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AGRICULTURAL IMPACTS

Robust uncertainty
An up-to-date synthesis of climate change impacts on crop yields shows that the bounds of uncertainty are 
increasing. So why do estimates of the effect of climate change on crop productivity differ so much?

Reimund P. Rötter 

The challenge of feeding a global 
population expected to reach 9 to 10 
billion by mid-century, while at the 

same time coping with a changing climate, 
calls for estimates of how much climate 
change might affect global food production1. 
However, attempts to understand and 
help prepare for the future, such as the 
assessment of climate change impacts on 
crop productivity, are inherently uncertain2. 
In his essay ‘On Modern Uncertainty’, 
Bertrand Russell3 emphasized the importance 
of being aware of the limitations of our 
knowledge while communicating clearly 
what we do know, so that informed 
action can be taken. As they describe in 
Nature Climate Change, Challinor and 
colleagues4 follow this advice for crop yields 
under the impacts of climate change.

Challinor et al. use meta-analysis to 
summarize climate change impacts on the 
productivity of three major food crops (wheat, 
maize and rice) and their adaptation potential 
as a function of temperature — similar to that 
reported in the Fourth Assessment Report 
(AR4) of the Intergovernmental Panel on 
Climate Change (IPCC)5. The database was 
extended from 2007 to 2012, more than 
doubling the number of studies and the 
number of data points. This is the largest 
pool of data from diverse modelling studies 
ever used for a global synthesis of this kind. 
The work contributes to the food security 
and food production systems chapter of 
the Fifth Assessment Report (AR5) of the 
IPCC, due to be released on 31 March 2014 
in Yokohama, Japan.

Although there are similarities between 
the results of Challinor et al. and those of 
the earlier AR4 meta-analyses, there are also 
distinct differences. For example, wheat grown 
in mid to high latitudes does not only show 
a positive yield response to local warming 
(up to 3 °C), as was the case in AR4, but also 
negative responses. Furthermore, in temperate 
regions all three crops show a higher risk of 
yield loss at moderate levels of local warming 
than was suggested in the earlier AR4 analysis. 
The considerably larger number of entries 
used by Challinor and colleagues show a 
greater spread, or uncertainty range, than 
AR4 (schematically depicted in Fig. 1) and, 
without adaptation, significant losses in the 

aggregate production of wheat, rice and maize 
are already projected when local warming 
exceeds 2 °C, both for temperate and tropical 
regions. This is different from AR4, which 
suggested such yield loss would occur only 
when exceeding 3–4 °C local warming. 

Building on previous analysis5, Challinor 
and colleagues explicitly address uncertainty, 
establish confidence intervals for aggregate 
production, carry out extensive quality control 
and apply a transparent database and more 
comprehensive methods for statistical analysis 
of future trends in aggregate production. 
They also investigate the development of yield 
impacts over time and the effectiveness of 
different adaptation measures.

When looking at this update of the AR4 
meta-analysis of climate impacts on crop 
yields, the reader cannot but wonder: what 
might have caused the increase in the range 
of uncertainty? The authors partly answer this 
by pointing at the spatial sampling that now 
covers a larger and more diverse population of 
crop cultivation environments. Furthermore, 
enlarging the suite of modelling approaches, 
the number of crop models and the scenario 

spread inevitably adds to this and increases 
the range of quantifiable uncertainty6 as 
compared with AR4 (Fig. 1). Spatial sampling 
and model uncertainty factors (see, for 
example, ref. 7) constitute what can be coined 
quantifiable uncertainty, as distinguished 
from unquantifiable uncertainty, which goes 
beyond the projected range6 (Fig. 1). For 
example, we do not know what technological 
breakthroughs we can expect, or how human 
behaviour and skills will change. 

In the first instance Challinor et al. were 
interested in establishing robust estimates 
of the aggregate effects of climate change 
on crop yields, not in analysing how much 
spread is caused by different sources of 
uncertainty. The latter was made impossible 
by the heterogeneity of the database, 
but the authors were able to assess, for 
example, whether there are differences 
in yield response from simulation-based 
(mechanistic) versus statistical studies (see 
Supplementary Information in ref. 4). They 
found that statistical models predict a greater 
negative impact of climate on crop yields. 
An additional explanation for generally 
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Figure 1 | Schematic illustration of the relationship between total uncertainty, projected ranges of relative 
yield changes and best fits of aggregate yield changes. The figure refers to model-based results from 
AR4 (ref. 5) and AR5 (WGII  chapter ‘Food security and food production systems’) and indicatively 
depicts the main message and novelties of this study4. Figure modified from ref. 6.

© 2014 Macmillan Publishers Limited. All rights reserved



252	 NATURE CLIMATE CHANGE | VOL 4 | APRIL 2014 | www.nature.com/natureclimatechange

news & views

more negative yield impacts projected 
by recent studies is a tendency towards 
reduced optimism about the yield benefits of 
enhanced atmospheric CO2 concentration, an 
issue still under much debate8,9. 

The consideration of adaptation 
effectiveness by Challinor et al. is a first 
attempt to differentiate between various 
adaptation measures. This is an important 
step but the resultant estimates of the 
aggregate impact of adaptation should be 
treated with caution. This is because only a 
few measures of adaptation are considered  — 
reflecting the limited capability of crop 
models8 — and the number of paired data 
points is also small. More fundamentally, 
analysis of adaptation that does not take 
farm-level socio-economic context into 
account — the level on which most decisions 
on adaptation are taken — is not very 
meaningful. Consideration of shifts in yield 
reliability is also very limited, owing to data 
availability and deficiencies in most crop 
models in adequately capturing variability 
and extremes7–9. 

Being aware of these limitations and 
considering that the current database 

originates from inherently uncoordinated 
studies, how can this situation be improved 
in the future? One avenue towards more 
robust global results has already been taken 
by the Agricultural Model Intercomparison 
and Improvement Project10 and in Europe 
by Modelling European Agriculture with 
Climate Change for Food Security11, a 
project launched by the Joint Research 
Programming Initiative on Agriculture, Food 
Security and  Climate Change. These projects 
coordinate efforts to improve agricultural 
models and develop common protocols to 
systematize modelling for the assessment of 
climate change impacts on crop production. 
They also go beyond crop modelling and 
emphasize the importance of integrating 
biophysical and socio-economic analysis 
from farm to global scale9, to generate 
information that can guide decisions on 
feasible adaptation strategies.

Although Challinor et al. compiled a 
large database, they certainly missed many 
studies, as would have happened to any other 
author team, which in the IPCC assessment 
cycle usually changes every five to seven 
years. To avoid the negative effects of such 

discontinuities, a continuous monitoring 
of the ‘state of knowledge’ was proposed at 
a recent symposium in Oslo11. If this was 
carried out on a rolling basis, certain key 
results generated for one assessment could be 
updated and made available for subsequent 
IPCC and other international assessments. 
Such an effort could possibly be coordinated 
by the Agricultural Model Intercomparison 
and Improvement Project10.�  ❐
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