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Equilibrium climate sensitivity in light of
observations over the warming hiatus
Daniel J. A. Johansson1*, Brian C. O’Neill2, Claudia Tebaldi2 and Olle Häggström3

A key uncertainty in projecting future climate change is the
magnitude of equilibrium climate sensitivity (ECS), that is, the
eventual increase inglobal annual averagesurface temperature
in response to a doubling of atmospheric CO2 concentration.
The lower bound of the likely range for ECS given in the IPCC
Fifth Assessment Report (AR5; refs 1,2) was revised down-
wards to 1.5 ◦C, from 2 ◦C in its previous report3, mainly as an
e�ect of considering observations over the warming hiatus—
the period of slowdown of global average temperature increase
since the early 2000s. Here we analyse how estimates of ECS
change as observations accumulate over time and estimate the
contribution of potential causes to the hiatus. We find that
including observations over the hiatus reduces the most likely
value for ECS from 2.8 ◦C to 2.5 ◦C, but that the lower bound
of the 90% range remains stable around 2 ◦C. We also find
that the hiatus is primarily attributable to El Niño/Southern
Oscillation-related variability and reduced solar forcing.

The hiatus has been attributed to a range of causes, including a
reduction in solar forcing4, a La Niña-like cooling of the tropical
Pacific Ocean with an associated increase in Pacific Ocean heat
uptake4–7, increased ocean heat uptake in the Atlantic Ocean and
Southern Ocean8, volcanic aerosols4,9 and anthropogenic aerosols10.
Further, studies estimating ECS based on simple climate models
and observations extending over the hiatus period have suggested
an ECS at the lower end of the likely range given in IPCC AR5
(refs 1,2,11,12). However, disentangling the roles of potential causes
of the hiatus from climate system properties such as the ECS is
complicated by data and model limitations.

In this study we provide a new estimate of ECS, analyse the effect
observations over the hiatus have had on it, and estimate the relative
contribution of various factors to the temperature trend during the
hiatus. Our analysis differs from previous methodologically related
statistical estimates of ECS in that we distinguish observations of
global mean near-land surface temperature (GMLST) from those
of global mean sea surface temperature (GMSST) and use ocean
heat content (OHC) observations continuous over time to a greater
depth (2,000m instead of 700m), a potentially important addition
as heat accumulation during the hiatus is thought to be particularly
strong at depths below 700m (refs 5,8,13). We also consider surface
temperature variability induced by the ElNiño/SouthernOscillation
(ENSO; ref. 14).

By using an energy balance model and a Bayesian approach
to statistics we assess how estimates of ECS change with the
accumulation of historical observations, similar in some respects
to studies focusing on learning about ECS over time11,15–17. These
studies have primarily focused on the pace of learning about ECS
over time in rather general termswhereas we focus on how the shape

of the probability density function (PDF) of ECS changes over time
as observations accumulate to analyse implications of the hiatus for
estimates of ECS. This is done by progressively extending the time
horizon when estimating the PDF: the model integrations all start
in 1765, but end in 1986, 1991, 1996, 2001, 2006, or 2011.

The model simulations based on parameters sampled from the
joint posterior PDF from the full observational history up to 2011
replicate well the observed surface temperature history, including
the warming hiatus since the early 2000s (Fig. 1). The mean
modelled global average surface air temperature (SAT; ref. 18)
exhibits a correlation coefficient of 0.95 with observations over the
period 1880–2011. As expected, the relative fit of the model to the
observations improves after 1950, when observational uncertainties
begin to decline significantly (see also Supplementary Figs 3 and 4).

Themodel generates aweak linearwarming trend over the period
2002–2011 of +0.053 ◦C per decade (90% interval of −0.053 to
0.16 ◦C per decade), compared to the trend in the observations of
−0.049 ◦C per decade (90% interval of−0.10 to 0.00 ◦C per decade).
Both trends are substantially lower than the trend over the period
1970–2011 of about 0.16 ◦Cper decade in both themodel output and
the observations. The observed temperature peak in 1998, as well
as the observed temperatures in 1999 and 2000, is underestimated
by the model. As a result, the modelled temperature trend over the
period 1998–2011 is larger than observed (Table 1). This model
behaviour has an impact on the posterior of the PDF of ECS, as we
discuss further below.

A decomposition of the different key factors contributing to
temperature variability indicates that the relatively flat temperature
trend since 2002 is a result of an anthropogenic warming signal
of about 0.19 ◦C per decade, an ENSO-induced cooling of about
of 0.11 ◦C per decade and a cooling from reduced solar forcing of
about 0.043 ◦C per decade. In addition, we find a small warming
contribution from volcanic aerosols. In contrast to other studies4,
we find that the recovery from Mt Pinatubo is stronger than the
cooling caused by the small volcanoes that has occurred since the
early 2000s.

Differences in modelled and observed warming are expected
for several reasons. Even though there is a correlation between
NINO3.4 and global temperature variability (see Supplementary
Section 1.8), the NINO3.4 index is not likely to capture the full
global average temperature effect of ENSO. Further, other sources
of internal variability are not explicitly accounted for in our
analysis; they are incorporated only indirectly through the use of
an autoregressive process (see Methods). Finally, the observational
time series include errors and biases, including the omission of polar
warming in the temperature observations19, and models are always
a simplification of the real system.

1Division of Physical Resource Theory, Department of Energy and Environment, Chalmers University of Technology, 412 96 Gothenburg, Sweden. 2Climate
and Global Dynamics Division, National Center for Atmospheric Research, 1850 Table Mesa Drive, 80305 Boulder, USA. 3Department of Mathematical
Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden. *e-mail: daniel.johansson@chalmers.se

NATURE CLIMATE CHANGE | VOL 5 | MAY 2015 | www.nature.com/natureclimatechange 449

http://dx.doi.org/10.1038/nclimate2573
mailto:daniel.johansson@chalmers.se
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2573

−0.3
−0.2
−0.1
0.0
0.1

Volcanic

−0.2
−0.1
0.0
0.1
0.2

NINO3.4

−0.5

0.0

0.5

1.0

Te
m

pe
ra

tu
re

an
om

al
y 

(°
C)

Te
m

pe
ra

tu
re

an
om

al
y 

(°
C)

Te
m

pe
ra

tu
re

an
om

al
y 

(°
C)

Te
m

pe
ra

tu
re

an
om

al
y 

(°
C)

Te
m

pe
ra

tu
re

an
om

al
y 

(°
C)

SAT 

−0.10

−0.05

0.00

0.05
Solar 

−0.4

0.0

0.4

0.8

1880 1890 1900 1910 1920 1930 1940
Year

1950 1960 1970 1980 1990 2000 2010

Anthropogenic

a

c

d

e

b

90% interval model output Mean model output Observations

Figure 1 | Comparison between observations on SAT anomaly and corresponding model output using the posterior PDF generated by using observations
up to 2011. Mean and 90% uncertainty intervals are used to characterize model output. All time series are normalized to the period 1951–1980. a–d, The
SAT anomaly (a) is decomposed into four di�erent contributing factors; NINO3.4 (b), solar irradiance (c), volcanic aerosols (d) and anthropogenic
warming (e). The legend in a applies to all panels.

Table 1 | Estimates on linear temperature trend in observations andmodel output, including a decomposition of factors contributing
to the modelled trend.

Trend 2002–2011
(◦C per decade)

Trend 1998–2011
(◦C per decade)

Trend 1970–2011
(◦C per decade)

NCDC SAT Average −0.049 0.044 0.16
90% C.I.∗ −0.10 to 0.00 0.014 to 0.073 0.155 to 0.165

Model SAT Average 0.053 0.15 0.16
90% C.I. −0.053 to 0.16 0.085 to 0.22 0.14 to 0.18

Anthropogenic warming Average 0.19 0.17 0.15
90% C.I. 0.16 to 0.22 0.14 to 0.20 0.13 to 0.16

NINO3.4 Average −0.11 −0.0095 0.0081
90% C.I. −0.12 to−0.092 −0.011 to−0.0077 0.0071 to 0.0092

Solar irradiance Average −0.043 −0.030 −0.0040
90% C.I. −0.071 to−0.012 −0.050 to−0.0084 −0.0064 to−0.0011

Volcanic aerosols Average 0.011 0.023 0.0097
90% C.I. 0.0064 to 0.015 0.017 to 0.031 0.0075 to 0.012

Other internal variability Average 0.0 0.0 0.0
90% C.I. −0.099 to 0.099 −0.059 to 0.059 −0.011 to 0.011

∗Based on the assumption that observational errors are independent and normally distributed.

Results on how the posterior estimates of the PDF of ECS change
as observations accumulate show that learning about ECS is not
a simple linear process (Figs 2 and 3). In general terms, the 90%
uncertainty interval of the PDF narrows over time, but the path
is irregular.

Using observations up to 1986 effectively eliminates the low end
of the PDF of ECS. The estimated probability that ECS is below 1 ◦C
is reduced by about an order of magnitude in comparison with the
prior assumption (from 5% to about 0.5%). The probability of ECS

being higher than 6 ◦C is also reduced substantially (from 47% to
13%), although the posterior PDF contains a long, but rather narrow,
tail at the high end. This is in line with previous studies that have
found that a tail for high values of ECS is difficult to reject when
relatively wide (uniform) priors are used20.

As observations accumulate, the prior assumption becomes
progressively less influential on the posterior distribution. The
tail at the high end of the distribution decays and eventually
disappears (Figs 2 and 3). However, the learning is irregular. Adding
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Figure 2 | The posterior marginal PDF of ECS estimated from historical
observations over successively longer time periods.

observations over the period 1992–1996 causes the tail to vanish (the
probability of ECS above 5 ◦C is less than 0.4%) and the 90% range
of the PDF to drop towards lower ECS values (Fig. 3). The use of
observations through 2001 causes the PDF to shift clearly to higher
values and the 90% interval to widen (the probability of ECS above
5 ◦C increases to almost 6%).

Adding observations beyond 2001 progressively reduces the
upper end of the PDF. Using observations up to 2011 effectively
eliminates ECS values greater than 4 ◦C (with a probability of less
than 0.02% of a larger ECS value; Fig. 2). The low end of the
distribution is relatively more stable as observations accumulate
beyond 2001, with the 5th percentile of the distribution remaining
close to 2 ◦C (Fig. 2).

The mode of the PDF of ECS also fluctuates irregularly as
observations accumulate over each five-year period (Figs 2 and 3).
For example, including observations over the period 1992–1996
causes a drop in the mode, from 2.4 to 2.2 ◦C, whereas including
observations over the period 1997–2001 causes the mode to shift up
to 2.8 ◦C. The subsequent observations over the hiatus period cause
the mode to decline to 2.5 ◦C by 2011.

Some explanations for these changes in the PDF of ECS are
suggested by changes in the estimates for other components of the
model. For example, the reduction in the ECS, particularly its high-
end tail, by including data through 1996 is in part driven by theOHC
observations. These observations are critical for constraining the ef-
fective vertical diffusivity (EVD), which controls ocean heat uptake
in themodel. EVD in turn strongly affects the estimate of ECS due to
its effect on the surface energy balance17,21 (see also Supplementary
Section 3). As the OHC observations are available only since 1957,
additional observations have an important role in constraining the
EVD. The additional ten years of observations from 1987 to 1996 are
especially important because the measurement uncertainty declines
over this period of time and the observations are less variable after
the mid-1980s (see Supplementary Figs 5 and 9). As a consequence
the PDF of EVD shrinks as observations accumulate beyond 1986
(Fig. 3), which also leads to a smaller spread in the PDF of ECS.

The explanation behind the shift in the PDF of ECS towards
higher values and the widening of the 90% interval that occurs
when adding observation over the period 1997–2001 relates to the
strong El Niño in 1997/1998. The model underestimates the SAT
during this period of time (Fig. 1) for at least three possible reasons.
First, there are uncertainties in the relationship between NINO3.4
and SAT fluctuations (see Methods and Supplementary Section 1.8
for more information about assumptions). Second, the NINO3.4
index may underestimate the strength of this El Niño event relative
to other events. The peak in the NINO3.4 index in 1997/1998 is
relatively weak; another ENSO index (NINO12) shows a much
stronger peak (see Supplementary Fig. 2). Third, other modes of
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Figure 3 | Characteristics of PDFs of ECS and EVD as observations
accumulates. a,b, Time profile for the mean, mode (for ECS only) and 90%
credible interval of the marginal PDF of ECS (a) and EVD (b).

internal variability, including variabilitywith longer periodicity than
ENSO, may have contributed to the observed temperature peak
during this period of time. Hence, the NINO3.4 index is probably
not picking up all the El Niño effects and misses other sources of
natural variability thatmay have played a role; instead, some portion
of those effects show up as an increase in the ECS estimate.

The 90% interval of the posterior PDF of ECS obtained when
using observations up to 2011 is 2.0 to 3.2 ◦C. This estimated width
of the PDF of ECS may be on the low side. We do not explicitly
address potentially important issues such asmulti-decadal timescale
internal variability, uncertainty in the shape of the forcing time
series and the autocorrelation of the observational errors. Inclusion
of these features in the analysis could have increased the width of
the PDF.

Some of the key assumptions in our model are addressed in
a sensitivity analysis. We find that our estimate of the PDF of
ECS is dependent on the inclusion of NINO3.4 as an independent
regression covariate, a key difference in our analysis compared
to several other related studies1,2,12,15,16. The 90% credible interval
grows and becomes 2.1 ◦C to 3.8 ◦C if NINO3.4 is not included
in the analysis. Further, some studies16 do no not use exogenous
estimates on observational errors when estimating PDFs of ECS. If
we also neglect such estimates the posterior PDF of ECS shifts to
higher values and becomes even wider (90% interval being 2.3 ◦C
to 4.3 ◦C). Our estimated PDF of ECS is, as discussed above, also
affected by the use of OHC observations. If these are neglected the
90% interval for the PDF of ECS is 2.8 ◦C to 9.0 ◦C. We also find
that the posterior PDF of ECS shifts towards lower values, whereas
the width remains about the same, if OHC observations down to
700m are used instead of observations down to 2,000m. The PDF
of ECS is relatively insensitive if we use global aggregated surface
temperature observations instead of separated land and sea surface
temperature observations.

Finally, although we find that the inclusion of observations over
the hiatus period contributes to amore constrained estimate of ECS,
the degree to which this was due to the hiatus per se, as opposed to
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the accumulation of more data in general, is unclear. In addition, we
also find that the PDF of ECS shifts back and forth as observations
accumulate. This indicates that unforced natural variability plays a
key role for the estimate of the PDF of ECS (ref. 15). Such shifts in
the PDFs can sometimes move in directions which retrospectively
turn out to be incorrect—that is, we have negative learning22,23.
Further, limitations and uncertainties in the structural relationships
in geophysical models as well in statistical models hamper any
observationally based estimate of ECS, implying that all empirical
estimates of ECS should be interpreted with some care. For these
reasons we suggest that it is too early to conclude that the hiatus has
had any particular impact on estimates of ECS.

Methods
To model forced temperature response we use a land–ocean resolved
upwelling diffusion energy balance model (UDEBM). The model, and the
use of such models in statistical modelling, is described at greater length in
Supplementary Section 1. The UDEBM is forced by estimates of effective radiative
forcing (RF) over the period 1765–2011, based on ref. 24 for anthropogenic
sources (http://www.pik-potsdam.de/~mmalte/rcps/), ref. 25 for Solar RF,
and refs 26,27 for volcanic aerosol RF (http://hurricane.ncdc.noaa.gov/pls/
paleox/f?p=519:1:0::::P1_STUDY_ID:14168 and http://data.giss.nasa.gov/
modelforce/strataer, respectively).

Posterior PDFs are calculated based on Bayes theorem

p(θ |y)∝L(y|θ) ·p(θ)

where p(θ) is the prior probability density for parameters θ , L(y|θ) is the
likelihood function, and p(θ |y) is the posterior probability density for the
parameters θ conditional on observations y . The likelihood function is the
probability density of the observations y conditional on the parameters θ ; for our
application, it is a measure of how well the model with specific parameter
combinations replicates the observations, accounting for internal variability and
observational error. The statistical methodology is explained in more detail in
Supplementary Section 1.

The model is constrained by observations on GMSST and GMLST (ref. 18)
(ftp://ftp.ncdc.noaa.gov/pub/data/mlost/operational/products) and OHC above
2,000m (ref. 28) (http://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT).

The UDEBM does not generate internal variability. To compensate for this
the variability induced by ENSO is captured by making the modelled GMSST and
GMLST dependent on the NINO3.4 index lagged by two months and six months,
respectively. The lag is estimated by maximizing the correlation between the
residual of temperature observations minus the modelled temperature output
(calculated without considering the global temperature impact of ENSO) and the
lagged NINO3.4 index (Supplementary Section 1.8). The NINO3.4 index is based
on the NOAA Extended Reconstructed Sea Surface Temperature (SST) V3b
(http://climexp.knmi.nl/selectindex.cgi). Remaining natural variability in GMLST,
GMSST and OHC is assumed to follow a first-order autoregressive (AR1) process,
with the autocorrelation and variance estimated from the residuals between the
modelled and observed variables (Supplementary Section 2.1–2.3).

The prior probability density distributions are either uniform, normal,
truncated normal or lognormal. We consider the following EBM parameters to be
probabilistic: climate sensitivity parameter, effective mixed layer depth, effective
vertical diffusivity, upwelling rate, relative warming of sinking polar water to
global mean sea surface warming and equilibrium land–sea surface warming
ratio. The priors for all of these parameters are assumed to be uniformly
distributed, with the exception of the equilibrium land–sea surface warming ratio,
for which we assume a normal distribution based on output from climate system
models2. The prior scaling factors for relating the NINO3.4 index to GMSST and
GMLST variability and the parameters of the AR(1) processes are uniform and
set wide enough to not constrain the posterior estimate. The paths of the
different effective radiative forcing contributions (for CO2, CH4, N2O,
tropospheric O3, anthropogenic aerosols, solar, and volcanic aerosols) are fixed,
but the magnitudes are scaled with probabilistically treated scaling factors. The
prior distributions for scaling parameters for historical effective radiative forcing
time series are assumed to be normal, truncated normal or lognormal, with
standard deviations that approximately correspond to the effective radiative
forcing uncertainty reported in IPCC AR5 (ref. 25). However, the prior scaling
factor for volcanic aerosol forcing is based on ref. 29. The forcing estimates and
their prior uncertainties are estimated from climate system models, these are
primarily not constrained by observations on the global energy balance; hence
there should be no major problems of circular reasoning. See Supplementary
Section 1.7 for further information about priors.

The posterior PDF is estimated through the use of a Markov Chain
Monte Carlo (MCMC) approach using the Metropolis algorithm30. We take

500,000 samples when estimating the posterior PDF for each model set-up, with
set-ups differing with regard to the end-year of the observational record used.
The proposal distribution for the Metropolis algorithm is a random walk. A new
sample for all the uncertain model parameters is taken simultaneously in each
proposal. The first 20,000 samples of the posterior distribution are used as
‘burn-in’; that is, they are discarded, and only the subsequent MCMC samples are
used to estimate the posterior distribution. Every twentieth sample of the chain is
retained, and the PDFs presented in Fig. 2 are estimated from the samples by
using a normally distributed kernel function.

The decomposition presented in Fig. 1, and the subsequent estimation of the
linear temperature trend due to the different factors presented in Table 1, are
constructed by running the UDEBM with only one specific forcer/mechanism at
a time. The estimated temperature contribution for each forcer/mechanism is
based on 1,000 samples of the posterior PDF estimated when using observations
up to 2011. Running the model with only one specific forcer/mechanism at a
time is valid because the forcing response in the UDEBM is linear. Hence, the
sum of the temperature contributions of each forcer/mechanism is equal to the
temperature response of the sum of the forcers/mechanisms.
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In the version of this Letter originally published, in the third paragraph, the section of text including ‘Our analysis differs... at depths 
below 700m (refs 5,8,13).’ was unclear and should have been: 

‘Our analysis differs from previous methodologically related statistical estimates of ECS in that we distinguish observations of global 
mean near-land surface temperature (GMLST) from those of global mean sea surface temperature (GMSST) and use ocean heat content 
(OHC) observations continuous over time to a greater depth (2,000m instead of 700 m), a potentially important addition as heat accu-
mulation during the hiatus is thought to be particularly strong at depths below 700m  (refs 5,8,13).’

Further, in the Methods section, radiative forcing should have been described as effective radiative forcing. These errors have been 
corrected in all versions of the Letter.
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In the version of this Letter originally published, ref. 9 was incorrectly cited twice; the sentence including the second occurrence should 
have read: “In contrast to other studies4, we find that the recovery from Mt Pinatubo is stronger than the cooling caused by the small 
volcanoes that has occurred since the early 2000s.” This error has been corrected in the online versions of the Letter.
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