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Nonlinear regional warming with increasing
CO2 concentrations
Peter Good1*, Jason A. Lowe1, Timothy Andrews1, AndrewWiltshire1, Robin Chadwick1, Je� K. Ridley1,
Matthew B. Menary1, Nathaelle Bouttes2, Jean Louis Dufresne3, Jonathan M. Gregory1,2,
Nathalie Schaller4,5 and Hideo Shiogama6

When considering adaptation measures and global climate
mitigation goals, stakeholders need regional-scale climate
projections, including the range of plausible warming rates.
To assist these stakeholders, it is important to understand
whether some locations may see disproportionately high or
low warming from additional forcing above targets such as 2K
(ref. 1). There is a need to narrow uncertainty2 in this nonlinear
warming, which requires understanding how climate changes
as forcings increase from medium to high levels. However,
quantifying and understanding regional nonlinear processes
is challenging. Here we show that regional-scale warming can
be strongly superlinear to successive CO2 doublings, using
five di�erent climate models. Ensemble-mean warming is
superlinear over most land locations. Further, the inter-model
spread tends to be amplified at higher forcing levels, as
nonlinearities grow—especially when considering changes per
kelvin of global warming. Regional nonlinearities in surface
warming arise from nonlinearities in global-mean radiative
balance, the Atlantic meridional overturning circulation, sur-
face snow/ice cover and evapotranspiration. For robust adap-
tation and mitigation advice, therefore, potentially avoidable
climate change (the di�erence between business-as-usual
and mitigation scenarios) and unavoidable climate change
(change under strongmitigation scenarios)may need di�erent
analysis methods.

Linear assumptions affect stakeholder advice in various ways1,3–7.
Fast simplifiedmodels1,5,7 (especially integrated assessmentmodels),
for quantifying climate change under many policy scenarios, often
assume that climate change is the same for each successive CO2
doubling. Some studies make a less strong assumption: that regional
climate is linear in global warming3,4,6. Also, studies of physical
mechanisms often explore just one time period of one forcing
scenario. An implied linear assumption here is that the physical
mechanisms are similar under other scenarios or for other time
periods, which is not necessarily true in a nonlinear system.

To quantify nonlinearities, the linear response must first be
carefully defined. Even in a linear system the spatial patterns of
climate change (per CO2 doubling or per kelvin of global warming)
can be different in different forcing scenarios or evolve during a
given scenario. This is because of different timescales of response
within the system8–10. For example, warming over the Southern
Ocean lags the global mean10. Therefore, the spatial pattern of

warming just after a CO2 change is different from that several
decades later.

Our experimental design is chosen to separate linear and
nonlinear mechanisms. We use abruptCO2 experiments, initialized
from a pre-industrial control experiment. The CO2 concentration
is changed abruptly, then held constant for 150 years, revealing
the model response over different timescales. The abrupt4×CO2
experiment (with CO2 quadrupled from pre-industrial levels)
has similar forcing magnitude to a business-as-usual scenario
by 2100 (ref. 11). The abrupt2×CO2 experiment is identical to
abrupt4×CO2 but with half the CO2 concentration (with forcing
between that reached under Representative Concentration Pathway
2.6 (RCP2.6) and RCP4.5 scenarios by year 2100 (ref. 11)). A
transient forcing experiment (1pctCO2), where CO2 is increased
by 1% per year, is also used. We start with results from the
HadGEM2-ES climate model.

The abruptCO2 experiments are highly idealized. Therefore, we
first show that their behaviour is comparable to the more policy-
relevant 1pctCO2 experiment, and detect nonlinearities in the
1pctCO2 response. It is possible to use a simple linear combination
of abruptCO2 responses to estimate climate change under a transient
forcing experiment12,13. This linear method performs well when the
end of the 1pctCO2 experiment (near 4×CO2) is reconstructed
from the abrupt4×CO2 response (Fig. 1b). This shows that the
abrupt4×CO2 experiment features realistic physical mechanisms. It
does not mean that temperature responses are linear (conceptually,
it is like a local linear approximation to a curve). The importance
of nonlinearity is revealed in the relatively poor performance
when the abrupt2×CO2 response is used instead (Fig. 1a); and
for the middle of 1pctCO2 (near 2×CO2), the reconstruction
using abrupt4×CO2 is much worse than that using abrupt2×CO2
(compare Fig. 1c,d). The linear method is accurate only for periods
in the transient experiment with forcing matching that of the
abruptCO2 experiment: climate patterns are therefore different for
different CO2 concentrations—which is evidence of nonlinearity.

Having detected nonlinearities in the 1pctCO2 experiment,
we characterize them more clearly by analysing the abruptCO2
experiments directly. This experimental design has two significant
advantages over the 1pctCO2 scenario. First, temperature responses
in the two abruptCO2 experiments may be compared at the same
timescale after CO2 is changed (eliminating complications due to
linear effects from different timescales of response). Second, noise
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Figure 1 | Regional nonlinearity in the transient-forced 1pctCO2
experiment. a–d, Warming simulated directly by HadGEM2-ES (y axis) is
compared with that predicted from the linear reconstruction12,13 using
abrupt2×CO2 (left column) and abrupt4×CO2 (right column) responses.
Good performance of the linear reconstruction is indicated by the points
lying close to the red line (each point represents one model grid cell).
Results are averaged over years 120–139 of the 1pctCO2 experiment (near
4×CO2; top row), and years 61–80 (near 2×CO2; bottom row).

from internal variability may be reduced through long-termmeans.
Assuming that the balance of mechanisms should be stable after the
initial ocean mixed-layer warming, we average over years 50–149 of
each experiment (Supplementary Fig. 1). For abrupt2×CO2, these
100-year means correspond roughly to the results for year 2100 of
a CO2-only version of RCP4.5 (Supplementary Methods; and about
double this for abrupt4×CO2).

We compare temperature responses to a first and second
CO2 doubling. Current linear methods that parameterize forcing
(most integrated assessment and energy balance models) assume
that radiative forcing is linear in log(CO2)—and equivalently,
that each CO2 doubling produces the same forcing change1,5.
In HadGEM2-ES, the two doublings give very similar forcing
changes14. The response to the first doubling is given by
abrupt2×CO2 minus the pre-industrial control; that for the
second doubling by abrupt4×CO2 minus abrupt2×CO2 (both are
averaged over years 50–149). We quantify nonlinearities by the
‘doubling difference’: the response to the second doubling minus
that for the first (Fig. 2a); and the ‘doubling ratio’: the second
doubling divided by the first (Fig. 2b). Current linear models would
have zero doubling difference, and a doubling ratio of 1, everywhere.

In HadGEM2-ES, the doubling ratio in global-mean warming
is 1.18 (the second CO2 doubling produces more warming than
the first). Global-scale nonlinearity has been attributed, in other
models, to changes in water-vapour and cloud feedbacks, opposed
by changes in albedo and lapse-rate feedbacks15–17. In some climate
models, variation in forcing per CO2 doubling would also affect
the global doubling ratio15–17. However, local doubling ratios can
differ significantly from the global mean: 5% of the land surface
has a doubling ratio outside the range 0.9–1.65 (Supplementary

Fig. 5a). Gradients of the doubling ratio across continents are
strong (Fig. 2b), notably over the Americas and Europe, pointing
to important regional mechanisms.

We scale out global-mean nonlinearity (Methods) and then focus
on the remaining features (Fig. 2c) one by one. The positive area in
the North Atlantic, near Greenland, seems to be associated with
a nonlinear response of the Atlantic meridional overturning
circulation18 (AMOC). In HadGEM2-ES, the maximum Atlantic
overturning near 30◦Nweakens about 35% less under a second CO2
doubling than under the first (a positive doubling difference). We
can estimate the effect on surface temperature by scaling the regional
temperature response in a separate freshwater hosing experiment
(where fresh water is added to the high-latitude North Atlantic
to induce AMOC weakening). We multiplied this temperature
response pattern by the ratio: (doubling difference for AMOC
index)/(AMOC index response in the hosing experiment). The
resulting pattern (Fig. 2d) features a North Atlantic anomaly similar
to that in Fig. 2c. This suggests that the North Atlantic nonlinearity
is indeed driven by the nonlinear AMOC response. AMOC
nonlinearitymay arise from variation in the salt-advection feedback
(which affects the AMOC strength)19. The AMOC transports heat
to the North Atlantic, so a positive doubling difference in the
AMOC causes positive doubling differences in North Atlantic
surface temperatures.

To reveal other nonlinear mechanisms, we subtract the AMOC
pattern (Fig. 2d) from that in Fig. 2c. The residual (Fig. 2e) is
associated with mechanisms other than those in the global-mean
energy balance or the AMOC. The North Atlantic positive feature
has been effectively removed.

The remaining high-latitude temperature nonlinearities are
largely driven by a nonlinear albedo feedback18,20 (which is
dominated by changes in ice and snow cover). It is nonlinear21
as it becomes zero when ice/snow is either absent or so thick
that its extent changes little under warming. The patterns in the
doubling difference of sea-ice fraction (Fig. 2f) match closely the
high-latitude patterns of temperature doubling difference (Fig. 2e),
with sea-ice albedo feedbacks driving temperature nonlinearity
(Supplementary Methods).

The final mechanism we study involves land evapotranspiration.
Soil moisture–temperature feedbacks can be nonlinear22: feedback
is small when soil moisture is saturated, or so low that moisture
is tightly bound to the soil (in both regimes, evaporation is
insensitive to change in soil moisture)23. Nonlinear behaviour
could also occur through the response of plant stomata (and hence
transpiration) to increased CO2 (ref. 24), or through nonlinear
precipitation change25,26. In HadGEM2-ES, the most strongly
superlinear warming occurs over the Amazon (doubling ratios of
80% are driven by the response of forest tree stomata to CO2, with
a longer-term response from reduced vegetation productivity—
Supplementary Methods; Amazon nonlinearity is weaker in the
othermodels studied). To investigate this type of effect, we calculate
the ratio of mean surface sensible heat and mean surface latent heat
fluxes (the Bowen ratio) in the two abruptCO2 experiments.Muchof
the temperature nonlinearity over mid/low-latitude land (Fig. 2g) is
associated with change in the Bowen ratio (Fig. 2h). Regions where
the Bowen ratio is substantially larger at 4×CO2 than at 2×CO2
(red in Fig. 2h) have more restricted evaporation: more incident
heat is lost as sensible heat, causing further warming. This does not
occur where the Bowen ratio is already larger than 1 at 2×CO2 (for
example, the Sahara, where most turbulent heat is sensible even at
2×CO2). These regions are masked in Fig. 2h.

Further to our analysis ofHadGEM2-ESwe find that nonlinearity
is similarly important in four other climate models: NCAR
CESM1, IPSL CM5A-LR, MIROC5 T42 and HadCM3. These
models show doubling ratios over land comparable to those in
HadGEM2-ES (Supplementary Fig. 5a). Over most land locations,
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Figure 2 | Mechanisms of nonlinear regional warming in HadGEM2-ES. a, Doubling di�erence. b, Doubling ratio. c, Doubling di�erence after global-mean
nonlinearity is scaled out (Methods). d, Estimated nonlinearity associated with the AMOC. e, The same as in c but with nonlinearity associated with the
AMOC (d) subtracted. f, Doubling di�erence in sea-ice fraction. g, The same as in e but latitude range matches that of h. h, Bowen ratio at 4×CO2 divided
by Bowen ratio at 2×CO2. All based on means over years 50–149 of the abrupt2×CO2, abrupt4×CO2 or hosing experiments, using HadGEM2-ES.

the ensemble-mean doubling difference is comparable to the
ensemble standard deviation for warming from the first doubling
(Supplementary Fig. 5b). That is, the range of warmings simulated
by this ensemble is quite different for the first and second CO2
doublings. The models do show differences in spatial patterns
of nonlinear warming. Consequently, the ensemble-mean pattern

(Fig. 3) is smoother than that of any individual model. However,
some continental-scale patterns across Europe, North and South
America and tropical Africa are similar between Figs 2b and 3.

Nonlinearity has implications not just for the ensemblemean, but
also for the spread of model projections. In general, an increased
spread at higher forcing should be expected: the relative importance
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Doubling ratio of ensemble mean warming (K)
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Figure 3 | Doubling ratio of ensemble-mean warming. Ensemble means are
taken for each of the first and second CO2 doublings first; then the doubling
ratio is calculated.

of nonlinear mechanisms grows with increasing forcing, so their
contribution to model spread does likewise. Conceptually, this can
be thought of as including an extra uncertain process at higher
CO2 concentrations. This inflation in model spread at higher
forcing is large when nonlinearities are uncertain, and seems to
be especially relevant for change per kelvin of global warming. We
calculated the ensemble standard deviation in regional warming
per kelvin of global warming. Over 30% of land, the ensemble
spread is at least 40% larger for the second doubling than for the
first doubling (not driven by internal variability—Supplementary
Methods). This corresponds to a doubling of variance—driven by
uncertain nonlinear mechanisms. This implies that the additional
regional warming under a business-as-usual scenario (over and
above that in a mitigation scenario) may be more uncertain than
the warming under amitigation scenario—a factmissed by previous
linear impacts assessments1,3,4. Second, different techniques may be
needed to reduce model uncertainty in these two aspects of climate
change: uncertainty from nonlinear mechanisms being relatively
more important at higher than at lower forcing levels.

The mechanisms of nonlinear warming identified in
HadGEM2-ES also operate in the other four models studied.
All have a positive global-mean temperature nonlinearity
(Supplementary Table 1). As done for HadGEM2-ES, we scale this
global-mean nonlinearity out and discuss regional patterns. Most
of the remaining temperature nonlinearities over northwest Europe
are associated with the AMOC: the magnitude of this nonlinearity
is predicted simply by scaling the HadGEM2-ES hosing experiment
by the AMOC doubling difference from each model (Fig. 4a).
Although there is significant model spread in sea-ice nonlinearity
(Supplementary Fig. 6), Arctic temperature doubling differences
averaged across the four extra models align closely with the sea-ice
albedo doubling differences (Fig. 4b,c), with patterns similar to
those for HadGEM2-ES (Fig. 2f). Similar comments apply to the
evaporation mechanism at lower latitudes (Fig. 4d,e and Supple-
mentary Fig. 7), especially over the Americas, Africa and Arabia,
although not all of the pattern is explained this way (nonlinear
dynamical processes and internal variability may also contribute).

The implications of nonlinearity for individual studies will
be application-specific, and should be considered alongside
other issues (for example, uncertainty in impacts models).
Further differences in patterns of ‘potentially avoidable’ and
‘unavoidable’ warming may arise from linear mechanisms. The
abruptCO2 experiments are powerful for separating mechanisms
and identifying where nonlinearity is largest or smallest. Where
available, transient projections from state-of-the-art climate models
remain preferable for direct policy advice.

Work is needed to reduce uncertainty in these nonlinear
mechanisms. Results from more models are required to quantify
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Figure 4 | Multi-model mechanisms of temperature nonlinearity. All
panels: ‘scaled temperature doubling di�erences’ have had the global-mean
nonlinearity scaled out. a, AMOC influence, averaged over northwest
Europe (land, 10◦W–20◦ E, 45–70◦ N). y axis: scaled temperature doubling
di�erence for each model; x axis: the HadGEM2-ES hosing temperature
response scaled using the doubling di�erence in AMOC index for each
model (as Fig. 2d; pink: HadGEM2-ES; dark blue: HadCM3; light blue:
MIROC5; yellow: NCAR CESM1; red: IPSL CM5A-LR). b,c, Sea-ice influence.
Ensemble means (excluding HadGEM2), of scaled temperature doubling
di�erence (b) and albedo doubling di�erence (c). d,e, Evaporation
influence. d, Ensemble-mean (excluding HadGEM2) scaled temperature
doubling di�erence. e, Bowen ratio of ensemble-mean surface heat fluxes
at 4×CO2, divided by the equivalent at 2×CO2 (as Fig. 2h).

model spread more precisely. Some policy advice based on linear
methods3 may need to be reconsidered, and studies of physical
processes controlling both temperature and precipitation25,26 should
account for a different balance of mechanisms under different
forcing scenarios or for different time periods.
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Methods
HadGEM2-ES model and experiments. The Hadley Centre Global
Environmental Model version 2 Earth System configuration27,28 (HadGEM2-ES)
has an atmospheric resolution of 1.25×1.875◦ and 38 vertical levels, and a 1◦
ocean (reaching 1/3◦ near the Equator) with 40 vertical levels. NCAR CESM1,
HadCM3, IPSL CM5A-LR and MIROC5 are described in Supplementary Table 2.

All models ran a fixed-forcings pre-industrial control, and both abruptCO2

experiments. Each abruptCO2 experiment was initialized from the same point in
the control run, and CO2 was abruptly changed (to twice pre-industrial levels for
abrupt2×CO2 and four times for abrupt4×CO2), and then held constant for
150 years.

The hosing experiment, run only for HadGEM2-ES, involved addition of
0.1 Sv fresh water near the coast of Greenland for 100 years. This produced a
modest (30%) slowdown in the AMOC (measured by maximum overturning near
30◦ N). Results from this experiment were averaged over years 50–149.

Scaling the global-mean nonlinearity out. Figure 2c shows doubling differences
after the global-mean nonlinearities (except those due to the AMOC) are scaled
out. The calculation of doubling differences with global nonlinearities scaled out
(denoted DDnoglobal) is described below. The small global-mean nonlinearity
associated with the AMOC is not scaled out here. This is because the
global-mean AMOC effect is included in Fig. 2d (the scaled hosing response),
and is therefore removed when Fig. 2d is subtracted from Fig. 2c: to give the
residual in Fig. 2e. DDnoglobal is given by:

DDnoglobal=T42−T21,scaled

where T42 is the warming from the second doubling, and:

T21,scaled=T21 ·

(
T21+DDnoAMOC

)
T21

where T21 is the warming from the first doubling. The overbar indicates a global
mean. DDnoAMOC is the global-mean doubling difference from processes other
than the AMOC:

DDnoAMOC=DD−DDAMOC

DD is the global mean of Fig. 2a and DDAMOC is the global mean of Fig. 2d.
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