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COMMENTARY:

Messaging climate change  
uncertainty
Roger M. Cooke

Climate change is full of uncertainty and the messengers of climate science are not getting the 
uncertainty narrative right. To communicate uncertainty one must first understand it, and then avoid 
repeating the mistakes of the past.

The recent Intergovernmental Panel 
on Climate Change (IPCC) Fifth 
Assessment Report1 documents the 

growth in our understanding of human 
impacts on the Earth’s climate. The inclusion 
of a chapter on Risk and Uncertainty 
testifies that large gaps in our knowledge 
remain. Decisions regarding mitigation 
and adaptation will impact the Earth we 
bequeath to our children’s grandchildren 
and these decisions will be taken — or not 
taken  — before these knowledge gaps are 
closed. Will our descendants praise our 
foresight or curse our selfishness? Much 
depends on how climate uncertainty is 
factored into the current policy debate. 
There are formidable pitfalls when 
reasoning under uncertainty, into which 
both the scientific community and the 
general population repeatedly fall. This 
Commentary charts a course.

Current uncertainty narrative
Many influential players in the climate 
debate do not see uncertainty issues at all. 
Ranking member of the House Committee 
on Energy and Commerce of the US House 
of Representatives John Shimkus told the 
committee in 20092 “The Earth will end 
only when God declares it’s time to be over. 
Man will not destroy this Earth.” US Senator 
James Inhofe3 is outraged at “the arrogance 
of people [who] think that we, human 
beings, would be able to change what He 
[God] is doing in the climate”. Others, like 
US presidential candidate Mitt Romney4, use 
uncertainty to shift the proof burden: “My 
view is that we don’t know what’s causing 
climate change on this planet, and the idea of 
spending trillions and trillions of dollars to 
try to reduce CO2 emissions is not the right 
course for us.”

Logicians refer to the domain of everyday 
discourse as the ‘natural language’, where rules 
of reasoning are not rigorously defined. The 
IPCC hoped to raise the debate on climate 

uncertainty by injecting precisely defined 
uncertainty qualifiers into the natural 
language. In 2010 the US National Research 
Council (NRC)5 illustrated reasoning under 
uncertainty about climate change using the 
calibrated uncertainty language of the IPCC 
Fourth Assessment Report6. The NRC report 
bases its first summary conclusion on “high 
confidence” (at least 8 out of 10) or “very 
high confidence” (at least 9 out of 10) in six 
(paraphrased) statements5:

(1)	 Earth is warming.
(2)	 Most of the warming over the last 

several decades can be attributed to 
human activities.

(3)	 Natural climate variability cannot explain 
or offset the long-term warming trend.

(4)	 Global warming is closely associated 
with a broad spectrum of other changes.

(5)	 Human-induced climate change and its 
impacts will continue for many decades.

(6)	 The ultimate magnitude of climate 
change and the severity of its impacts 
depend strongly on the actions that 
human societies take to respond to 
these risks.

The evident problem with this approach 
is that the propagation of uncertainty 

through a chain of inference is conducted 
in the natural language. Indeed, what is 
the confidence that all these statements 
hold? It is not even clear whether “all 
statements have a 0.8 chance of being true”’ 
means ‘each statement has a 0.8 chance of 
being true’ or ‘there is a 0.8 chance that all 
statements are true’. The natural language 
obscures the gaping difference between 
these latter two statements. Attempting a 
rigorous reconstruction of the above chain 
of inference highlights the limitations of 
uncertainty propagation in the natural 
language. Consider the second statement. 
Does it impute high confidence to ‘Earth is 
warming and humans are responsible’, or 
to the conditional statement ‘given that the 
Earth is warming, humans are responsible’? 
These are very different statements, and 
again, the natural language masks this 
difference. Since the Earth’s warming is 
asserted in the first statement, perhaps the 
latter, conditional, statement is meant. In 
that case, the likelihood of both statements 
holding is the product of their individual 
likelihoods. If the first two statements enjoy 
high confidence, then both can hold with 
only medium confidence (0.8 × 0.8 = 0.64).

The calibrated language translates 
‘virtually certain’ as 99%–100% probability7. 

Table 1 | Word fragment counts presented at the Uncertainty in Artificial Intelligence 
conference in 1985, 2000 and 2012.

 1985 2000 2012
Fuzzy 20% 9% 1%
Belief function 29% 1% 0%
Possibilistic 0% 11% 0%
Certainty factor 20% 0% 0%
Imprecise prob 0% 1% 1%
Random sets 0% 0% 1%
Non-monotronic 5% 0% 0%
Bayes 26% 78% 97%
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Suppose the US Nuclear Regulatory 
Commission licensed nuclear reactors based 
on the finding each year that each reactor’s 
safety was virtually certain. With 100 
commercial nuclear reactors, each with a 
probability of 0.01 per year of a meltdown…
well, do the maths. That is the point: to 
propagate uncertainty you may have to do 
some maths. The calibrated language has 
the important virtue of making problems 
of uncertainty propagation in the natural 
language obvious, though apparently not 
obvious enough.

Back to the past
The lessons of reasoning under uncertainty 
have been learned many times (see 
Supplementary Information), but they seem 
to need re-learning whenever uncertainty 
erupts in a new field. The artificial 
intelligence community’s experience 
is illustrative. In 1977 they launched a 
program to apply their computer chess 
skills to solving real-world problems, in 
particular, reasoning under uncertainty 
in science8. Studying the strategies and 
heuristics of grand masters of science, 
they concluded that the grand masters did 
not reason probabilistically, and explored 
alternative representations of uncertainty, 
including certainty factors, degrees of 
possibility, fuzzy sets, belief functions, 
random sets, imprecise probabilities, and 
non-monotonic logic, among many others. 
The NRC reasons as if high confidence in 
each of their six conclusions were sufficient 
to convey high confidence in all of them 
jointly, reflecting the original fuzzy rule for 
propagating uncertainty.

Proceedings of the premier conference 
Uncertainty in Artificial Intelligence have 
been digitized since 1985, and provide 
a unique record of the development of 
alternative representations of uncertainty. 
Table 1 shows the relative word fragment 
count of various approaches. In 1985 the 
largest component is ‘belief function’, 
followed by ‘Bayes’, ‘fuzzy’, and ‘certainty 
factor’. Bayes, a proxy for subjective 
probability, accounts for 26% of the total. 
By 2000 the balance has shifted; Bayes now 
accounts for 78% of the count. In 2012 the 
count is 97% for the word Bayes.

Climate change is the current theatre 
of alternative uncertainties. A number of 
economists9,10 aver that if we don’t know 
the probability distribution, then deep 
or Knightian uncertainty kicks in, which 
cannot be characterized by probabilities. As 
a result, many of the discarded approaches 
are reappearing. The proponents of deep 
or Knightian uncertainty perhaps haven’t 
read Knight11: “We can also employ the 
terms ‘objective’ and ‘subjective’ probability 

to designate the risk and uncertainty 
respectively, as these expressions are already 
in general use with a signification akin 
to that proposed.” Although the modern 
foundations of probability, both objective 
and subjective, date from the publications 
of Richard von Mises in 1928 and 
Frank Ramsey in 1931 (see Supplementary 
Information), Knight was nonetheless 
able to anticipate in 1921 the objective 
validation of expert subjective probabilities, 
which underpins modern science-based 
uncertainty quantification12.

Uncertainty quantification
The oft re-learned lesson is this: probability 
is the logic of partial belief; reasoning 
under uncertainty must obey the laws 
of probability. However the probabilities 
involved are often subjective. Quantitative 
uncertainty analysis for broad policy 
questions has always made massive use 
of expert subjective probabilities13. Moss 
and Schneider advocate this approach for 
climate uncertainty quantification14.

The challenge is to render the use of 
expert subjective probabilities scientific. 
Early attempts involved systematically 
eliciting uncertainties from experts and 
producing a traceable accounting trail. 
Subsequent developments elaborated and 
expanded the use of quantitative expert 
elicitation, involving training in subjective 
probability assessment, formal elicitation 
protocols and performance metrics. A 
series of joint studies by the European 
Union and the US Nuclear Regulatory 
Commission employed empirical 
validation of expert probability assessors, 
dependence modelling and performance-
based differential weighting for combining 
expert judgments. This “route to more 

tractable expert advice”15 underlay a recent 
application estimating future sea-level 
rise contributions due to melting of the 
ice sheets16, and represents one approach 
among others to treat expert subjective 
uncertainty as scientific data. Other 
approaches17 that do not employ empirical 
validation can nonetheless benefit from 
the large body of performance assessment 
with structured expert judgment (see the 
Supplementary Information for extensive 
detail on expert performance).

Empirical validation
Empirical validation is the hallmark of 
science. It may come as a surprise that 
expert subjective probabilities can be, 
and have been, empirically validated in 
exactly the way Knight envisaged in 1921. 
Forty-five professionally contracted studies 
completed before 2006 were reviewed 
by Cooke and Goossens18 from domains 
including nuclear safety, aerospace and 
aviation risk, environmental transport, 
finance, volcanology, banking and public 
health. In all cases, experts assessed 
calibration variables from their fields for 
which the true values were known post hoc.

For example in a study of fine particulate 
risk19 experts were asked “On how many 
days in 2001 did the daily average PM10 
concentration exceed 50 μg m–3 in at 
least one of the London stations?” As 
they assess those variables, experts can 
be treated as statistical hypotheses whose 
statistical accuracy and informativeness 
are objectively measured. Performance 
metrics are used to construct performance-
based combinations of expert judgments, 
also subject to validation. The data 
from those studies have been made 
available to researchers and yielded 
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Figure 1 | Performance weight/equal weight (PW/EW) ratios for 62 studies. The ratios concern combined 
scores for statistical accuracy and informativeness, aggregated over all test/training sets within each 
study. Data from ref. 22.
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a number of insights, three of which 
are sketched below (details are in the 
Supplementary Information).

The first insight concerns experts’ 
overconfidence. Lin and Bier20 found 
pervasive overconfidence among experts, 
measured as the percentage of true values 
falling outside experts’ 90% confidence 
intervals. However, the differences in expert 
performance are not random; most expert 
panels contain statistically accurate experts 
whose 90% confidence bands tend to 
contain 90% of the true values. Their results 
support the case for differential weighting 
of experts.

Statistical accuracy is only half the 
story. We want 90% confidence bands 
that are not only statistically accurate  
but also informative. The second insight 
concerns the role of domain expertise and 
experience in achieving statistical accuracy 
and informativeness. Using data from the 
Montserrat Volcano Observatory, Wadge 
and Aspinall21 tracked the scores of eighteen 
specialist volcanologists, and of seven other 
Earth scientists who act as probabilistic risk 
assessors. The risk assessors were statistically 
accurate, but less informative than the most 
experienced volcanologists. However, some 
very experienced volcanologists exhibit 
strong over-confidence.

The third insight concerns performance 
prediction. Does performance on 
calibration variables predict performance 
on the (typically unobservable) variables 
of interest? When direct observation of the 

variables of interest is not possible, we rely 
on expert judgement and need to cross-
validate their performance. ‘Cross validation’ 
gauges how well performance on a subset 
of calibration variables (the training set) 
predicts performance on the complementary 
subset (the test set). An exhaustive study22 
compares performance-based weighting 
of experts with equal weighting, for each 
of 62 studies. Performance weight (PW) 
combinations of experts based on a training 
set are applied to a test set and compared 
with equal weight (EW) combinations. The 
PW/EW performance ratios for test sets 
are aggregated over all possible training/
test splits for each study. These ratios, 
shown in Fig. 1, amply attest to the value of 
performance-based weighting. 

The problem of communicating 
uncertainty cannot be adequately tackled 
if the communicators don’t understand 
uncertainty. Sprinkling a narrative with 
uncertainty qualifiers, even if these are given 
a quantitative interpretation, is not sufficient. 
Science-based uncertainty quantification 
is possible, and has been going on for 
some time in other fields. Much has been 
learned and climate scientists cannot afford 
themselves the luxury of repeating the 
mistakes of the past.� ❐
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Additional information
Supplementary information is available in the online 
version of this paper.

COMMENTARY:

A balanced-efforts approach 
for climate cooperation
Robert C. Schmidt

Focusing on policies and effort costs rather than emissions may facilitate climate negotiations and 
improve the chances of reaching a successful agreement. The effort costs of a country comprise 
investments in low-carbon technologies, in addition to direct mitigation costs.

In the past, climate negotiations have 
focused primarily on emissions targets. 
Stiglitz, however, argues that it would 

be easier to negotiate about taxes1. In his 
view, the advantage of a common tax over 
the Kyoto approach would be that most of 

the distributional debate is sidestepped. 
In particular, under the Kyoto approach, 
obtaining the right to pollute is like 
receiving a gift. Hence, countries may 
struggle for the best ‘deal’, which can make 
an agreement difficult to achieve. In an 

earlier contribution, Schelling2 suggests 
that countries choose their own policy 
instruments when contributing to climate 
stability. He argues that a proposal should 
specify policies, such as taxes, regulations, 
or research and development subsidies, 
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