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� We estimate global electricity savings potential in selected scenarios.
� We discuss possible directions of market transformation programs.
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Televisions (TVs) account for a significant portion of residential electricity consumption and global TV
shipments are expected to continue to increase. We assess the market trends in the energy efficiency of
TVs that are likely to occur without any additional policy intervention and estimate that TV efficiency
will likely improve by over 60% by 2015 with savings potential of 45 terawatt-hours [TW h] per year in
2015, compared to today’s technology. We discuss various energy-efficiency improvement options and
evaluate the cost effectiveness of three of them. At least one of these options improves efficiency by at
least 20% cost effectively beyond ongoing market trends. We provide insights for policies and programs
that can be used to accelerate the adoption of efficient technologies to further capture global energy
savings potential from TVs which we estimate to be up to 23 TW h per year in 2015.

& 2013 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

The total global TV electricity consumption was estimated to be
more than 250 terrawatt hours [TW h] in 2008, i.e., more than 5%
of total global residential electricity consumption (International
Energy Agency (IEA) 2009). Since the mid-2000s, the global TV
market has undergone a major transition from traditional cathode
ray tube (CRT) TVs to other types, particularly flat panel display
(FPD) TVs such as liquid crystal display (LCD) and plasma display
panel (PDP).1 While this market transition is expected to lead to
efficiency improvement of TVs, other emerging technology trends
such as larger average screen size, three-dimensional (3D) video
capability, and network functions, e.g., ethernet and universal
serial bus (USB), are likely to increase the energy consumption of
new TVs.
+1 510 486 6996.

r about 45% of the global TV
splaySearch, 2010).

-ND license.
A global assessment of efficiency2 improvement opportunities
in TVs is needed for three reasons. First, policies to facilitate the
adoption of cost effective3 efficiency improvements in appliances
such as TVs are necessary to correct market failures such as
uncaptured economic and environmental benefits available from
reduced energy consumption. Even though the market is moving
to increasing efficiency on its own under a business-as-usual
(BAU) case, it is not capturing all available savings from adopting
cost effective technologies such as backlight diming and efficient
optical films. Section 3 and 4 provide such examples. Although
several other studies develop potential scenarios of TV efficiency
improvement (see for example, International Energy Agency (IEA),
(2009), International Energy Agency - Efficient Electrical End-Use
Equipment (IEA 4E) (2010), Market Transformation Programme
(MTP) (2010b)), none of these studies assess the cost-effectiveness
2 In this paper, efficiency improvement in TVs is defined as reduction in on-
mode power consumption [watts, W] for a given screen size, or equivalently better
on-mode power performance in terms of watts per unit of screen area [W/m2].

3 In this analysis, cost-effectiveness is defined as cost of conserved energy
(CCE), the annualized investment in more expensive equipment or component
needed to provide a unit of energy saved (kW h), less than electricity price.
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Fig. 1. Actual (2010) and Forecasted (2015) TV Market Transition by Region and Screen Technology
Source: DisplaySearch, 2011a
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of efficiency improvement options in detail for TVs. Such assess-
ment is needed for designing appropriate policies and market
transformation programs4, e.g., energy efficiency standards and
financial incentive programs, to facilitate the adoption of cost
effective efficiency improvements.

Second, the literature focused on TVs is limited and was
published before the ongoing large scale transition from cold
cathode fluorescent lamp (CCFL) backlit LCD (CCFL–LCD) TVs to
light emitting diode (LED) backlit LCD (LED–LCD) TVs. LED–LCD
TVs are likely to be at least 50% and 90% of the TV shipments in
2012 and 2015, respectively, (DisplaySearch, 2011a).

Third, there are only limited regional differences and global
similarity in TV screen (i.e., LCDs) and LCD backlight technology
(see Fig. 1), although there are regional differences in screen size
preferences and market share of TVs with additional 3D or
network features. Major brands distribute similarly designed TVs
with similar energy consumption characteristics across many
regions. For example, 98% of Samsung’s flat-panel TVs on the
global market, which represent the largest single share (�18%) of
the market, have met the ENERGY STAR Version 4 requirements
(Samsung Electronics, 2011). In addition, TV manufacturing is
highly globalized and concentrated. The top six TV brands5

produce more than 60% of TVs sold worldwide (DisplaySearch,
2011a; Morrod, 2012). Accordingly, the research presented in this
paper is applicable to TVs in most countries.

This paper focuses on LCD TVs since they are expected to
dominate worldwide sales, amounting to an expected 95% of
global TV shipments by 2015 (DisplaySearch, 2011a). Although
large Organic Light Emitting Diode (OLED) TVs (larger than 40 in.)
are expected to be on the market in 2013, they are not expected to
be cost competitive against LCD TVs at least until 2015. PDP TVs
are expected to remain viable but to decline steeply in market
share as both LCD and OLED TV production costs decline. We
consider efficiency improvement options for LCD TVs that are
technically feasible, practical to manufacture, and could be
4 We use the definition from American Council for an Energy-efficient
Economy (ACEEE). “The term market transformation is the strategic process of
intervening in a market to create lasting change in market behavior by removing
identified barriers or exploiting opportunities to accelerate the adoption of all cost-
effective energy efficiency as a matter of standard practice.”

5 Samsung, LG, Sony, Panasonic, Toshiba, and Sharp. TCL has been recently
increasing its share and ranked in the Top 5 in Q1 2012.
realized in the short term (over the next three years), as the rapid
evolution of technology in the display market makes a forecast
over a longer time scale highly uncertain (see Section 2 for details)
and therefore less useful from a policy perspective. Instead, a
short-term policy action based on more reliable analysis can make
a difference given the fact that the average economic life time of
TVs is about 6–10 years (DisplaySearch, 2011c; Fraunhofer IZM,
2007 Task 2, Market Transformation Programme (MTP), 2010a). In
spite of questions or concerns about the potential impacts of
emerging technology trends such as new displays (e.g., OLEDs), 3D
capability, and the increased network connectivity on energy
consumption in TVs, we see that the dominant screen technology
(i.e., LCDs) and screen size are more important in terms of energy
consumption and savings potential than these emerging trends
which are not significant now (in terms of market share) or whose
energy consumption and savings impact are still uncertain within
the time horizon relevant for such a rapidly evolving market
and the global scale considered in this paper (see Section 2 for
details).

We obtained the data for this paper primarily from the
following sources: a review of the literature including technical
reports, DisplaySearch reports and data sets6, the ENERGY STAR
database for TVs that meet the Version 4 or 5 specifications,
international conferences and interviews with manufacturers and
experts in the field.

The remainder of this paper is organized as follows. In Section 2,
we present an overview of the TV market, technology trends and
energy consumption trends. In Section 3, we assess technologically
feasible energy-efficiency improvement options, adoption trends of
such options, and the impact of these options on the energy
consumption of TVs. In Section 4 we present a cost of conserved
electricity (CCE) analysis to assess the cost-effectiveness of options
identified in Section 3. Section 5 offers suggestions for accelerating
the adoption of efficient technologies, and in Section 6 we estimate
the energy savings potential of such adoption. Section 7 presents
concluding remarks.
6 DisplaySearch has been providing reliable information based on manufac-
turer surveys and analyses on the display market and related industries. Because
the data sets we used do not provide country-specific TV shipment data except for
China and Japan, we assume country-specific contribution to the corresponding
region in accordance with indicative recommendations from DisplaySearch and TV
marketing experts in the field.



Fig. 3. Global TVAnnual Shipments and ScreenArea for 2010 (actual) and2015 (forecast)
Note: Each shaded area represents the total screen area by screen or backlight technology.
OLEDTVsarenot included in this graphas theyareexpected to reachonly2.7millionunits
in 2015.
Source: Author’s calculation from DisplaySearch (2011a)
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2. Overview of TV market and technology trends

2.1. Global TV shipments and screen size

LCD TVs are expected to account for more than 85% of the
global TV market through 2012, including all screen sizes
(DisplaySearch, 2011a; Morrod, 2012). Further, within the LCD TV
market, a large-scale transition is expected from conventional
CCFL–LCD TVs to LED–LCD TVs for all screen sizes, resulting in
substantial improvements in the average efficiency of TVs on the
market. Fig. 2 illustrates these predicted market transitions from
CRT to LCD, and CCFL–LCD to LED–LCD TVs.

From 2010 to 2015, the average screen size (measured diag-
onally) and total annual TV shipments are projected to increase by
about 9% and 15%, respectively, leading to a 31% increase in the
aggregate screen area of annual TV shipments (DisplaySearch,
2011a). This increase in both screen size and shipment is likely to
increase energy consumption in new TVs. However, the transition
from CCFL–LCDs (inefficient) to LED–LCDs (efficient) and efficiency
improvement within each technology in a BAU scenario, likely to
be adopted regardless of policy intervention, are expected to
reduce total energy consumption in the new TVs (see Section 6
for details). Fig. 3 provides a picture illustrating the cumulative
effect of both factors.

2.2. Emerging trends

OLEDs are expected to begin penetrating into the TV market
through 2013, but only reach sales of 2.7 million units (less than
1% of the global market) in 2015 (DisplaySearch, 2011a; McKinsey
and Company, 2011). OLEDs have an inherent advantage over LCDs
in terms of power management because each pixel in an OLED is
individually controlled to generate light according to input signal
images. Moreover, phosphorescent light-emitting materials enable
greater power efficiency (Kim et al., 2009; Park et al., 2011).
However, it does not seem that OLEDs will be cost competitive
in the short term against LCD TVs (DisplaySearch, 2011a). This is
likely even accounting for the fact that economies of scale and
technological learning will reduce costs as the number of products
being produced increases. This uncertainty implies that designing
market transformation programs to encourage penetration of
energy-efficient OLED TVs are still premature. Hence we have
not focused on OLED technology here.

Another technology trend in the digital display market is 3D-
capable displays. Current 3D-capable displays in 3D mode require
Fig. 2. Actual (Q1 2010-Q3 2011) and Forecasted (Q4 2011-Q4 2015) Global TV
Shipments.
Note: Global shipments of projection TVs were 0.17 million units in 2010 and are
expected to decrease. OLED TVs are not included in this graph as expected to reach
only 2.7 million units in 2015.
Source: DisplaySearch, 2011a
additional image processing and yield a relatively lower brightness
level due to additional films or 3D-glasses in comparison to 2D mode.
Therefore, manufacturers may increase the brightness level thus
correspondingly increasing power consumption in 3D mode in
comparison to 2D mode (Park et al., 2011). However, some manufac-
turers are overcoming the need for higher backlight brightness by
improving screen technologies, including 3D technologies. In addition,
as 3D content available to consumers is still limited, it is uncertain how
many hours per day viewers will spend on 3D content.

Internet connected TVs, also known as “Smart TVs”, are another
recent trend. Smart TVs are expected to consumemore energy relative
to conventional (non-smart) TVs because of the following factors:
advanced signal processing for additional network connectivity, the
potential larger (or wider) screens and increased daily usage, quick
start options, and network standby mode (Park et al., 2011). However,
consumer behavioral patterns and integrated network features are
beyond the scope of this paper, although the potential increase in TV
screen size and corresponding energy consumption increase is
included in the analysis. While we do not focus here on 3D
technologies and Smart TV efficiency improvement here, all the
efficiency improvement options and corresponding analysis presented
here are also applicable to 3D TVs and Smart TVs.
3. Efficiency improvement options

An LCD, unlike other self-emissive flat-panel7 displays such as
PDP and OLED, is a non-emissive display that uses a backlight, e.g.,
7 The term “panel” generally refers to an entire assembly of layers, excluding
electronics such as the drive circuit, the image circuit and the power supply unit.



Fig. 4. Typical structure of a liquid crystal display (LCD).
Author’s artwork.
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CCFL or LED, as a light source. Millions of pixels of an LCD consists
of liquid crystals (LCs) that can alter their crystalline structure or
orientation when voltage is applied, resulting in different trans-
parency levels. The light from the light source first passes through
a polarization film, gets modulated by the LCs, and appears as a
red, blue, or green pixel after passing through a color filter
(Fraunhofer IZM, 2007 Task 4). Thin film transistor (TFT)8 technol-
ogy on glass is used to drive or control the orientation of the LCs,
i.e., pixels. Fig. 4 shows a typical LCD structure.

LCD TVs’ overall efficiency, if viewed in terms of change in
luminance9 as light travels through the LCD TV set, has signifi-
cant room for improvement. The final luminance leaving the
screen is less than 10% of the initial luminance available from
the backlight source because two crossed polarizers, a color filter,
and TFT arrays in the LCD panel collectively absorb or reflect a
significant amount of light from the backlight unit (Shieh et al.,
2009). The required backlight luminance is thus highly sensitive to
the panel transmittance and optical film efficiency. Therefore even
small efficiency improvements in these components yield large
payoffs in terms of required luminance and therefore overall
efficiency.

3.1. Efficiency improvement options and trends

Efficiency improvement options—which also lead to concurrent
improvements in other desirable product characteristics (e.g., LED
backlighting leads to thinner/lighter TVs and better picture quality
in color reproduction capability) or lead to reduction in overall
costs (e.g., high efficiency LCD panels require fewer optical films or
backlight lamps)—are more likely to be adopted on their own
without additional policy intervention in comparison with options
which predominantly improve only efficiency, or which increase
manufacturing cost. Furthermore, electricity costs for TVs and
corresponding savings are relatively a minor component of the
total costs over the lifecycle of the TV in many countries.10 Thus
efficiency is unlikely to be a primary consideration in price-
sensitive consumer’s selection of TVs in many countries, present-
ing an additional rationale for policy intervention to improve
8 A Thin Film Transistor (TFT) is a transistor whose electrical current-carrying
layer is a thin film, typically made of silicon.

9 Luminance is a quantitative measure of the luminous intensity per unit area
of a light source or an illuminated surface in a given direction. It is a value
measured by a photo-detector and usually expressed in the form of candela per
square meter [cd/m2]. In general, brightness is the subjective visual perception for
the luminance of an object, in which viewers experience a degree on the spectrum
of intensity between “dim” and “bright”.

10 A 40 in. TV consuming 100 W used for 5 h a day for 365 days at an electricity
price of 10 cents/kW h has an electricity cost of $18 per year. Thus, a 20% efficiency
improvement will lead to saving of $ 3.6 per year. The retail prices of 40 in. LCD TVs
are typically above $ 300.
efficiency. Table 1 summarizes LCD TV efficiency-improvement
options which are also discussed in further detail below.

3.1.1. Backlight sources
CCFLs and LEDs dominate the current LCD TV backlight market.

Based on 2010–2011 data for ENERGY STAR-qualified TVs, LED–
LCD TVs are 20% to 30% more efficient on average than CCFL–LCD
TVs (see Fig. 5). This is because LED efficacy (e.g., 50–70 lm/W in
2010) is higher than CCFL efficacy (e.g., 30–50 lm/W), and LEDs
have a wide range of dimming methods, compared to CCFLs
(Bousquet, 2010; DisplaySearch, 2011b). As TV manufacturers
receive additional benefits from LED backlighting, such as high
color reproduction capability and thinner/lighter form factors
resulting in reduced logistics costs, a large scale transition from
CCFL to LED backlight is expected to take place even under a BAU
scenario.

LED backlight unit efficiency will improve even under a BAU
scenario as a result of developments toward higher LED efficacy,
optimized LED backlight structure, and better thermal manage-
ment. Higher LED efficacy enables an LCD TV to employ fewer
quantities of LEDs, whereby manufacturers can reduce material
costs. The average LED efficacy for TVs in 2010 was 50–70 lm/W,
which is expected to increase up to 100–125 lm/W in 2012
(DisplaySearch, 2011b; Park et al., 2011). Driven by this efficiency
improvement, the average number of LED lamps used for a 32-in.
LCD TV is expected to decrease by about 57% in 2015, compared to
2011 (DisplaySearch, 2011b).

3.1.2. Optical films
Improving the amount of light that can pass through optical

films used in a TV without compromising on their function (e.g.,
light uniformity) reduces the amount of backlight needed to
achieve an equivalent screen luminance, resulting in a correspond-
ing reduction of the electricity consumption of LCD TVs. Optical
films have been combined in many ways to reduce material costs
as well as to increase efficiency.

Among many types of films, a reflective polarizer11 such as
3M’s Vikuiti™ Dual Brightness Enhancement Film (DBEF), is
recognized by manufacturers as one of the best options for
efficiency improvement in optical films. Such a reflective polarizer
typically improves the LCD backlight unit by 30–50%, resulting in
20–30% efficiency improvement in the LCD TV (Fraunhofer, IZM.
2007 Task 6). Recent tests by 3M with CCFL–LCD and LED-LCD TVs
found that DBEFs reduced power by 20% in CCFL–LCD and 24% in
11 A reflective polarizer recovers a certain type of polarized light, which cannot
be transmitted through the rear polarizer of the LCD panel, by reflecting this
portion of light back to the backlight unit and depolarizing it so that the light can
be newly polarized to transmit back to the panel (DisplaySearch, 2011b; Park et al.,
2011).



Table 1
LCD TV efficiency improvement options.

Components Improvement options Notes

Backlight
unit

Backlight
source

� CCFL to LED transition � Cost increase
� Adopted by manufacturers due to improved product quality (BAU)

� High LED efficacy � Cost reduction in the longer term (BAU)
� Technical barrier in thermal management and short term cost increase

from adoption of much higher efficacy LEDs than BAU trajectory

Optical
films

� Optimized combination of films
� Multi-function film

� Trade-offs in material cost, ease of manufacture, and efficiency (BAU)

� Reflective polarizer (e.g., DBEFa) � Cost increase, proprietary technology

LCD panel � Improvement in panel transmittance by optimizing pixel
design, functional layers, e.g., polarizer, color filter, and
data line

� Proprietary technology
� R&D investment required but driven by potential for total cost

reduction.

Power management � Brightness control (local dimming) by image signals � Cost increase
� The effect varies with backlight structure, input images, and algorithm.

� Brightness control based on ambient light condition � Cost increase
� The effect varies with settings and ambient light condition

Other � Power Supply Unit (PSU) Efficiency
� Color gamut (by color filter or light source)

� Trade-off between cost and efficiency
� Trade off with efficiency

Author’s summary based on the following details.
a Dual brightness enhancement film produced by 3 M.

Fig. 5. On-mode Power of ENERGY STAR-qualified TVs.
Source: Author’s calculation based on ENERGY STAR, 2011b
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LED–LCD TVs (Fraunhofer IZM, 2007; DisplaySearch, 2011b; 3M,
2011). Even though DBEF contributes significantly to power savings,
it is a proprietary technology that is viewed as unnecessary from a
perspective focused solely on manufacturing cost reduction. For
example, in 2010, a DBEF accounted for about 12% and 33% of total
backlight unit costs for a 40-in. LED–LCD TV and a 40-in. CCFL–LCD
TV, respectively (DisplaySearch, 2011b). As LCD panel transmittance
and LED efficacy are improved, it is anticipated that manufacturers
will be able to use more combinations of films in place of a
reflective polarizer in the near future.
3.1.3. High panel transmittance
Improvement in LCD panel transmittance decreases the lumi-

nance that the backlight must achieve and thereby allows manu-
facturers to reduce the number of manufacturing steps as well as
the amount of lamps in the backlight unit. Thus, manufacturers
have an incentive to improve panel transmittance. An example of a
recent technology trend in panel efficiency improvement is the
development of low-voltage driven LCD panels. Low-voltage
driven LC materials would allow manufacturers to use narrower
low-resistance data lines, leading to high cell aperture ratio, than
can currently be used, increasing the area available for light
transmission, i.e., panel transmissivity. Aluminum (Al) has been
used for data lines and can be replaced with copper (Cu)
(DisplaySearch, 2011b). Even though manufacturers can achieve
higher transmittance by adjusting cell structure, such new cell
structures are not expected to cause panel performance and
productivity to diminish. Because cell structure is the most
technically complex element in LCD manufacture, changing cell
structures requires further R&D investment associated with
changes in cell-structure dependent components. In addition,
LCD panel design and manufacturing technologies are proprietary.
Depending on each type of LC cell structure, the average panel
transmittance is expected to increase from 5–7% in 2011 to 7–10%
in 2015 (Shieh et al., 2009; Baker, 2011; DisplaySearch, 2011b).
3.1.4. Power management 1—Backlight dimming in relation to image
signals

Since an LCD is a non-emissive display, typically dark parts of a
picture are created by blocking the polarized light in each pixel by
adjusting LC orientation without dimming the LCD backlight and
corresponding power reduction. Employing technology to locally
dim the backlight lamps behind the dark parts of an image can
thus lead to reduction in backlight electricity consumption. The
simplest dimming option is to dim the whole backlight by a
universal amount varying by frame, which is called zero-
dimensional (0D), complete, or global dimming. This option can
be applied to all types of backlights. Backlight dimming in relation
to ambient light conditions, i.e., auto-brightness control (ABC), can
be generally regarded as part of this method. Another option is to
dim part of the backlight area depending on input image, which
has two variations; (1) one-dimensional (1D), partial, or line
dimming, and (2) two-dimensional (2D), or local dimming. While



Table 2
Structures of LED backlight and dimming methods. Source for product category: DisplaySearch, 2011b.

Structurea Direct/4 sides 2 sides 1 side

Applicable dimming 2D 1D/2D 1D/0D

Product category Flagship (446″) Main-stream to high-end (40″–55″) Entry to mainstream (32″–47″)

a The above figures are for illustration purposes only. The number of block segments varies by TV model.
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local dimming of LED-direct12 backlights will be more effective in
reducing power consumption than partial dimming of LED-edge
backlights, LED-edge backlights are usually more efficient than
LED-direct backlights because of the simple structure and fewer
LEDs. In addition, LED-edge backlights are expected to dominate
the LED–LCD TV market, accounting for over 95% of total LED–LCD
TVs through 2011 (DisplaySearch, 2011a). Because the savings
associated with various dimming methods varies with input
images, dimming algorithm (including block segmentation), and
backlight structure, the average effect needs to be determined
using the IEC 62087 standard video clip. While a detailed inves-
tigation to estimate average savings from various dimming meth-
ods is beyond the scope of this study, according to Shiga et al.,
2008, with 0D, 1D, and 2D dimming techniques, a sample movie
consumed 83%, 71%, and 50% of the original backlight power,
respectively. Manufacturers currently employ either a 0D dimming
or no dimming option for low-end products, and advanced
dimming methods are mostly limited to mid-range and/or high-
end products (DisplaySearch, 2011b). Table 2 illustrates the sizes of
TVs which these options are currently employed in.
14 We do not include program administration and implementation costs in this
3.1.5. Power management 2—Ambient light sensors and occupancy
sensors

As a thumb rule, display power consumption is proportional to
luminance. Ambient light sensors (i.e., auto brightness control or
ABC) enables a TV to adjust its brightness level in response to
ambient light levels, although the effect varies from model to
model based on the manufacturers’ design scheme. In case the
ambient light level decreases from 300 lx to 10 lx, it is reasonable
to expect a power reduction of about 20% on average (ENERGY
STAR, 2012a). In fact, the majority of TV viewing in the U.S. is
reported to occur between 0 lx and 100 lx (Wold, 2011)13 where
ambient light sensors work effectively. However, it is difficult to
accurately estimate the average effect of ambient light sensors on
energy consumption of a TV because sufficient data on the varied
lighting conditions where TVs are typically used across regions
and sectors is not available. In case a TV unit is featured with
backlight dimming in relation to both image signals and ambient
light levels, there will be an overlap both in energy savings and the
incremental cost. For example, the net incremental cost for adding
ABC to a TV unit with backlight dimming scheme would depend
12 “LED-direct” or “LED full-array” configuration means that the LEDs are
uniformly arranged behind the entire LCD panel. Unlike LED-direct models, “LED-
edge” or “Edge-lit” configuration means that all of the LEDs are mounted on sides
(or edges) of the display.

13 Wold, 2011 is based on data collected from sixty residences over a 7-day
time period in October 2011 in both the Washington, DC and Sacramento, CA
metro areas.
solely on the cost of ambient light sensors, and the net incre-
mental savings of ABC will be lower in a TV with such dimming.

Occupancy sensors can also help save energy by preventing TVs
from being left on when people leave the room or fall asleep. Occu-
pancy sensors are expected to become more important as it becomes
easier to have TV displays inmultiple rooms keyed to a primary source
to enable users not to lose visual contact (or good audio) as they move
from room to room. However, more research is needed to estimate the
effect of this option on household TV energy consumption.

4. Cost-effectiveness analysis

CCE is a metric used to assess the desirability of energy
efficiency policies. Estimating CCE for a policy option involves
calculating the cost of saving electricity which can then be
compared to the cost, to the utility or consumer, of providing
electricity.14 We calculate CCE from two perspectives: First, con-
sidering the incremental cost to the manufacturer, which we label
CCEm and second, the incremental cost to the consumer which
includes retailer markups on the incremental manufacturing cost,
which we label CCEp.15 The former estimate can be used for
assessing the cost effectiveness of upstream incentive programs
(e.g., manufacturer incentives), whereas the latter can be used to
assess that of downstream incentive (e.g., consumer incentives) or
minimum energy performance standards (MEPS) programs.

CCE is estimated by dividing the annualized incremental cost
(IC) that is required to add the efficiency option by annual energy
savings due to the efficiency option. Product categories are defined
by screen size and backlight type (e.g., 32-in. LED–LCD TV). The
CCE for the ith product category is calculated using annualized IC
for the ith product category (ICi) and energy savings for the ith
product category (Energy Savingsi), as follows:

CCEi ¼
annualized ICi

energy savingsi
ð1Þ

where

annualized ICi ¼ ICi
discount rate

1−ð1þ discount rateÞ−lifetimei

" #
ð2Þ
cost effectiveness analysis, as we are assessing cost effectiveness to the consumer of
standards and labeling programs, as well as incentive programs. Typical customer
incentive program administration costs in the US are in a range of 8–38% of the
total program costs (Friedrich et al., 2009).

15 DisplaySearch models standard LCD fabrication assumptions when generat-
ing the LCD module costs which is a major component of total LCD TV cost. The
estimated markups are based on DisplaySearch (2011d) which is designed for the
US market price, and the numbers for 2012 vary from 20% to 38% varying by
specification such as screen size, frame rate and resolution.



Table 3
Share of selected product groups in the LCD TV market. Source: DisplaySearch,
2011a.

CCFL LED

2012 (%) 2015 (%) 2012 (%) 2015 (%)

32″ 18.9 1.5 20.8 38.6
40″-42” 4.4 0.2 17.6 22.0
Total 23.3 1.7 38.4 60.6
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Energy savingsi
kW h
year

� �
¼ Power reduced

watts
unit

� �

�daily usage
h

day

� �
� 365 days

year
� 1 kwatt

1000 watts
ð3Þ

lifetimei is the TV economic lifetime, i.e., replacement cycle, and
discount rate discount rate of the end user.

All TVs in the ith product category are assumed homogeneous.
Thus, total annual energy savings from the ith product category
will be calculated by Energy Savingsi times the annual sales of the
ith product category, e.g., annual sales represented by annual
shipment of a product category, such as 32-in. LED–LCD TVs.

4.1. Energy savings

We estimate energy savings based on the percentage reduction
due to efficiency improvements to the baseline TV consumption
which is based on ENERGY STAR registered TVs listed on March 2011
(ENERGY STAR, 2011a; ICF, 2011). The market penetration of these TVs
was estimated to be 80–96% (ENERGY STAR 2011d, 2012b). The on-
mode power test method16 is based on the international standard
IEC17 62087. As discussed above, for a given size and display
technology, TVs sold in different regions of the world are very similar.
As a result, the information presented here is globally relevant.

4.2. Economic lifetime

In the U.S., the average age of recently replaced TVs was about
8 years (DisplaySearch, 2011c). In the European region, the devia-
tion in reported economic lifetime of TVs ranges from 7 to 15
years, varying by screen technology and source of the data
(Fraunhofer IZM, 2007 Task 2; Market Transformation
Programme (MTP) 2010a). Falling prices and the demand for
new TV models may lead to shorter periods of primary TV use,
while secondary TVs are likely to be used as long as they function.
A telephone survey conducted in 2004 from the United Kingdom
showed that primary TV’s were replaced after 4.9 years on average
(Fraunhofer IZM, 2007 Task 2). In this analysis, we assume the
average TV lifetime is 8 years, and perform a sensitivity analysis in
the range of 4 to10 years to include a range of scenarios.

4.3. Discount rate

Residential and commercial consumers may use various methods
to finance the purchase of TVs. US Department of Energy (DOE) in a
technical support document of energy efficiency programs for con-
sumer products analyzed that the average discount rates in the U.S.
are 4.8% for residential consumers and 6.2% for commercial consumers
(US DOE, 2009). However, discount rate varies with country. In this
analysis, we assumed an average discount rate of 5% for all cases, and
perform a sensitivity analysis in the range of 3% to 10%, to indicate the
range encountered in country-specific circumstances.

4.4. Average usage

TV usage patterns vary by region, sector of use, consumer
lifestyle, and power management scheme applied to the system.
The ENERGY STAR Program uses 5 h per day as a default value for
the average usage of TVs based on Roth et al., 2008. For other
countries, estimates of average daily usage of TVs range from
3.5 to 6.5 h (Park et al., 2011). For the purposes of this analysis we
assume that average daily usage at on-mode is 5 h for all TVs.
16 This analysis is based on on-mode power data of ENERGY STAR qualified TVs
with ABC disabled or without ABC.

17 International Electrotechnical Commission.
4.5. Product categories analyzed

Although we assess several efficiency improvement options
and analyze their impact on TV electricity consumption, we limit
our analysis of cost-effectiveness to those options which are
unlikely to be adopted in the absence of policy intervention. We
selected two product groups, representing about 60% of the global
LCD TV market (see Table 3), the majority of which are expected to
be manufactured without reflective polarizers or advanced back-
light dimming in the absence of policy intervention. These options
have been used primarily for some high-end models with screens
larger than 40 in. The results of our analysis for selected screen
sizes also hold for other screen size categories since the costs and
benefits of adopting the selected efficiency improvement options
are generally proportional to screen area, and thus any size
variation does not largely affect cost effectiveness.

4.6. Option 1: Reflective polarizers

Based on the estimated demand for reflective polarizers
(DisplaySearch, 2011e) and comments from the industry, it is
expected that more than 90% of LCD TVs with screen size less
than 40 in. and more than 30% of LCD TVs with screen size larger
than 40 in., collectively more than 70% of all new LCD TVs in terms
of shipments, have not employed reflective polarizers in 2012.

We assumed that a reflective polarizer improves TV efficiency by at
least 20% regardless of backlight source (see Section 3 for details). A
20% reduction in required backlight luminance can lead to a corre-
sponding 20% savings in backlight lamp cost. Hence the incremental
cost of using a reflective polarizer is obtained by subtracting the cost
saved in LED backlighting from the cost of a reflective polarizer. Using
the net incremental manufacturing cost, we estimate CCE for using a
reflective polarizer in each product class of TVs. Table 4 shows
annualized incremental CCE by product class for reflective polarizers.
The selected product groups have a CCEm with a range of $0.04 per
kW h to $0.06 per kW h, and a CCEp with a range of $0.05 per kW h to
$0.12 per kW h (see Table 4 for descriptions of CCEm and CCEp). As the
supply of current reflective polarizers is mostly dominated by 3M the
material cost is not likely to vary by TV manufacturer. Fig. 6 shows
CCEm for LED–LCDs versus lifetime at various combinations of
discount rates and efficiency improvement potential.

4.7. Option 2: Backlight dimming

Over 50%18 (not sales-weighted) of the product groups selected
in the reflective polarizer calculation are expected to be manufac-
tured without the capacity for dimming. As discussed in Section 3,
both 0D and 1D dimming methods are applicable to CCFL and LED
backlights, while 2D dimming is only possible for LED-direct or a
few types of LED-edge backlights. As LED-edge backlights are
18 In 2010 and 2011 50% to 97% of ENERGY STAR qualified TV models did not
employ any backlight dimming in the range of 32 and 42 in., depending on
backlight source. While 31% to 50% of LED-LCD TVs employed dimming, only 3% to
36% of CCFL-LCD TVs employed dimming, depending on screen size (ICF, 2011).



Table 4
Cost of conserved electricity (CCE)a for reflective polarizer.

Screen
size

Backlight ΔPon-mode
b

per unit (W)
ΔCm

c per
unit ($)

CCEmd

($/kW h)
ΔCpeper
unit ($)

CCEpf

($/kW h)

32” CCFL 12.3 6.0 0.041 17.0 $0.117
LED 8.2 5.5 0.058 7.0 $0.072

42” CCFL 17.9 9.9 0.047 16.0 $0.052
LED 12.6 7.4 0.050 10.0 $0.067

Weighted
average

CCFL 12.9 6.4 0.042 16.4 $0.110
LED 9.4 6.1 0.056 7.8 $0.071

a Assumptions: discount rate¼5%, economic lifetime¼8 years, daily usage¼5 h.
b Average power saving per unit¼(average on-mode power of 2012 standard

models estimated by authors)—(estimated average on-mode power of 2012 models
with reflective polarizer).

c Incremental manufacturing cost¼(manufacturing cost for 2012 standard
models with reflective polarizers estimated by authors)—(manufacturing cost for
2012 standard models predicted by DisplaySearch).

d Cost to the manufacturer of conserved energy which is calculated by Eqs. (1)–(3)
at IC¼ΔCm.

e Incremental price¼(price for 2012 standard models with reflective polarizer
estimated by authors)—(average market price for 2012 standard models predicted by
DisplaySearch).

f Cost to the final user of conserved energy which is calculated by Eqs. (1)–(3) at
IC¼ΔCp.

Fig. 6. Sensitivity to lifetime and discount rates of the cost per unit of conserved
electricity (CCEm) for reflective polarizers.
Assumption: daily usage¼5 h. Note: imp¼ improvement potential, DR¼discount rate.

Fig. 7. Sensitivity to lifetime and discount rates of cost per unit of conserved
electricity (CCEm) for 1D backlight dimming.
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expected to represent over 95% of the LED–LCD TVs through 2011
(DisplaySearch, 2011a), we focus here on 1D dimming that can be
commonly applied to LED and CCFL backlights. Based on Shiga et al.,
2008, we assume that 1D dimming for all types of backlights can
reduce LCD TV power consumption by at least 20% on average.

To employ 1D dimming in LED–LCD TVs, manufacturers need to
use a chipset that analyzes image signals at an additional cost of
$2–$4, and drive integrated circuits (ICs) that control the dimming
algorithm, at an additional cost of $0.8–$1.5 per drive IC.19 For
edge-type backlight units, dimming-supportive light guide panels
(LGPs) are needed, entailing possible additional costs.20 We
assume that incremental costs for dimming in CCFL–LCD TVs are
not higher than that for dimming in LED–LCD TVs.

Table 5 shows annualized incremental CCE by product class for
dimming. The selected product groups have a CCEm with a range of
$0.03 per kW h to $0.07 per kW h, and a CCEp with a range of $0.03
per kW h to $0.09 per kW h. Unlike reflective polarizers, the incre-
mental costs for implementing backlight dimming may vary across
manufacturers, with some related uncertainty in the range of the
costs. Fig. 7 shows CCEm for LED–LCDs versus lifetime at various
combinations of discount rates and efficiency improvement potential.
19 Based on DisplaySearch, 2011d and interviews with industry experts, if these
TVs are already featured with ABC, both the net incremental cost and the savings
potential will be lower, keeping the CCE roughly constant.

20 Dimming-supportive LGPs are assumed 10% more expensive than normal
LGPs.
4.8. Option 3: Ambient light sensor and occupancy sensor

Ambient light sensors and occupancy sensors are commercially
available and their material cost does not vary with screen size or
resolution. As discussed in Section 3, more research is needed to
estimate the effect of these options on household TV energy
consumption. According to the TV industry21, the material cost
of an ambient light sensor is in a range of $0.6 and $1.0 per unit as
of 1st quarter of 2012. The total incremental cost of ABC for a TV
unit is estimated to be less than the cost that is required for 1D
dimming discussed above. The net incremental cost of ABC to TVs
with dimming capability would be even lower, depending solely
on ambient light sensors. If we assume that an additional 10%
energy saving is possible for the selected TVs with dimming
capability, the CCEm and CCEp for the ambient light sensor are
less than $0.033 per kW h (assumptions: discount rate¼5%,
economic lifetime¼8 years, daily usage¼5 h).

The CCEs for the three technical options are less than residen-
tial electricity prices of many countries. Thus, TV efficiency can be
cost-effectively improved beyond the BAU trajectory using these,
or equivalent efficiency improvement options. The results of our
sensitivity analyses indicate that this result would also hold under
cases where average residential prices (tariffs) are lower than the
marginal residential tariffs (tariff for the last unit consumed which
is equivalent to the reduction in consumer bill if one unit of
electricity is saved), or vice versa (Fig. 8).
5. Policy insights to accelerate adoption of efficient TVs

Although we analyzed currently available and dominant tech-
nologies in order to identify feasible and cost-effective efficiency
improvement options, there is uncertainty regarding precisely
which efficiency improvement options will be adopted. We do
not claim that the selected options are the best, least cost or only
efficiency improvement options available. We do not endorse any
specific technology nor advocate prescription of proprietary tech-
nology for a standards-setting process or design of incentive
programs, but merely discuss certain technologies to illustrate
the magnitude of cost-effective savings available.

In order to design policies to effectively encourage the effi-
ciency improvement of TVs, it is important to first estimate the
effect of efficiency improvements that will take place even in the
absence of additional policy intervention (i.e., BAU options in
Table 1) and then assess how further efficiency improvements
can be facilitated cost effectively. Based on the discussion in
Section 3, we assume that the average energy consumption of
CCFL–LCD and LED–LCD TVs will reduce by 30% and 55% from 2010
21 The cost information was obtained from a top-tier manufacturer, but the
identity of the expert we interviewed and the manufacturer source are kept
confidential at the interviewees’ request.



Table 5
Cost of conserved electricity (CCE)a for 1D backlight dimming.

Screen size Backlight ΔPon-mode
b per unit (W) ΔCm

c per unit ($) CCEmd ($/kW h) ΔCpe per unit ($) CCEpf ($/kW h)

32” CCFL 12.3 6.1 0.042 10.0 0.069
LED 8.2 6.7 0.069 9.0 0.093

42” CCFL 17.9 6.3 0.030 7.0 0.033
LED 12.6 7.2 0.048 10.0 0.067

Weighted average CCFL 12.9 6.1 0.041 9.7 0.065
LED 9.4 6.8 0.064 9.3 0.086

See Table 4 for descriptions of caption a to f.

Fig. 8. Average Residential Energy Prices and Cost of Conserved Electricity (CCE)
Assumptions: discount rate¼5%, economic lifetime¼8 years, daily usage¼5 h.
Source for energy prices: International Energy Agency (IEA), (2011); United States Energy Information Administration (US EIA), (2010); McNeil et al., (2008); Rosen and Houser, (2007).

22 The most efficient 32″ LCD TVs (LED-LCDs) available in the U.S and Europe
for 2012 consume about 29–30 W in on-mode.
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levels by 2015, respectively, even without additional policy inter-
vention. In addition to these BAU improvements, LCD TVs, parti-
cularly small- and medium-sized entry level models, can reduce
power consumption using cost effective options with CCEmo$0.08/
kW h, such as reflective polarizer, backlight dimming, and equivalent
technology. Moreover, although we did not fully analyze ambient light
sensors and occupancy sensor in the cost-effectiveness analysis, these
options are being adopted to some TV models. Although more
research would be needed to accurately estimate the actual effect of
ambient light sensors and occupancy sensors on energy savings, in
this paper we assume that an additional 15% efficiency improvement
through ambient light sensors and occupancy sensors in LCD TVs is
possible, extrapolating from the estimated savings from dimming
(Desroches and Garbesi, 2011; Park et al., 2011).

Table 6 summarizes LCD TV efficiency improvements possi-
ble by adopting options discussed above. Numbers (except for
market share) in Table 6 are based on 32-in. LCD TVs and the
reference value (100% in gray color) is the average on-mode
power consumption (with ABC-disabled) of CCFL–LCD TVs in
2010. As LED–LCD TVs are expected to account for more than
75% of global TV shipments from 2013 onward, energy efficiency
programs need to account for the performance of LED–LCD TVs.
Standards programs need to define much more stringent effi-
ciency targets than are currently in place in order to exploit the
maximum available cost effective energy efficiency potential
and re-evaluate these targets regularly as the market evolves. A
labeling or incentive program going into effect after 2012 may
need to consider even more aggressive levels than, for example,
the ENERGY STAR Version 6, due to the rapid evolution in TV
energy efficiency.
Standards or entry levels of labeling programs setting specifica-
tions in 2013 could target an on-mode power consumption level
about 15% below ENERGY STAR Version 5 while still remaining
technology neutral and thereby capturing the additional savings
potential (see Fig. 9). CCFL–LCD TVs can meet this level by
employing cost-effective efficiency improvement options, while
LED–LCD TVs will likely meet the level without any further
efficiency improvement options. Labeling and incentive programs
setting specifications for 2013 could target an on-mode power
consumption level 50% below ENERGY STAR Version 5 (see Fig. 9).
LED–LCD TVs (which are likely to be about 80% of the market in
2013) can achieve this level by adopting cost effective technologies
equivalent in cost and energy savings terms to reflective polarizers
or backlight dimming. This level is about 36% more stringent than
ENERGY STAR Version 6. In fact, 20% of the models in the 2011
ENERGY STAR data set already met the proposed requirements for
ENERGY STAR Version 6 (ENERGY STAR, 2011c). The most efficient
models in 2012 consume about 40–42% of the power of the CCFL
BAU case (100% in Table 6) (Topten.info, 2012).22
6. Global savings potential for efficiency improvements
in LCD TVs

Based on the discussion in the previous sections, this analysis
compares future TV energy consumption for three major



Fig. 9. Possible levels for standards, labeling and incentive programs.
(A) Estimated average power consumption in a BAU scenario.
(B) Power consumption possible with either reflective polarizers or backlight
dimming.
(C) Power consumption possible with both reflective polarizers and backlight
dimming.
(D) Power consumption possible with four options: reflective polarizers, backlight
dimming, ambient light sensor and occupancy sensor. Each shaded area represents
total power consumption by global shipments in the corresponding scenario.

Table 6
LCD TV power consumption improvement trajectory.
Sources for energy efficiency standards: California Energy Commission (CEC), 2010; ENERGY STAR, 2012a; ENERGY STAR, 2011a.

2010 (%) 2013 (%) 2015 (%)

Market share CCFL–LCD 61 15 2
LED–LCD 16 77 93

Average on-mode power consumption CCFL BAU 100 81 69
BAU+1 80 65 55
BAU+1+2 64 52 44
BAU+1+2+3a 54 44 37

LED BAU 78 49 34
BAU+1 62 39 27
BAU+1+2 50 31 22
BAU+1+2+3 43 27 19

MEPS (California) – 109 (100)b 109 (100)
Voluntary label (ENERGY STAR) Ver. 4 109 (470) – –

Ver. 5 – 77 (480) –

Ver. 6 – 61 (450) 61 (490)
Potential level for standardsc – 65 (480) 55 (495)
Potential level of incentivesd – o39 o27

a (1) Reflective polarizer, (2) backlight dimming, (3) ambient light sensor and occupancy sensor.
b Market penetration rate of TVs that meet the corresponding efficiency level is presented in parentheses ().
c Approx. 10–15% below ENERGY STAR Version 5 and 6—this is a level CCFL–LCD TVs can meet by employing cost-effective efficiency improvement options, while LED–

LCD TVs will likely meet the level without any further efficiency improvement.
d Approx. 50–55% below ENERGY STAR Version 5 and 6—this is a level LED–LCD TVs can meet by employing cost-effective efficiency improvement options.
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scenarios: a base case with efficiency improvement expected in
BAU (Base Case), an efficiency case and a super efficiency case with
two sub-cases; one is the case with the two cost-effective
efficiency improvement options (i.e., reflective polarizer and back-
light dimming) and the other is the case with the other two
efficiency improvement options (i.e., ambient light sensors and
occupancy sensors) that can be additionally adopted by manufac-
turers. In addition to the three major scenarios, we include one
additional case which assumes a market transition from CCFL–LCD
to LED–LCD in the LCD technology with no further efficiency
improvement within each technology from 2011 onward in order
to give the reader a sense of the rapid improvement in TV
efficiency expected even in a BAU scenario.

To calculate savings potential under these scenarios, we used
the total screen area of each technology provided by DisplaySearch
(2011a) (see Fig. 3), the average on-mode energy performance (in
watts per screen area) for each size category and backlight
technology based on the ENERGY STAR database, market shares
of each product group divided by region, screen technology and
size, and improvement potential discussed in Section 3 through 4.
Fig. 10 shows the results of forecasted global TV electricity
consumption in on-mode. Details on each scenario follow.
1.
 Frozen Efficiency Case—in this case we assume that there is a
large scale market transition in LCD technology, based on
DisplaySearch (2011a), from inefficient (CCFLs) to efficient
backlights (LEDs) with no further efficiency improvement within
each technology from 2011 onward. Global TV electricity
consumption, contributed from annual TV shipment including
CRT, PDP and OLED TVs, is estimated to decrease slightly from
36 TW h per year in 2010 to 35 TW h per year in 2015 because
of this large scale transition, while total LCD TV electricity
consumption is expected to increase slightly from 27 TW h per
year in 2010 to 31 TW h per year in 2015.
2.
 Base Case (BAU)—As discussed in Section 5, the efficiency of CCFL–
LCD TVs and LED–LCD TVs can be improved by about 30% and 55%
up to 2015, respectively, compared to 2010 levels. While PDP and
OLED TVs are expected to improve in their unit efficiency, their
collective market shares are likely to be very low (o6%). This case
reflects only LCD TV efficiency improvement potential, with other
TVs’ efficiency held constant through 2015.
3.
 Efficiency Case—this case assumes that, in addition to the
improvements included in the base case, CCFL–LCD TVs have
efficiency levels equivalent to those achievable by employing
two cost effective options; reflective polarizers and backlight
dimming. The majority of LED–LCD TVs are expected to meet
the proposed level without needing further efficiency improve-
ment. We assume that these efficient technologies for CCFL–
LCD TVs can enter the market starting 2012, and in every year
these models reach about 60–90% of the CCFL’s market shares
according to screen size. The effect of this case decreases
through 2014 as CCFL backlights are expected to be phased
out of the market.
4.
 Super-efficiency Case I—this case assumes LCD TVs with effi-
ciency levels equivalent to those achievable by employing two
cost-effective options; reflective polarizer and backlight dim-
ming (1D). All LCD TVs employing these options from 2012to
2015 are assumed to be about 40% more efficient than LCD TV
models included in the base case in the same period. In this
scenario, we assume that these efficient technologies for CCFL-
and LED–LCD TVs can enter the market starting 2012, and in



Fig. 10. Global TV electricity consumption forecast for annual shipment.

Table 7
Summary of global savings potential in LCD TVs by Scenario.

Scenario
compared

Annual savings
in 2015

Cumulative
savings from
2012 through
2015

Lifetime
savings
(6–10
years)

Base Case (BAU) Frozen
efficiency

45 98 270–450

Efficiency Case Base Case 5 17 30–50
Super-efficiency
Case I

Base Case 18 48 108–180

Super-efficiency
Case II

Base Case 23 63 138–230

Unit: TW h.

Fig. 11. ➊: Possible savings by BAU improvement.
➋: Possible savings by standards.
➌+➍: Possible savings by incentives and labeling programs.

Table 8
Country-specific savings potential in LCD TVs for 2012–2015.

Country/Scenario Annual savings in 2015 Cumulative savings from
2012 through 2015

2 3 4 5 2 3 4 5

Australia 1.3 0.2 0.6 0.8 2.8 0.7 1.5 2.0
Brazil 1.7 0.3 0.8 1.0 3.6 1.1 2.2 2.8
China 10.5 1.0 4.0 5.3 22.9 3.4 10.8 14.3
Canada 1.0 0.1 0.3 0.5 2.2 0.3 0.9 1.3
EU 6.8 0.2 2.4 3.1 15.1 0.9 6.5 8.5
India 2.4 0.4 1.1 1.4 5.0 1.2 2.8 3.6
Japan 1.4 0.1 0.5 0.7 3.2 0.2 1.4 1.9
Korea 1.1 0.2 0.5 0.6 2.2 0.6 1.2 1.6
Mexico 1.0 0.2 0.5 0.6 2.2 0.6 1.3 1.7
Russia 1.8 0.2 0.6 0.8 3.8 0.7 1.5 2.2
South Africa 0.2 0.1 0.1 0.1 0.5 0.2 0.3 0.4
US 8.1 0.7 2.7 3.7 17.5 2.6 7.4 10.1
Total 37.4 3.7 14.0 18.6 80.9 12.5 37.8 50.3
Global 45.4 5.1 17.8 23.5 97.9 17.0 48.0 63.5

2: Base Case, 3: Efficiency Case, 4: Super-efficiency Case I, 5: Super-efficiency Case

Rep
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every year the most efficient designs reach about 40–100% of
the market share varying by technology option.
IIUnit: TW h per year.
5.
 Super-efficiency Case II—this case assumes Super-efficiency
Case I with additional options; ambient light sensor and
occupancy sensors. We assume that additional 15% efficiency
improvement, based on the discussion in Section 4 and 5, can
be achieved.

The energy savings potential contributed from 2012 to 2015 TV
shipments by each scenario and corresponding policy programs,
compared to scenario 1 or 2, are summarized in Table 7 and Fig. 11.
6.1. TV electricity consumption in selected countries

TV manufacturing is highly globalized and TVs sold in different
regions of the world are very similar for any given size and display
technology. Hence our analysis does not consider separate effi-
ciency improvement options for different regions of the world, but
does take into account different screen technology mixtures,
screen sizes, and TV sales in each region. Average viewing time
(hours per day), one of the major factors in TV energy consump-
tion, varies with region and country (International Energy
Agency—Efficient Electrical End-Use Equipment (IEA 4E), 2010).23

With growing functionality this average viewing time may
increase in the future. However, in this analysis, we applied a
fixed value of 5 h per day to all selected countries to isolate the
23 The figures for viewing hours for the UK (4.8 h), Australia (7.3 h), and the
ublic of Korea (6.9 h) were based on government assumptions.
effect of technological options on electricity consumption and
savings from this consumer-oriented variable.

Table 8 summarizes LCD TV savings potential by scenario which
is contributed from predicted 2012–2015 TV shipments in selected
countries,24 representing about 80–85% of the global TV ship-
ments. The selected countries can save 18.6 TW h out of 23.5 TW h
per year in 2015 by scenario 5, compared to the BAU case.
7. Conclusions

Our analysis estimates that there will be a significant decrease
in on-mode energy consumption for newly sold TVs globally,
because of the large-scale transition toward LED–LCD TVs and
rapid efficiency improvement in TVs, in spite of the projected
growth in screen size and TV sales. We also find that TV
consumption can be cost effectively reduced even further beyond
the improvements likely because of this transition.

These findings have the following implications for energy
efficiency market transformation programs: First, as a result of
the transition to LED–LCD TVs and technology improvement
within LED–LCD TVs, more than 80% and 50% of TVs will be able
to meet ENERGY STAR Version 5 and 6 requirements, respectively
24 Super-efficient Equipment and Appliance Deployment (SEAD)’s member
governments. More information on SEAD is available from its website at
http://www.superefficient.org.

http://www.superefficient.org
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in 2013. Second, in order to facilitate further improvement in
efficiency by the adoption of cost-effective options, market trans-
formation programs need to take into account these rapid devel-
opments and determine more stringent efficiency targets than are
currently in place, as well as re-evaluate these levels as technology
evolves. If in every year the efficient designs discussed in this
paper reach an average of 40–90% of the market varying by
technology type and efficiency improvement option, the energy
savings potential would be up to 23.5 TW h per year in 2015.

Future research on TV energy efficiency should also discuss other
recent TV technology trends such as 3D TVs and smart TVs, which
were not fully included here, as these trends are still developing and
their future direction and impact is still uncertain. Although the
trend toward incorporating 3D or network functions in TVs will be
likely to result in increase in power consumption in 3D or network
modes, all of the options for increasing the efficiency discussed in
this paper can be equally applied to the new TVs.
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