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A B S T R A C T

Nearly all long-term energy projections rely heavily on renewable energy sources on the assumption of

abundance. Yet, already today, wind and solar projects can encounter local objections and competition

with other uses. This paper presents the ranges of realistic potential supply for solar and wind electricity,

using a 1 km2 grid level analysis covering the whole world at country level. In addition, the potential for

building-based solar electricity is assessed. We find that long-term combined potentials range between

730 and 3700 EJ/a worldwide, depending crucially on the acceptable share of land—up to 3.5% of total

(non-ice covered) land on earth. Realistic potentials account for limitations such as land-use competition

and acceptance, together with resource quality and remoteness as proxies for cost. Today’s electricity

demand (65 EJ/a) is well covered by the range, but constraints may occur in the long run locally. Amongst

large countries, Nigeria and India may need imports to meet electricity demand.

� 2015 Published by Elsevier Ltd.
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1. Introduction

Faced with the twin challenge of energy security and the largely
unmitigated externalities of conventional energy sources, and
buoyed by the economic co-benefits and continuing increase in
cost-competitiveness of renewables (IEA RETD, 2012), most
governments are formulating policy frameworks which encourage
a high penetration of renewable power sources in the medium- to
long-term. Renewables face many challenges and uncertainties as
they grow and become integrated into the energy system. Yet
projections often assume that the resource base provides no
limitation, notably for wind or solar energy. To test this assumption,
we have conducted a detailed, global analysis to provide credible,
practical, realistic and consistent potentials for electricity from
solar and wind sources, using the highest resolution datasets that
are publicly available. We not only take into account technological
development but also attempt to address implementation con-
straints such as grid connection, competition with other uses or
possible local opposition. Most significantly we try to quantify real
availability of these surfaces, beyond simple technical or geograph-
ic limitations, using an availability factor.
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We stress that we do not present a full energy system analysis
here as is done typical energy analysis studies (IEA, 2012a; GEA,
2012; Lund and Mathiesen, 2009; Deng et al., 2012; Shell, 2013),
but rather a detailed quantification of technical resource
potentials which are used as an input to such analyses. For
example, the results of this study have been used as a key input
for the renewable energy projections in Shell’s (2013) New Lens
Scenarios.

The IPCC Special Report on Renewable Energy Sources and
Climate Change Mitigation summarised the existing body of work
on renewable energy potentials. It highlighted the difficulty of
comparing different studies varying in geographic scope, technol-
ogy scope and approach (Edenhofer et al., 2011). The surveyed
studies (Krewitt et al., 2009; REN21, 2008; UNDP et al., 2000;
Hofman et al., 2002; Trieb et al., 2009; EEA, 2009; Siegfriedsen
et al., 2003; DLR, 2006; Defaix, 2009; Hoogwijk, 2004; de Vries
et al., 2007; Zhou et al., 2009; Denholm and Margolis, 2008;
Schwartz et al., 2010; Jacobson and Delucci, 2011) are frequently
cited, but most of them:

� are primarily meta-analyses themselves (Krewitt et al., 2009;
REN21, 2008; UNDP et al., 2000), or
� assess only a single or a handful of related technologies (Hofman

et al., 2002; Trieb et al., 2009; EEA, 2009; Siegfriedsen et al., 2003;
DLR, 2006; Defaix, 2009) or
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� miss a part of the potential (e.g. assessing roofs, but not façades
for solar photovoltaic (PV) energy systems) (Defaix, 2009;
Hoogwijk, 2004; de Vries et al., 2007; Zhou et al., 2009; Denholm
and Margolis, 2008), or
� pertain to a single country or region, not the whole world with

differences in approach or assumptions between regions (EEA,
2009; Siegfriedsen et al., 2003; DLR, 2006; Defaix, 2009; Zhou
et al., 2009; Denholm and Margolis, 2008; Schwartz et al., 2010),
or
� cover the whole world, but do not provide sub-global detail

(Jacobson and Delucci, 2011), or
� focus on theoretical or technical potentials, taking only a limited

number of, or no, additional barriers to implementation into
account (EEA, 2009; Hoogwijk, 2004; de Vries et al., 2007), or
� use low resolution datasets, potentially over- or under-estimat-

ing potential significantly locally (Hoogwijk, 2004; de Vries et al.,
2007).

They commonly find (very) large potentials: for land-based
solar and wind potentials combined, results on the order of a few
thousand to tens of thousands of exajoules of final electric energy
per annum are reported.

In contrast to these existing studies this paper presents, for the
first time, a comprehensive, bottom-up assessment of renewable
electricity potentials across the entire globe for all solar and wind
electricity technologies: wind, solar photovoltaic (PV) and
concentrated solar power (CSP) including land- and sea-based
resources as well as building-based PV potential. The focus in this
study is not on full technical potential, as is the case for many
existing studies, but on an estimate of the realistic, or constrained,
technical potential, which accounts for technical as well as non-
technical limitations, such as acceptance, cost, competition with
other uses or remoteness. For land- and sea-based technologies, we
achieve this through a detailed analysis of land use and cover in a
geographic information system (GIS) with up to �1 km2 resolution,
the most detailed, global analysis to date. We first find the
technically suitable area, by successive exclusion of geographic and
technical factors. In addition, we include a final step which aims to
assess a realistic future maximum availability share of all land
which is technically suited for use.

For building-based PV potentials we use the same technology
and resource assumptions as on land, but calculate the available
area on both roofs and façades at country level, starting from a
building stock analysis of a representative set of reference
countries.

In addition, and for completeness, we present a meta-analysis
of existing studies for hydro- and geothermal electricity, with
extrapolations to assess realistic long-term potential.

2. Methods

The overall framework to assess any solar or wind energy
potential followed a three step approach by determining:

a. the available area (on land, on sea, on building roofs and building
façades)

b. the amount of resource incident upon this area (wind speed,
solar irradiation)

c. the amount of energy a technology could capture of this total
resource (i.e. conversion)

The three steps above are then combined according to Eq. (1) to
yield the overall potential estimate for three study periods: 2010,
2030 and 2070.

Pð p; tÞ ¼ Að p; tÞ � Ið p; tÞ (1)
where P = potential in EJ per technology, for each study period;
A = area in km2 per technology; I = resource intensity, i.e. potential
per area, in EJ/km2, which is calculated differently for solar and
wind technologies and can vary per study year; p = the study
period (2010, 2030, 2070); t = the technology per category, i.e. CSP,
wind on land or sea, PV on land or building roofs, or façades.

The terms and steps above differ by technology (PV, CSP, wind)
and category (sea, land, buildings) and are discussed in detail
below.

Of the two factors in Eq. (1), the first factor, the available area,
has a much larger uncertainty than the second factor, the effective
resource per area. Note that the available area can also vary over
time, due to land use changes, e.g. from urbanisation and
deforestation. However, these changes are expected to have a
much smaller bearing than other elements, most notably the
‘availability factor’ and have therefore not been taken into account
here.

For hydro- and geothermal electricity, the potential is much
more discretely distributed across the world, as it is associated
with specific localised features. These two resources were not
assessed in depth, but via a meta-analysis of existing studies.

2.1. Available area

Land- and sea-based resources were calculated using a
geographic information system with datasets with up to
1 km � 1 km resolution. The available area for these resources
was calculated by starting with the total world surface area
(146 � 106 km2 on land and 361 � 106 km2 on sea) and succes-
sively excluding areas which would not be suitable for use for a
given technology (wind, PV, CSP). In a final step we attempted to
estimate the percentage of suitable area which would be
realistically available for renewable electricity production. Note
that this availability of a given type of area is the factor with the
largest uncertainty. All these steps are described in detail below,
first for land-based resources, then for sea-based resources, and
formalised in Eq. (2).

Að p; tÞ ¼
X

l

alðtÞ �
X

i

Aið p; tÞ
" #

(2)

where A = total available area for a given technology and period;
al = availability factor per land type; Ai = suitable area in km2 in
grid cell i for a given technology; p = the study period (2010, 2030,
2070); t = the technology, i.e. CSP, wind on land or sea, PV on land.

2.1.1. Land-based solar and wind resource

The area available for land-based wind and solar electricity
installations is restricted by the following factors. These factors
have been used to estimate suitable area onshore based on the data
sources in Table 1 in the following steps:

� Exclusion of Antarctica: The land area of Antarctica was
excluded.
� Elevation:
� Wind: Areas above 2000 m were excluded due to the

significantly lower power density at such elevation.
� Land cover–Urban area: This was excluded for all technologies

based on a combination of data on urban land cover and on
population density. Note that for PV potential on buildings, a
different approach, not based on GIS, was used (see below).
� Land cover–Forests:
� Solar: All forest areas were excluded for solar electricity

production. Note that we also excluded mixed land covers
(cropland or grassland with some forest) in this exclusion
step.



Table 1
Data sets used for the GIS modelling of land- and sea-based resources.

Category Data Resolution Source Reference

Land Elevation 1 km USGS (-EROS) GTOPO30 USGS (1996)

Land cover/use 1 km USGS GLCC v2 Loveland et al. (2000)

Population 5 km NASA–SEDAC v3 CIESIN et al. (2005)

Country borders �2 km VMAP0 NIMA (2000)

Railways 10 km NGA/USGS VMAP0/VMAP1 NIMA (2000)

Solar irradiance 40 km NASA LaRC ASDC (2012)

Wind speed (land)* 19 km CRU, CL2.0 New et al. (2002)

Land/sea Wind speed (all)* 120 km CISL CISL (2012)

Protected areas 1 km WDPA IUCN and UNEP (2011)

Sea Coastlines �2 km VMAP0 NIMA (2000)

Ocean depth 2 km NOAA Amante and Eakins (2009)

Maritime use 1 km NCEAS impacts Halpern et al. (2008)

Reefs & marshes 1 km NCEAS ecosystems Halpern et al. (2008)

Offshore borders �2 km Exclusive Economic Zones VLIZ (2012)

* The wind speed on land was determined as an average between these two datasets as the CRU dataset had a better resolution but suffered from sparse data in some world

regions (China, Africa, South America).
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� Wind: Non-protected forests were not excluded for wind
power production (but received a lower availability in the final
step).

� Land cover – Ice, Water, Coast, Cliffs, Dune, Rock: Areas of
these land cover types were excluded for all technologies.
� Protected areas:
� From the World Database on Protected Areas (WDPA) data set

(see Table 1) all classified protected areas were excluded
(Natura 2000 and Cat. I–VI). Non-classified areas were not
included in this study due to insufficient information.
� All land cover classes of ‘rain forest’ and ‘tropical forest’ have

been fully excluded.
� Slope:
� Solar – PV and Wind: Grid cells (1 km � 1 km) with an average

slope of more than 158 (�27%) were excluded.
� Solar – CSP: Grid cells (1 km � 1 km) with an average slope of

more than 28 (�4%) were excluded.
� Resource intensity:
� Solar – CSP: Areas with a direct normal irradiance value of less

than 1900 kWh/m2/a were excluded for CSP. Availability of
nearby water was not used as an exclusion criterion as
technological developments are currently underway to mini-
mise reliance on water for CSP.
� Solar – PV: No areas were excluded based on resource intensity

for PV as current practice shows that latitude is not a strong
factor in determining where PV is installed and there is still
significant price reduction potential in PV which would likely
render all areas within reach of cost-effectiveness. However,
we note that the lowest horizontal irradiation levels found at
the latitudes included in this study are around 800 kWh/m2/a.
� Wind: To reflect the fact that areas of low wind speed are

unlikely to see significant investment in wind power installa-
tions we excluded areas with low average wind speeds in our
calculations. The economically feasible minimum average
wind speed is heavily dependent on local factors. For this
global study, we implemented a critical cut-off of 6 m/s at hub
height, with an assumption of average hub-height rising from
80 m now to 90 m for 2030 and 2070 (see also Supplementary
Information online). Only areas with average wind speeds
below this cut-off in four out of four quarters within a year
were excluded.

2.1.2. Sea-based wind resource

The area available for sea-based wind power installations is
restricted by the following factors which have been used to
estimate suitable offshore area based on the data sources listed in
Table 1:

� Economic zone attribution: Only offshore areas attributed to a
country jurisdiction have been included in this study. In case of
joint jurisdiction the area has been split evenly between the
administrating countries. Disputed areas have been completely
excluded from the analysis.
� Sea ice: Areas likely to be impacted by sea ice have been

excluded by following the winter sea ice line around the Arctic
and by implementing a general cut-off at 608 latitude in the
Antarctic.
� Ocean floor depth: Current technology for offshore wind power

primarily relies on pylons driven into the sea-bed. This
technology is already in use up to 50 m ocean depth. At (much)
higher depths it is expected that floating turbine technology will
be deployed. This technology is expected to be deployed within
the study time horizon (up to 2070). There is no established
upper limit for the depths this technology can reach; we have
used a cautious cut-off of 1000 m depths; i.e. offshore areas with
deeper ocean floor depths have been excluded.
� The distance from shore is not a technical limitation per se, but

areas very far from the coast have been assumed to be too costly
to connect to land for the foreseeable future. We have used a
critical cut-off of 200 km. It is noted, however, that most areas
further than 200 km offshore would have been excluded in the
previous steps on ocean floor depth and exclusive economic
zones anyway.
� Protected zones: Where data on ecosystems and protected

zones was available, these have been excluded, but freely
available data is sparse. Most of the areas excluded in this step
were identified through the WDPA data set with some additional
exclusions of salty marshes and rocky reefs from NCEAS (see
Table 1).
� Maritime use: Data on maritime use is not comprehensive. We

have excluded the shipping lanes, areas of artisanal fishing and
oil rigs (including buffer zones) contained in a dataset provided
by NCEAS (see Table 1) to estimate areas unavailable for offshore
wind parks due to prior uses. This will lead to underestimates in
some areas (only 10% of heavy shipping traffic is logged in the
NCEAS data set) and overestimates in other areas (all existing oil
rigs are excluded but it is likely that several of them will have
been dismantled by 2030/2070).
� Resource intensity – wind speed: In analogy with the approach

for onshore wind above, we implemented a critical cut-off of
8 m/s at hub height, with an assumption of average hub-height
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rising from 90 m now to 110 m for 2030 and 2070 (see online
Supplementary Information for more detail). Only areas with
average wind speeds below this cut-off in four out of four
quarters were excluded.

2.1.3. From suitable to available area

The exclusions above yielded the suitable area for solar and
wind power. To assess the area which will likely actually be
available for electricity production we used a geographically non-
specific availability factor (see Table 2). This can be interpreted as
representing the average share of the suitable area in a given grid
cell, region, or country, which is likely to be actually available for a
PV, CSP or wind power park in the given period. Because this
availability factor is highly uncertain but has a large bearing on the
overall potential, we spanned a range of possible values in our
assumptions, denoted Low, Medium, High and varied the factor for
the High case between industrialised and developing countries,
and different land types.

For solar electricity, availability factors were based on Trieb
et al. (2009) for the Medium case and variations around this
number for the Low and High cases.

For on-shore wind, we tried to derive availability factors from case
studies in Germany, Denmark and the Netherlands. We estimated
currently installed wind power capacities to cover around 1–2% of
suitable area in these countries (see Supplementary Information for
the calculation behind these numbers). Given that these countries are
not, on average, at the limit of their wind power density (although
individual regions within the countries may be reaching the limits
acceptable to the local population), we have assumed that this
represents around 20–30% of the possible maximum available area,
resulting in an availability factor of 5–6%. This is in line with another
European study (EEA, 2009) postulating 4–5% availability. Based on
these considerations, we used a range of 3–10% for our three scenarios
and a much lower availability for forests.

Since availability for offshore wind parks is today primarily
impacted by competing use and perceived visual impact, the
availability factor was varied by distance from shore (see Table 2).

The factors were based on the following considerations:

� Social acceptance is only expected to play a role <50 km from
shore as wind farms at higher distances are not visible, therefore
availability has been heavily restricted for distances <50 km
from shore.
Table 2
Availability factor for technologies on land (Ind. = industrialised, Dev. = developing

country).

Technology Land class or

distance from

shore class

Availability (by case and country type)

Low Med. High

Ind./Dev. Ind./Dev. Ind. Dev.

Wind on-shore Forest 0.5% 1% 2% 2%

Agriculture

3% 6% 10% 20%
Desert

Grassland

Barren land

PV/CSP Agriculture 0.1% 0.5% 2% 5%

Grassland
0.5% 1% 3% 5%Barren land

Desert 2% 5% 8% 15%

Wind off-shore 0–10 km 4% 5% 5%

10–50 km 10% 30% 40%

50–200 km 25% 60% 80%

For more information about how these factors were established, see the

Supplementary Information online.
� The Low case is based on the values used in another study (EEA,
2009), but leads to a more restricted area since that study started
with a much larger (less constrained) suitable area.
� The Medium and High cases assume full availability (100%)

minus an (upper) estimate of areas for protection (Medium Case)
or protection and shipping (High Case) which we did not have
sufficient data for to exclude above.

2.1.4. Resource cut-offs

Although this study is not attempting to calculate economic
potentials, it is instructive to translate the resource intensity cut-
offs into approximate production cost values at least for our base
year and 2030. These are shown in Table 3 with inputs derived
from literature (Teske et al., 2011; Schlömer et al., 2014) and
assuming a lifetime of 20 years and a weighted cost of capital of
10%. Note that these approximate costs are higher than typical
current costs, as they represent costs for low resource intensity
areas and that actual production costs would be minimised on a
project-by-project basis.

2.1.5. Building-based solar resource

A GIS approach for assessing roof and façade area would carry a
large uncertainty as the global GIS dataset only identifies artificial
surfaces at a 1 km � 1 km scale, not differentiating between roofs
on buildings and other structures. Instead we have used floor space
to derive the roof and façade area suitable for solar resources as
shown in Eq. (3).

Aroof ; faHadeð p; cÞ ¼ Pop ð p; c; uÞ � Afloor

Pop
ð p; c; uÞ

� Froof b; uð Þ � Sroof þ FfaHadeðb; u; oÞ � SfaHade

� �
(3)

where Aroof = area of building roofs suitable for energy harvesting
using PV; Afaçade = area of building façades suitable for energy
harvesting using PV; Pop = population for each country per period
and urbanisation level (United Nations, 2009); p = the study period
(2010, 2030, 2070); c = country; u = urbanisation level; Afloor/

Pop = floor area per capita for each country per period and
urbanisation level; Froof = roof to floor ratio, dependent on building
type and urbanisation level; Ffaçade = façade to floor ratio,
dependent on building type, urbanisation level and orientiation;
b = building type; o = orientation; Sroof/façade = suitability factor on
roofs/façades, i.e. share of full roof/façade deemed suitable and
available for energy harvesting.

2.1.5.1. Floor area. We calculated floor area for each country based
on the floor area per capita and the population per country. The
floor area per capita was first estimated for ten reference countries
and all other countries were mapped to these ten reference
countries based on several characteristics (region, climate zone,
GDP per population). The mapping is shown in the Supplementary
Information online.
Table 3
Estimated production costs for the medium term at the resource cut-offs used here.

Technology Resource cut-off Approximate levelised

costs in EUR2012/kWh

2010 2030

Wind on-shore 6 m/s at hub height 0.08–0.12 0.05–0.08

Wind off-shore 8 m/s at hub height 0.10–0.18 0.07–0.14

CSP 1900 kWh/m2/a DNI 0.24–0.68 0.12–0.33

PV [�800 kWh/m2/a GHI] 0.53–0.80 0.11–0.21



1 Note that an average efficiency across a range of technologies was used here as

the range of module efficiencies has a much smaller effect on the overall result than

other factors, e.g. availability.
2 The ground coverage factor was derived from typical power densities of solar

farms (25–50 MW/km2) in comparison with the raw module power density of a

typical solar cell of 125–150 MW/km2.
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For the ten reference countries, we differentiated between
building types (multi-family home, single-family home, non-
residential buildings), urbanisation level (rural and urban), period
(2010, 2030, 2070) and new or existing buildings and also tried to
account for the increasing share of the population living in multi-
family homes and urban areas in the future. We first estimated base
year (2010) values for floor area per capita in all of these categories
based on existing statistics, where available (de la Rue du Can, 2009;
DoE, 2009; Diefenbach and Loga, 2011; EIA, 2006; IFO Institute,
1999; IBGE, 2005; Milford, 2009; Ministerio de Fomento, 2010;
Ministerio de industria tourismo y comercio, 2007; Schlomann et al.,
2009; Statistisches Bundesamt, 2009; Zhou et al., 2007). For future
years, we trended historic growth, but moderated this growth
where necessary to achieve consistency across countries.

This iterative approach yielded values for the floor area per
capita from 10 to 76 m2 in 2010 and 23 to 71 m2 in 2070 for
residential buildings and 1–29 m2 in 2010 and 5–37 m2 in 2070 for
non-residential buildings based on modelling of building stock
development in each of the reference countries. For more detail,
see the Supplementary Information online.

2.1.5.2. Roof to floor ratio/façade to floor ratio. We determined roof-
to-floor and façade-to-floor (North, South, East and West) ratios,
differentiating between single-family and multi-family homes in
rural and urban areas and non-residential buildings. We estab-
lished these ratios for three reference countries and mapped all
other countries to these reference countries, based on the same
characteristics as above. The roof-to-floor ratios ranged from
0.17 to 1.00. The façade-to-floor ratios varied between 0.10 and
0.33 or 0.00 and 0.47 depending on orientation. A zero value
represents a wall connected to the wall of an adjacent building. For
more detail, see the Supplementary Information online.

2.1.5.3. Suitability. From the total roof and façade area, the suitable
area (synonymous with available area here) was estimated. For
this we used a suitability factor of 33% for roofs and 10% for façades,
rising to 30% in 2070. These factors were derived from literature
(Bergamasco and Asinari, 2011; Ghosh and Vale, 2006; IEA-PVPS,
2002; Izquierdo et al., 2008; Montavon et al., 2004; NREL, 2008;
Pillai and Banerjee, 2007; Scartezzini et al., 2002).

2.2. Potential per area

In the final step, the conversion of raw resource incident on the
available area was converted to usable electricity through an
effective conversion efficiency. Note that we do not differentiate
further between different types of sub-technologies, e.g. mono- vs.
polycrystalline solar cells, etc., but characterise each technology by
one efficiency which is representative of the whole sub-technology
spectrum.

2.2.1. Solar electricity production

The potential per area for solar electricity production can be
calculated from the solar energy incident upon the surface per year
and the conversion efficiency of the harvesting technology, as
shown in Eq. (4).

P

A
ð p; tÞ ¼ IðtÞ � Eð p; tÞ (4)

where P/A = potential per area in EJ/km2 per study period and
technology (PV vs CSP); p = the study period (2010, 2030, 2070);
t = the technology (PV or CSP); I = resource intensity in J/m2 for
solar irradiation; E = conversion efficiency in % by technology.

2.2.1.1. Resource intensity. For solar photovoltaics (PV) on land or
building roofs, the global horizontal irradiation (GHI) per grid cell
or country was derived from the solar irradiance data source in
kWh/km2/a listed in Table 1. The GHI includes the total gross solar
energy from both direct and diffuse radiation incident on a
horizontal plane. For buildings, we calculated an average irradia-
tion value per country across all grid cells, weighted by population
density.

For solar photovoltaics (PV) on building façades we also
calculated the gross vertical irradiation (GVI) in kWh/km2/a by
orientation (North, South, East, West).

For concentrated solar power (CSP), the direct normal irradi-
ance (DNI) per grid cell in kWh/km2/a was derived from the solar
irradiance data source listed in Table 1. The DNI is the total direct
gross solar energy incident on an area perpendicular to the
incoming radiation.

2.2.1.2. Conversion efficiency for PV. The overall conversion effi-
ciency for PV is the product of these factors:

� The module efficiency of the individual solar modules1 (Em)
� The performance ratio, capturing the system’s conversion

efficiency from the module’s output to usable electricity (PR)
� (For land-based PV only): A ground coverage value representing

the share of land capturing energy, i.e. the share of the total area
of a PV plant actually covered with PV cells (GC)2

Table 4 shows the values used for each of these three factors as
well as the overall resulting conversion efficiency for buildings
(Em�PR) and for land (Em�PR�GC).

2.2.1.3. Conversion efficiency for CSP. The overall conversion
efficiency for CSP is the product of two factors:

� the net efficiency which represents the internal conversion
efficiency1 of the CSP system and is understood to include the
(small) efficiency losses in plants with storage capacity.
� a space factor which represents the additional factors to take into

account when converting from gross resource over the entire
plant area to final electricity produced from the full plant.

The values used for these two factors and the overall resulting
conversion efficiency are shown in Table 5.Note that assumptions
on the development of technologies (in the form of conversion
efficiencies for PV and CSP and hub heights for wind) were not
explicitly linked across technologies in a prior scenario, e.g. on
installed capacities, but were deemed consistent as they were
derived from similar considerations of continued growth.

2.2.2. Electricity from wind on land and sea

The wind power potential per area per year for each grid cell
was calculated for each period according to Eq. (5) (based on Held,
2010, p.60) which includes the approximate relationship between
the full load hours per year and average annual wind speed, based
on a range of turbines, as well as an average power density:

P

A
ð p; tÞ ¼ H p; tð Þ � D � Eð p; tÞ

¼ ða � y2 � bÞ � D � Eð p; tÞ
(5)

where P/A = potential per area in EJ/km2 per period and techno-
logy; p = the study period (2010, 2030, 2070); t = the technology
(on-shore vs off-shore wind); H = full load hours in a given



Table 4
Conversion efficiency values used for building- and land-based PV.

Year Module

efficiency

(Em)

Performance

ratio (PR)

Gross

conversion

efficiency

(buildings)

(Em�PR)

Ground

coverage

(land) (GC)

Net

conversion

efficiency

(land)

(Em�PR�GC)

2010 16% 75% 12% 20% 2.4%

2030 24% 80% 19% 23% 4.5%

2070 35% 80% 28% 30% 8.4%

Table 6
Efficiency values used for wind power (Ind. = industrialised, Dev. = developing

country).

Category Land class or distance

from shore class

Operational

efficiency

Array

efficiency

Ind. Dev. Ind. Dev.

Land Forest

0.98 0.90

[1.0] [1.0]

Agriculture [1.0] [1.0]

Grassland/Barren land 0.925 0.90

Sea 0–10 km 0.925 0.95
0.9 0.8

10–50 km 0.925 0.95

50–200 km 0.9 0.925
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timeframe; D = power density, here 7 MW/km2; E = conversion
efficiency in % by technology; n2 = the average wind speed at hub
height in that timeframe; a = 728; b = 2368.

2.2.2.1. Conversion efficiency. There are also small efficiency losses
in wind power production which lower the overall resource
intensity. The intensity is therefore moderated (multiplied) by the
following additional efficiency factors, which range from 90% to
100%.

� Operational efficiency: The share of total possible operation time
that the wind turbine is actually producing electricity, i.e. not
stopped for maintenance. We have varied this by country
(industrialised vs. developing) and by distance from shore for
offshore wind.
� Array efficiency: Multiple turbines can cause interference. The

amount of interference depends on land use for onshore wind
(not applicable to solitary turbines, as assumed here for
agriculture and forest).

The values used for efficiencies for wind power are shown in
Table 6.

2.3. Distance from infrastructure

With the exception of offshore wind, renewable electricity
installations today do not usually require additional electricity
transmission capacity to be connected to existing transmission and
distribution grids. When assessing long-term potentials across
larger areas, however, the distance from existing electricity lines
may be important, depending on the share of the cost of connection
in the overall cost for the installation.

To get a first impression of the distribution of our calculated
potentials across differing distances from existing electricity grids
we have tried to assess the distance of each grid cell from an
electricity grid that connects to a significant demand for electricity.
Since a global data set for electricity lines was not readily available,
we have estimated a ‘distance from infrastructure’ as a marker for
electricity grids based on the approach described in the following.
Each grid cell was either classed as ‘with infrastructure’ or ‘without
infrastructure’, based on land cover, population density and
railways as detailed below. For each grid cell without infrastruc-
ture we then calculated the distance to the nearest grid cell with
infrastructure and then grouped grid cells into distance classes
based on the results.
Table 5
Conversion efficiency values used for CSP.

Year Net efficiency Space factor Overall conversion

efficiency

2010 15% 20% 3.0%

2030 18% 20% 3.6%

2070 20% 20% 4.0%
2.4. Classification of grid cells with infrastructure as a marker of grids

To assess whether the potential would be able to supply power
into an electricity grid, we used a combination of data sets to
estimate the distance from ‘‘infrastructure’’ which we use as a
marker for the distance from electricity grids. The presence of
infrastructure was based on a combination of:

� land cover being of ‘built-up’ type or being within 100 km of a
cell of such land cover
� population density being above 500/km2 or within 100 km of a

cell of such density
� presence of rail network lines in the cell

Note that road networks were deemed too pervasive to be a
good indicator of electricity connections. The exact approach to the
infrastructure classification is depicted in Fig. 1. We have
attempted to depict the expansion of settlements through time
by combining these datasets differently for 2070 vs 2010/2030.

2.5. Distance classification

Based on the previous step we then decided to group the
calculated potentials into the following groups:

� For offshore resources: Above or below 70 km from infrastruc-
ture
� For land-based resources: Above 500 km, below 500 km or below

100 km from infrastructure

2.6. Hydro- and geothermal electricity

2.6.1. Hydroelectricity

We differentiate between ‘small’ and ‘large’ hydroelectricity
potentials. ‘Small’ hydroelectricity tends to denote run-of-the-river
type installations, using newer technologies and resulting in
smaller projects of around <10 MW in size although no official
definition exists. ‘Large’ hydroelectricity is commonly used to
denote traditional reservoir projects of larger capacity, up to several
tens of gigawatts. We used a range of existing data sources on
hydroelectricity potentials to get an estimate of the potentials split
into these two categories (DLR, 2006; IJHD, 2008; IEA, 2012b, 2013).

� The International Hydropower & Dams World Atlas (IHDWA)
contains estimates for total hydroelectricity potential (IJHD,
2008)
� The IEA’s Small-Hydro Atlas which was designed to report

potential for small hydroelectricity projects, but still lacks data
for most countries (IEA, 2013)
� The IEA’s official statistics on current (2007/2009) production of

hydroelectricity were used to fill gaps in the reported historic
data (IEA, 2012b)



Table 7
Category mapping for geothermal literature survey.

Categories in this study Categories from other studies grouped

in this definition

2010 Actual production reported from GEA (2010)

and IEA ETSAP (2010)

2030 ‘Short-term (economic)’ potential if reported

2070 ‘Long-term (economic)’ potential if reported

Conventional vs. EGS If explicitly stated

All technologies If no technology stated explicitly

Fig. 1. Logic used to classify grid cells as with or without infrastructure for the distance class grouping.
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� An existing meta-analysis from 2008 published by REN21 was
used to fill gaps in the projected data for large hydropower
(REN21, 2008)
� The total size of water bodies in a country was used as a proxy to

infer potential for small hydropower for countries without
reported potentials (FAO, 2007).

The numbers reported in the sources above at country level
were combined with additional sources for individual countries
(REN21, 2008; DLR, 2006; Fulton et al., 2011; SETIS, 2011) to arrive
at estimates for the potential for hydroelectricity split into ‘large’
and ‘small’ hydroelectricity as follows:

For large hydroelectricity potential:

1. We set the 2030 potential to the lower bound of the ‘mid-term
projected output’ reported in the IHDW atlas.

2. We set the 2070 potential as the half-way point between this
and the IHDWA ‘economic potential’.
a. Where values from IHDWA 2007 and IEA 2007/9 differed for

current production we have used the larger number.
b. Where current (2007/9) production from IEA was larger than

the IHDWA mid-term or economic potentials we have used
the larger IEA number.

For small hydroelectricity potential:

1. We have assumed that the reported potential was economically
feasible (not technical) potential and have used this as our
2070 potential. This is a reasonable assumption given that this is
estimated here at �1.6 EJ, whereas the global technical potential
is estimated at 1.9–2.0 EJ in REN21.

2. We have set the 2030 potential as the point between the current
(2009) capacity (zero for most countries due to underreporting)
and the 2070 potential along a linear development path.

2.6.2. Geothermal electricity

We analysed �30 different country-level studies, presentations
and briefing papers containing potential estimates for �100
different countries in a meta-study (GEA, 2010; IEA, 2010; Bertani,
2009a, 2009b, 2010; Brooks and Bala, 2010; Chandrasekharam,
2000; DECC, 2006; DLR, 2005, 2006; EBRD, 2009; Eliasson, 2008;
Energy and Mineral Resources Ministry, 2010; IEA, 2006, 2011;
Green and Nix, 2006; Goldstein et al., 2011; Jelić et al., 2000;
Joseph, 2008; Krewitt et al., 2009; RECIPES, 2006; Richter, 2011;
Sarmiento and Steingrimsson, 2007; Simsek et al., 2005; Tekle-
mariam, 2006; Tester et al., 2006; USGS, 2008).

We mapped the reported potentials at the most detailed
geographic level reported to a common nomenclature as shown in
Table 7, where we differentiate currently used conventional
technology and enhanced geothermal systems which allow
electricity production from a wider range of geographies.

In case of inconsistencies between sources, the larger number
was reported. In addition, if potential was reported in periods, but
not in others, we extrapolated values, where possible, for the
missing periods based on the available data. For EGS, which is less
location-dependent, potentials were estimated for countries
without data based on other countries.

It must be noted that the range of values reported in the
literature was very large and the extrapolations above were
primarily designed to yield a gap-free regional data set. We
acknowledge that a meta-study such as this is necessarily
simplistic and yields results with very large uncertainties. The
full range of resulting estimates is shown in Section 3.

3. Results

3.1. Large global potential even under strict constraints

We assessed the renewable electricity potential for the most
common solar and wind technologies (on- and offshore wind,
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concentrated solar power (CSP) and solar photovoltaics (PV) on
land and on buildings).

We find that of the total 146 � 106 km2 of (non-ice covered)
land, less than 5 � 106 km2, or 3.5%, are deemed available for
energy harvesting after exclusions due to elevation, land cover/use,
slope, ecosystem protection, resource intensity and the additional
availability factor. This stands in contrast to current (2008) total
urban land area of �0.18%, and total cropland of 11% (FAO, 2013).

Offshore, less than 10 � 106 km2, or �2.2% of the 361 � 106 km2,
remain due to limitations based on sea ice, distance to shore, depth,
competitive uses, jurisdiction, protection, resource intensity and
the additional availability factor. The area exclusions are visualised
in Fig. 2.
Fig. 2. Suitable area by technology. The suitable area on land and sea is found by success

marker for economic viability. The figure shows available area before (left) and after (righ

land, Wind on sea. Dark/coloured denotes suitable area, grey/white denotes excluded 
For buildings we find a total of 62 � 103 km2 of total current
(2010) suitable area for PV, including roofs and façades, rising to
169 � 103 km2 by 2070. This represents around 20% (2010) to 30%
(2070) of our estimated total roof and façade space.

All results for suitable and available area on land and sea are
shown in Table 8.

As expected, on land the assumptions on availability have a
larger impact on the final available area than the assumptions on
suitability, i.e. the availability factor carries the greatest uncertain-
ty affecting the results. It depends crucially on future societies’
attitudes towards devoting land and sea use to renewable energy,
and economic competition with other uses. We have tried to
estimate realistic availability factors which capture restrictions on
ive exclusions for technical and economic reasons, using the resource intensity as a

t) the resource exclusion step. From top to bottom: PV on land, CSP on land, Wind on

area.



Table 8
Suitable/available area for electricity generation by technology.

Area (million km2) Period Building-integrated Land-based Off-shore

PV on roofs PV on facades PV on land CSP on land Wind on land Wind on sea

Methodology Country level GIS level

Total (excl. Antarctica) 2010 0.13 0.19 146 (134) 361; EEZ:148 (140)

2030 0.17 0.25

2070 0.21 0.33

Suitable area (before

resource cut-off)

All n/a n/a 81 65 97 21

Suitable area 2010 0.04 0.02 n/a 41 35 13

2030 0.06 0.02 37 13

2070 0.07 0.10 37 13

Available area All n/a n/a 0.6–5.0 0.4–3.1 0.5–3.9 2.4–8.1

. . . % of suitable area All n/a n/a 0.7%–6.2% 0.9%–7.5% 1.4%–10.4% 18.8%–62.2%

. . . % of total area All 33% 10%–30% 0.4%–3.4% 0.3%–2.1% 0.3%–2.6% 0.7%–2.2%

PV: photovoltaic; CSP: concentrated solar power; EEZ: Economic Exclusion Zones, i.e. zone denoting areas of the ocean attributable to a country.
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land use beyond technical limitations or economic attractiveness.
Based, where possible, on an assessment of the difference between
existing and maximum penetration levels, we developed cases
covering a range of values (denoted Low, Medium, High), from 0.1%
for PV on available agricultural land to 80% for offshore wind far from
the coast (see Table 2). For comparison, if the �33 GW of PV installed
in Germany today was entirely from solar farms it would cover
around0.64%ofthe suitablecountryarea(or 0.31%oftotal landarea).

After establishing the area available for energy harvesting, the
resource intensity incident upon this area was calculated and
converted into final useful electric energy. We used conversion
factors which account for expected technological progress. The
largest improvements are expected in solar PV technologies, and
we have assumed a module efficiency which increases from
around 16% today to 35% by 2070 with additional increases in the
net conversion efficiency from increasing packing densities on
the ground. Note that even this doubling of efficiency for PV has
only a moderate impact on the final results: the largest uncertainty
stems from the availability factor which spans a range of up to a
factor 20 for some land types. In wind and CSP the gains are
expected to be smaller (see also the approach to availability factors
in Section 2 and the Supplementary Information).

The total long-term potential for renewable electricity onshore,
offshore and on buildings is calculated to be between 730–3700 EJ/
a depending on the availability case. An estimated additional
potential of 50–110 EJ/a could be contributed from geothermal and
hydroelectricity. The latter two technologies were assessed
through a meta-study with additional extrapolations. Table 9
summarises the results for potentials and shows a comparison
with previous studies.

Ranges indicate: range found in literature for literature studies
(Edenhofer et al., 2011; de Vries et al., 2007); and cases for all other
results.

We find global single technology potentials are largest for the
land-based solar resources (ground-based PV and CSP), ranging
between 130 EJ/a and 2800 EJ/a in 2070. The total land-based
potential is estimated at 320–2800 EJ/a. Note that the potentials
are not additive across technologies as they can originate from the
same area. Our GIS-based approach allows an assessment of this
overlap when reporting total potential. We have chosen the
potential in a given grid cell to be that of the single technology with
3 The total potential on land was calculated by summing the potential of the best

technology on those available areas where more than one technology was suitable.

If the lowest yielding technology is used instead, then the total land potential figure

in the Low case changes from 320 EJ/a to 199 EJ/a, and the total solar and wind

potential from 728 EJ/a to 606 EJ/a.
the largest potential in that grid cell.3 In practice some of this
potential could be additive locally, i.e. solitary wind turbines could
co-exist with PV installations meaning our approach may lead to a
slight underestimate of the total cross-technology potential.

Note also that we have used fixed land-use through time.
Expansion of cropland, whether for food or biomass energy use,
could overlap with long-term PV and CSP potentials. However, at an
aggregate level, the overlap is likely to be small, and, in our view, the
availability factors should easily accommodate it. The land type
which is most likely to be affected is ‘grassland’; the potential on this
land type represents around 4–8% of the total PV and CSP potential.

Fig. 3 shows the results in graphical form, for the single
technologies as well as the total potential, accounting for overlaps.
The main driver behind the increase in the PV potentials for both,
buildings and on land, is the increase in net conversion efficiency. A
further important factor in both cases is the increase in area used
for PV. The available roof and façade area is expected to grow
substantially with population and housing growth, while on land,
we assume a rising ground coverage level.

Global electricity demand (65 EJ/a in 2010) may increase by a
factor 2–5 by 2050, as a result of increased per capita energy use in
developing regions and an increased shift from fuel to electricity
(IEA, 2012a; GEA, 2012; Lund and Mathiesen, 2009; Deng et al.,
2012; Shell, 2013). To illustrate this, Fig. 3 also shows a range of
future electricity demand estimates for comparison with our
2070 potential estimates. These demand estimates are based on a
long-term global population of 10 billion (reached in the 2080s in the
UN mid-case projections (United Nations, 2011) and a range of per-
capita electricity demand projections of 24–40 GJ/cap/a (IEA, 2012a;
GEA, 2012; Deng et al., 2012; Shell, 2013). These per-capita demand
projections include transmission and distribution losses and are
driven by an increasing demand for energy services (primarily in
developing regions) and continuing electrification of demand, and
are only partially offset by energy efficiency even in high efficiency
projections. For comparison, current levels in developed regions are
around 30 GJ/cap/a. At a world level, this increased demand would
not exceed the global resource base, even in the Low case. However,
country or regional constraints may occur within this.

4. Discussion

4.1. Comparison with other studies

As shown in Fig. 4, our results fall within the ranges of
(constrained) technical potential reported in the meta-analysis for
individual technologies of the IPCC’s Special Report on Renewables



Table 9
Potential for electricity generation by technology and period.

Potential (EJ/a) Period Buildings On-shore Off-shore Country meta-study

PV on

roofs

PV on

facades

PV CSP Wind on land Wind on sea Geoth. elec. Hydro

Single technology 2010 31 7 90–804 98–808 25–170 189–624 1 12

2030 64 15 166–1,480 118–970 27–185 197–652 3–8 16

2070 121 90 316–2,815 131–1,078 27–185 197–652 27–84 26

Total potential on land

(all technologies),

accounting for overlaps

2010
n/a n/a

132–1,112
n/a n/a n/a2030 172–1,497

2070 320–2,832

Potential ranges from

literature

Technical

(constrained)

potential

n/a n/a 1340–14,780 250–10,790 350–1800 (70–220) n/a 118–1109 53

All wind: 1000–3050 (140–450)
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(Edenhofer et al., 2011). Where our results are smaller than the
SRREN maximum potentials ranges (i.e. for PV and CSP), this is
primarily due to our stricter constraints on land availability. The
only exception is off-shore wind where we find a much larger

potential than SRREN. 85% of our potential is found at depths over
200 m. This goes beyond the typical depths used today (�40 m)
and the majority of the studies surveyed in the IPCC’s report.

4.2. Additional on-shore wind potential locally

There is uncertainty over where to place the threshold for
excluding areas based on available wind resource. This is due to the
wide range of local wind speeds local orography can result in but
also the uncertainty in some geographies of our wind speed data
set (which nevertheless has a higher resolution than that used in
several previous global studies). Because our motivation was to
find reliable potential estimates, we have used a value for the
threshold which is at the lower end of current practice (�6 m/s at
hub height), meaning we may have excluded areas which may
have local potential. In addition, in the time horizon used in this
study, more areas with even lower average annual speeds are likely
to become attractive for developers, as various constraints force
projects into less resource rich locations.
Fig. 3. Global potential results. Annual achievable electricity potential is shown by

technology for 2010 and 2070. Shading within each technology shows the Low,

Medium and High availability cases. The lines show indicative estimates of future

demand for a global population of 10 billion (IEA, 2012a; GEA, 2012; Lund and

Mathiesen, 2009; Deng et al., 2012; Shell, 2013).
It should also be noted here that our assumption on the power
density for wind of 7 MW/km2, while in line with current practice
and previous studies, has been called into question recently, for
wind farm installations spanning hundreds of square kilometres
(Adams and Keith, 2013) due to turbine interference beyond the
level we have assumed here. In such very large single farms,
achievable power densities as low as 1 MW/km2 have been
suggested. Our availability assumptions on land imply a small
likelihood of a necessity for very large single wind farms.

For offshore wind, our results are slightly larger than
comparable studies (EEA, 2009; Schwartz et al., 2010). This is
primarily due to the limits other studies place on ocean floor
depth, usually around 50–200 m maximum: the current
predominant off-shore wind technology requires anchoring on
the ocean floor. However, innovative technologies, such as
floating turbines or similar, have the potential to extend our
reach and we have included areas as deep as 1000 m to reflect
this potential. This highest depth class represents around 160–
550 EJ/a, equivalent to �85% of the total offshore wind potential
in all cases.

4.3. Buildings could host over a third of PV potential

For building-based PV, the approach in this study is broadly
consistent with other studies. Based on floor area, an estimate of
sun-facing roof and façade area is obtained, followed by a
suitability factor. For the resulting available area the annual
irradiation is multiplied by the system efficiency of the solar panel
which results in the net potential. We find a potential of 210 EJ/a in
2070, compared with 38 EJ/a in the base year (2010).

There are few global studies with similarly detailed approaches
to compare to. Compared to other national studies the 2010 poten-
tials we find are generally larger. For example, a study for PV on
roofs in the United States reported 2.9 EJ/a (Denholm and Margolis,
2008) while this study reports 4.6 EJ/a and a study for China found
1.9 EJ/a (Zhou et al., 2009) while we report 5.2 EJ/a. Assumptions
are often not clearly stated, but the differences are likely due to the
exclusion of rural roof areas or different available area and
suitability factor estimates.

When comparing our potential estimates for PV on buildings
with the low end of the range of our estimates for PV potential on
land, we find that buildings could contribute as much as a third of
PV potential and could thus make a meaningful contribution to
solar renewable electricity provision. This could warrant focussing
support policies in this area, especially considering that building-
based PV does not require additional land, is already cost-
competitive with conventional sources in some regions and has
the potential to alleviate system costs by reducing peak electricity
demand.



Fig. 4. Comparison of the results in this study with ranges for renewable potentials

published in literature, based on the IPCC SRREN report (Edenhofer et al., 2011).

Fig. 5. Regional potential results. Annual achievable electricity potential is shown by tech

demand for a global population of 10 billion. Shading within each technology shows t

Y.Y. Deng et al. / Global Environmental Change 31 (2015) 239–252 249
4.4. Local shortages within a vast global potential

The global resource potential is very large, but the regional
picture is more varied with some regions of high abundance (e.g.
North Africa and the Americas) and others potentially constrained
(e.g. Europe and parts of Asia). Fig. 5 shows results for all
technologies for 12 world regions in 2070.

As expected, the balance between wind and solar resources
depends heavily on the region, with African regions clearly
dominating in the ‘solar-rich’ group.

Comparing the potentials to the population per region confirms
the large variability: the PV potential per capita is highest in
Oceania at �2500 GJ/cap/a (large solar resource, sparse popula-
tion) and lowest in the EU at �40 GJ/cap/a (dense population with
comparatively little solar resource).

Fig. 5 also shows a range of prospective long-term electricity
demand for each region, again based on a long-term global
population of 10 billion, expected for the 2080s (United Nations,
2011), and a range of per-capita electricity demand projections of
24–40 GJ/cap/a (see above for explanation on these projections).
nology for 2070 for 12 world regions. The lines show indicative estimates of future

he Low, Medium and High availability cases.



Fig. 6. Potential results by distance. Annual achievable electricity potential on land

is shown for 2070, differentiated by distance from infrastructure and per resource

type. Top: High availability case, bottom: Low availability case.

Y.Y. Deng et al. / Global Environmental Change 31 (2015) 239–252250
Combining resources on land, sea and buildings yields
renewable electricity potentials which outstrip the prospective
long-term regional demand for almost all regions. The exception
is South Asia, where the Medium availability case may not
provide sufficient electricity if the higher demand projections
transpire.

The picture looks even less uniform at individual country level:
Brazil and Egypt have the prospect of being self-sufficient even
with high demand, based on solar and wind electricity alone. In
contrast, India and Nigeria would not necessarily be able to satisfy
demand from national sources alone at 24–40 GJ/cap/a, except in
the High availability case: Nigeria’s long-term resource base is 16–
52 GJ/cap/a, although intra-regional trade within West Africa
could satisfy regional demand in the Medium case. India’s long-
term potential is 23–66 GJ/cap/a but it lies within a similarly
constrained region. As such, India and its region will need to unlock
the potentials in the High availability case or supplement supply
with other energy options or long-distance transport of renewable
electricity. These constraints are not imminent however: electrici-
ty demand today is only 2.1 GJ/cap/a in India and 0.5 GJ/cap/a in
Nigeria.

Based on these demand assumptions, between 60% and 90%
of the world’s population in the 2080s will live in countries
which could be self-sufficient in the Medium case, depending on
the demand per capita. The remaining 10–40% would need to
mobilise potentials found in the High availability case, import
electricity from neighbouring countries or use different sources
of electricity.

4.5. How far do we have to transport this electricity?

We addressed the question of usability of renewable potential
in remote locations by differentiating potentials based on their
distance from ‘‘infrastructure’’, which we use as a marker for the
distance from an electricity grid. We defined the existence of this
marker infrastructure based on datasets of population density,
railways, and urban land cover. The results are shown in Fig. 6 for
the Low and High cases for 2070.

On land, between one to two thirds of the potential are situated
in the most accessible distance ranges. The much larger potential
offshore is primarily concentrated in higher distance categories,
consistent with the very restrictive availability factors we have
used near-shore.
5. Conclusion

We have presented a bottom-up assessment of renewable
electricity potentials for five technologies: PV on buildings and on
land, CSP, wind on land and on sea. The study builds on high
resolution publicly available geographic datasets and presents
aggregated results at regional level. Global totals fall within the
ranges found in the existing literature.

The debate about electricity potentials is often dominated by the
expected development of the conversion technology. Our study
confirms, however, that it is more important to carefully assess the
overall availability of surface area, as this carries the largest
uncertainty. Within the assessment of the land area we have taken
care to try and estimate a feasible availability factor and show the
influence that variations in this availability factor have on the final
results. In establishing the availability factor, we have tried to use
countries with high technology penetration as a guide. For wind
power, for example, current (end of 2011) installed capacities imply
land penetration across all land types of around 1% of suitable area.
Given that deployment still continues in these countries, but
current societal debate suggests that it is reaching local thresholds
in some regions, we have estimated the long-term availability
factors for wind to be around 5–6% for our Medium case.

To enable interpretation of our findings, we have also shown
comparison of our long-term (2070) estimates with prospective
future demand. We show that even our lowest estimates would
provide (just) enough renewable electricity for a population of
10 billion, expected for the early 2080s, if the total achievable
potential could be mobilised at global level. When focusing on
individual regions and countries, differences emerge: some regions
could easily satisfy current and future demand whereas others may
run into supply shortages in the Low availability cases, especially
where the distance to infrastructure may be problematic.

Whether all of this potential could be deployed requires an
energy system scenario calculation which also addresses issues
around system integration of various sources and their interaction
with demand patterns which have not been addressed explicitly in
this study. However, focusing simply on the resource potential
does define the range of possibilities for the future. While there is
scope for substantial renewables growth from today’s levels, in the
long run the large global potentials may contain within them
constraints in specific countries or regions. These findings may
guide society in formulating long-term visions for energy systems
as a basis for energy policy in the decades to come.

Acknowledgements

Helen Saehr and Pim Rooijmans prepared the GIS maps. Thomas
Winkel and Paul Noothout assisted with analysis for hydro- and
geothermal electricity. Pieter van Breevoort found comparisons to
previous studies. Kjell Bettgenhäuser provided input to the
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