species in this study it is therefore likely
that at least parts of the population have experienced future conditions. However,
we recognize that in future projected conditions the climate in some areas of the
North Sea will depart from existing variability in the model training period. As it is
not possible to test the model beyond present thermal conditions using known
data, some caution should be taken in interpreting projections for cells as they
begin to experience temperatures beyond those at present in the region
(Supplementary Fig. 2).
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