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Over the next decade, large energy investments are required in the UK to meet growing energy service
demands and legally binding emission targets under a pioneering policy agenda. These are necessary
despite deep mid-term (2025-2030) uncertainties over which national policy makers have little
control. We investigate the effect of two critical mid-term uncertainties on optimal near-term
investment decisions using a two-stage stochastic energy system model.

The results show that where future fossil fuel prices are uncertain: (i) the near term hedging
strategy to 2030 differs from any one deterministic fuel price scenario and is structurally dissimilar to a
simple ‘average’ of the deterministic scenarios, and (ii) multiple recourse strategies from 2030 are
perturbed by path dependencies caused by hedging investments. Evaluating the uncertainty under a
decarbonisation agenda shows that fossil fuel price uncertainty is very expensive at around £20 billion.
The addition of novel mitigation options reduces the value of fossil fuel price uncertainty to £11 billion.

Uncertain biomass import availability shows a much lower value of uncertainty at £300 million.

This paper reveals the complex relationship between the flexibility of the energy system and
mitigating the costs of uncertainty due to the path-dependencies caused by the long-life times of both
infrastructures and generation technologies.

© 2011 Elsevier Ltd. Open access under CC BY license

1. Introduction
1.1. Context

As the international scientific and governance communities
reach a consensus that climate change presents a severe barrier to
future human well-being and livelihoods, the UK continues to
legislate for ambitious decarbonisation targets (Climate Change
Act, 2008). The UK target is an 80% reduction in greenhouse gas
emissions (GHG) below 1990 levels by 2050, excluding interna-
tional aviation and shipping. This can be equated to a 90%
reduction in energy related CO, emissions given the uncertainties
in mitigation potential of non-CO, and non-energy related emis-
sions (Usher and Strachan, 2010). This UK action is consistent
with meeting an equal per capita emissions target by 2050
(Committee on Climate Change, 2008), to reduce the probability
of exceeding a 2 °C increase in average global temperature over
pre-industrial periods (Allen et al., 2009).

The use of bottom-up, technologically detailed energy system
models, such as UK MARKAL, continues to play an important
supporting role in UK policymaking following an iterative process
of development (Strachan et al., 2008). The results of these studies
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showed that meeting an 80% reduction in GHGs in the UK is both
technologically feasible and affordable. UK MARKAL was first
developed for, and contributed to, the 2003 Energy White Paper
(DTI, 2003) and, with funding from the UK Energy Research
Centre, was extended for further projects to incorporate a macro-
economic function (Strachan and Kannan, 2007) or compute a
partial-equilibrium in MARKAL Elastic Demand (Strachan, 2010).
A typical analysis using an energy system model involves the
development of multiple, internally consistent and plausible sce-
narios. While a powerful method for obtaining insights, the sheer
number of scenarios may give conflicting and confusing messages
to policy makers because near-term decisions can be mutually
exclusive. Furthermore, uncertainties are examined through sensi-
tivity analyses, which add to the number of scenarios. Sensitivity
analysis is rarely performed in a parametric fashion, and so
interaction between uncertain variables is not captured.

1.2. Literature review

Previous studies have failed to address the significant uncertain-
ties surrounding many aspects of the transition to a low-carbon
future in an integrated and systematic manner. This is (i) a problem of
applying a deterministic methodology to a complex and multi-faceted
problem that is inherently uncertain, and (ii) an issue with the focus
on pathways and technologies rather than the uncertainties. There is
recognition that the implementation of uncertainty in optimisation
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models, especially for those that rely on scenario analysis, is currently
limited (Wallace and Ziemba, 2005).

The majority of modelling studies concentrate on input data
uncertainty only (see for example Edenhofer et al., 2010; Clarke
et al., 2009; Grubb et al., 2006). In contrast, Edenhofer et al.
(2006) make a partial categorisation of uncertainty into para-
meter (input data) uncertainty and model (structural) uncer-
tainty. Beven (2009) describes uncertainty in a more complete
manner, as epistemic—that which can be reduced through learn-
ing and aleatory—truly random.

Responses to uncertainty range from Knopf et al. (2010) who
recommend that choice and a broad technology portfolio provide
hedges against uncertainty and ’limit...known risks’ whereas
Stern (2006) argues for more demanding long-term policy under
uncertainty given asymmetrical costs versus benefits.

Within energy system models based on an optimisation para-
digm, a few studies have specifically focussed on uncertainties in
the energy system. These used early versions of stochastic MARKAL
(Kanudia and Loulou, 1999; Condevaux-Lanloy and Fragniere, 2000;
Hu and Hobbs, 2010; Loulou et al., 2009; Labriet et al., 2008, 2010;
Loulou and Kanudia, 1999; Kanudia, 1998) and a stochastic version
of MESSAGE (Messner, 1996). Hu and Hobbs (2010) give an over-
view of stochastic MARKAL developments. Early uncertainty work
using MARKAL used both an expected-cost criterion (Kanudia,
1998) and Minimax Regret criterion (Loulou and Kanudia, 1999).
Studies conducted since have used an expected-cost criterion and
have focussed on carbon taxation, demand side management,
economic growth, nuclear plant availability and carbon mitigation
policies or measures. Hu and Hobbs (2010) examine uncertain CO,
mitigation, natural gas prices and electricity demand growth
under multi-pollutant policies, focussing on the electricity sector.
Recently, studies using a multi-region, global incarnation of TIMES,
the successor to MARKAL, have emerged. Using stochastic
TIMES, Labriet et al. (2010, 2008) and Loulou et al. (2009) present
preliminary insights from treating the climate sensitivity parameter
as a random variable using a two-stage stochastic framework.

1.3. Research aims

In response to the above concerns, we develop a stochastic
version of UK MARKAL to explore the effect of key uncertainties on
the UK energy system. We present the research that evolved from
work which underpinned a major new policy study (Committee on
Climate Change, 2010), with particular reference to the examination
of critical mid-term uncertainties for the UK including fossil fuel
prices and biomass availability. Indeed, the focus on uncertainties
sets this work apart from previous studies on energy system
transitions. It builds on insights that are recognisable from previous
work, such as electrification of transport and decarbonisation of the
electricity system, to consider the interactions between uncertainty
and flexibility of a system under transition. This extends the
discussion of how best to meet climate reduction targets, by
recognising the value of near-term decisions that are robust under
uncertainty. This work is timely, notably as the UK Government has
implemented an option to review the level of mitigation effort in
2014 if policy at EU and global level does not match UK ambition
(HM Government, 2011). The insights from this work are also of
interest to the international community: the UK is the first country
to legislate mid-term emissions targets, an approach that other
developed countries will need to follow to meet long-term targets.

1.4. Layout of paper
Section 2 describes the methodological details of stochastic

MARKAL. We describe a useful metric, EVPI, which allows valuation
and comparison of uncertainties. We then present a brief rationale

for selection of key uncertainties. The results of the subsequent
modelling are presented in Section 3. The paper concludes with a
discussion in Section 4.

2. Methodology
2.1. Uncertainty in energy system models

Typically, users of deterministic models will assess uncertainty
through a sensitivity analysis. These analyses give an indication of
the sensitivity of a model’s outputs (e.g. system costs) to a
variation in data input values (e.g. fossil fuel price). A parametric
sensitivity analysis furthers this by exploring interaction between
ranges of multiple data inputs. However, a sensitivity analysis
does not give any indication of the likelihood that an input or
subsequent model output will take a particular value.

Furthermore, in energy system modelling, changing a model
input value might result in a different pattern of investment,
internally consistent, but contradictory when compared to an
alternative input value, the so called ‘knife edge’ switching
especially prevalent in optimisation models (Messner, 1996).

There is a need to move beyond sensitivity analysis when
considering epistemic uncertainties. This is because (i) the pro-
cess of sensitivity analysis does not allow for the probability of an
input value to be quantified, (ii) the generation of many contra-
dictory sensitivity scenarios does not result in clear near-term
policy-relevant insights, and (iii) the cost of uncertainty remains
unknown—there are therefore no means by which uncertainties
can be ranked in importance.

Moving beyond sensitivity analysis necessitates considering
alternative model formulations to deterministic modelling
approaches. There is also a conflict between the complexity of
the current generation of data and time intensive energy system
models and the computational tractability of running these
models in a fully stochastic manner.

A compromise is to use a two-stage stochastic version of the UK
MARKAL model. UK MARKAL is an established, peer-reviewed
energy system model of the United Kingdom. Although simple in
form, the two-stage stochastic approach limits the computational
burden while giving a reasonable degree of insight into the effect of
uncertainty on the investment decisions for the UK energy system.
It also resolves some of the issues outlined above (i) one near-term
strategy is given in the results despite characterising the future as
uncertain and (ii) a value can be placed on different uncertainties.
However, probabilities must be specified exogenously.

Deterministic models, such as the standard variant of MARKAL,
give a single solution for each combination of inputs. Stochastic
energy system models relax the assumption of perfect foresight,
with the two-stage stochastic MARKAL variant splitting the time
horizon into a single near-term hedging strategy and multiple
recourse periods, dependent upon the pre-defined number of
future possibilities, known as states-of-the-world (SOW).

Stochastic MARKAL minimises the expected cost of a set of
probability weighted future SOWs (Loulou et al., 2004). A sto-
chastic model is defined by specifying one or more random
variables (while the remainder remain constant) for each of up
to nine future SOWSs that correspond to the length of the recourse
stage. A probability weighting is assigned to each SOW to
determine its prior likelihood. The model then computes the best
average hedging strategy given then sum of the expected costs in
the recourse stage and the hedging stage (see Eq. 1)

MinimiseZ= > > Crw-Xtw-Dew
weW(t) teT

Subject to : At w-Xew = brw, VteT,Ywe W(t) @))
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where t is the time period, T is the set of all time periods, t* is the
resolution time period, w is the SOW, W(t) is the set of SOWs for
time period t. For all t prior to resolution time t*, W(t) has a single
element (stage one). For t > t*, W(t) has multiple elements (stage
two) to a maximum of 9; X., the column vector of decision
variables in period t, under scenario w, G, is the cost row vector
in time period t under scenario w; p;, is the probability of
scenario w in period t; and p;., is the equal to 1 for all t prior to
t¥, and

Z pt,w: 1

we W(t)

for all t. A;,y is the coefficient matrix (single period constraints) in
time period t under scenario w, and b,,, is the right-hand-side
column vector in time period t, under scenario w.

Investments made in the hedging strategy indicate decisions
that are made under uncertainty “here and now” while decisions
that are delayed until the recourse period indicate those that are
best made after uncertainty is resolved—*"wait and see” (Hu and
Hobbs, 2010). The period in which uncertainty is ‘resolved’ can be
moved forwards or backwards to explore the effect of hedging
stage length on the model solution.

Stochastic programming suffers from the ‘curse of dimension-
ality’, whereby the number of SOWs increases according to

SOW = n* 2)

where x is the number of random variables and n are the number
of discrete values the random variables can take.

This means that the problem size increases faster than the
number of dimensions added, quickly resulting in computation-
ally intractable problems. The limitation of stochastic MARKAL to
nine SOWs means that the analysis is limited to specifying one
uncertain variable with up to 9 discrete future values, two
uncertain variables each with three discrete future values, three
uncertain variables each with two discrete future values (and a
limited number of other permutations).

The outputs from the stochastic model are contingent on the
probabilities assigned to each SOW. In this paper, each SOW is
given an equal probability weighting, where the sum of the
weightings equal one. The rationale for this is the Laplace
Criterion of insufficient information—in the absence of certainty
we can make an assumption of equal uncertainty as to the
outcome (Loulou and Kanudia, 1999).

Table 1
Shows a summary of the main assumptions used in the model.

2.2. Metrics

As well as the hedging and recourse strategies, outputs include
various metrics. These allow a value to be placed upon the
uncertainties characterised in an individual stochastic model. A
useful metric is the expected value of perfect information (EVPI)

k
EVPI = COSTygpee— »_, P; x COSTp; 3)
i=1

where COSTyepge is the cost of the stochastic model. COSTpy; is the
cost of each deterministic equivalent SOW. p; is the probability
weighting assigned to each deterministic SOW. k is the number of
states of the world.

As shown in Eq. (3), we can calculate EVPI by subtracting the
expected cost of equivalent deterministic SOWs from the
expected cost of the stochastic model weighting the SOWs in an
equivalent manner. The EVPI shows the difference in ‘cost’
between scenarios in which uncertainty is entirely removed, i.e.
decisions are made with perfect information and those in which
uncertainty is present. Refer to Morgan et al. (1992) for more
detail.

To calculate the EVPI, one must first run the deterministic
equivalents of the stochastic SOWs—in these, the model opti-
mises under perfect information of a particular SOW of the world
i.e. there is 100% certainty of the particular SOW occurring. The
value of EVPI must be non-negative, as the weighted average of
the expected costs of the equivalent deterministic scenarios are
lower than the costs of the stochastic solution, as one constraint is
removed (the constraint that, before the uncertainty is resolved,
investments have to be the same for all states of the world).

2.3. Model setup and selection of key uncertainties

Table 1 shows a summary of the main assumptions used in the
model. All prices are deflated to the year 2000. For this analysis,
we include legislated UK energy policies up to the Energy White
Paper 2007 (DTI, 2007), notably electricity from renewables must
contribute greater than 15% of electricity by 2020 and that the
Renewable Transport Fuel Obligation is included (minimum of
3.5% energy content of transport fuels comprised of bio-fuels). For
a complete description of the UK MARKAL model, see Kannan
et al. (2007) and the model updates contained in Usher and
Strachan (2010).

Fossil fuel import price scenarios 2000 2030-2050

ME/P] Low Central High V. high

0il 4.1 55 8.3 11.0 13.7

Gas 1.9 2.8 5.7 7.5 9.2

Coal 0.9 1.0 1.6 2.0 2.6
Cumulative CO, constraint Biomass import constraint scenarios

MtCO, 2000-2050 PJ/annum 2000 2015 2030-2050
80% Pathway (CO, only) 19,018 Low 1] 0 0
90% Pathway (80% GHG equiv.) 16,678 Central 0 630 1260

Key policies

Key variables

Renewable portfolio standard
Emissions trading scheme
Fuel duty

15% share of all electricity
None modelled

Differentiated taxes applied to transport fuels

Discount rate 3.5%
Time periods 5 year blocks
Model horizon 2000-2050
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Constraints on energy related CO, emissions are implemented
as cumulative equivalents of the annual trajectories published in
Committee on Climate Change (2008) that run between 2000
and 2050.

It is important to introduce some temporal flexibility in the
model when exploring hedging strategies. For example, prelimin-
ary runs showed that under very severe fixed emission trajec-
tories, equivalent to a 90% reduction in energy only CO,
emissions, the model had very little temporal flexibility and gave
hedging strategies that were almost identical to the deterministic
scenarios. We therefore use cumulative emissions constraints and
a slightly lower emissions target of 80% reduction in CO, only to
avoid over-constraining the model for the fossil fuel scenarios.
Under a cumulative constraint, the timing of emissions can be
different to that established under a yearly trajectory. However,
for the biomass scenario, a more stringent target of 90% reduction
in CO, better illustrated the effect of constrained biomass avail-
ability. In the latter scenario, we retained the cumulative bound,
so the model was again able to choose the optimal trajectory over
which to abate emissions.

The selection of key uncertainties for this paper followed an
informal process allied to the interests of policy makers within
the UK and a deep understanding of those uncertainties to which
the UK MARKAL model is particularly sensitive derived from the
work contained in Usher and Strachan (2010). In the absence of
any formal study that formulates a complete taxonomy of
uncertainties affecting the UK energy system, this was deemed
satisfactory if only to demonstrate the advantages of using a two-
stage stochastic approach compared to a deterministic approach.
We make no explicit claim as to the relative importance of these
uncertainties compared to all possible uncertainties we could
explore in this way. Note however that they are both illustrative
and policy relevant.

We investigated two uncertainties, fossil fuel price and bio-
mass import availability. Table 2 lists the related model runs
analysed in this paper. For each uncertainty, we ran the energy
system model in both deterministic and stochastic modes. In
deterministic mode, it is necessary to run the model once for each
price (4)/availability (2) scenarios. In stochastic mode, the model
is run once and produces as many sets of results as there are price
(4)/availability (2) scenarios.

2.3.1. Uncertain fossil fuel prices

Uncertainty surrounding the long-run prices of fossil fuel is
severe, as shown by the historical volatility in long-term prices of
oil, gas and coal. Resource extraction is typified by its risk profile,

Table 2
Uncertainty model runs.

Uncertainty 2050 Deterministic Stochastic
energy
CO, target
Reference scenario None REF N/A
Fossil fuel prices 80% D-CUM-FF-L S-CUM-FF-L
(low, central, D-CUM-FF-C S-CUM-FF-C
high, very high) D-CUM-FF-H S-CUM-FF-H
D-CUM-FF-HH S-CUM-FF-HH
Fossil fuel prices 80% D-FF-L-FLEX S-FF-L-FLEX
(low, central, D-FF-C-FLEX S-FF-C-FLEX
high, very high) D-FF-H-FLEX S-FF-H-FLEX
with novel D-FF-HH-FLEX S-FF-HH-FLEX
mitigation options
Biomass availability 90% D-BIO-C-YES S-BI-C-YES
D-BIO-C-NO S-BI-C-NO

reports of remaining resources of oil, gas and coal reserves are
typically politicised and data availability is poor. Rapid growth
across the world, but especially in the transition and developing
economies, mean that demand is increasing rapidly while sup-
plies remain constrained, perhaps temporarily. Recently, new
sources of unconventional natural gas have led to lower natural
gas prices, while crude oil maintains a high price—indicating a
potential decoupling of the gas and oil markets.

This scenario establishes four fossil fuel long-run price SOWs (see
Table 1) - a central price, one low and two high price SOWs - in line
with projections from Department of Energy and Climate Change
(2010). The overall expectation is weighted toward an increase in
fossil fuel prices. Given the importance of fossil fuel prices, these
SOWs are run to give insights into the interactions between fossil fuel
price uncertainty and availability of mitigation options.

To allow comparison with between deterministic and stochas-
tic runs of the model, the change in FF price occurs at a set period
in the future — 2030 - with all SOWs following the central FF price
projection to 2025. We can then compare the stochastic results, in
which a near-term hedging strategy is evident to 2025, and
multiple recourse strategies for each FF price scenario run from
2030 to 2050, with each of the four deterministic FF price SOWs.

2.3.2. Uncertain fossil fuel prices with novel mitigation options

To investigate the effect of increasing mitigation flexibility in
the face of uncertain fossil fuel prices, we implement a larger
portfolio of mitigation options, notably including bio-methane
injection to the gas grid and process carbon capture and storage
(CCS) technologies in the industrial sector. Through running
equivalent scenarios before and after this development process,
it is possible to place an approximate value on these flexible
mitigation options, notably through the additional options they
give to mitigate emissions.

2.3.3. Uncertain biomass availability

This assessment investigates the optimal near-term hedging
strategy given the uncertainty surrounding mid- to long-term
availability of sustainable biomass. As shown in Usher and
Strachan (2010), the availability of sustainable biomass imports
is a key low-carbon vector for the UK, used in biomass CCS, CHP
and bio-fuels under stringent low carbon scenarios. However,
more research is required to quantify accurately the level of
resource available to the UK as imports. By the middle of the
2020s, as international markets develop and regulations and
standards are established, it is likely that decision makers will
be better informed as to the quantity of sustainable biomass
available to the UK.

In this paper, biomass availability follows central projections
until 2025 when it bifurcates into a low availability SOW—with
no biomass imports available and a central availability SOW—
with up to 1200 P] of biomass imports available (E4Tech, 2009),
in addition to domestic biomass production (around 13% of UK
primary energy in 2000). Preliminary runs showed that a high
availability case was identical to the central case.

In the assessment of biomass import uncertainty, we present a
more stringent 90% CO, target (C90), consistent with meeting an
80% reduction of greenhouse gases below 1990 levels within the
UK territory.

3. Results

Before exploring the effect of including uncertainty, we first
analysed the results of a reference scenario, a deterministic
scenario with central fuel prices and no carbon target. Establish-
ing a reference scenario plays an important role because the
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policy assumptions included can contribute to an underestima-
tion of the costs of meeting carbon targets in subsequent emis-
sion-constrained runs (Strachan, 2010).

While the results from the reference scenario are significant in
terms of establishing the baseline from which we derive the
subsequent constrained runs’ costs, we do not present detailed
results of the reference scenario below, as it is largely tangential
to our investigation of uncertainty. See Usher and Strachan (2010)
for a description of a similar reference scenario.

We present results from the stochastic model in which we
assign equal probabilities to four fossil fuel price SOWs and
compare the expected costs with the costs of the reference
scenario. We then present the results from adding novel mitiga-
tion options to the four FF price SOWs above. Lastly, we present
results from stochastic and deterministic models of uncertain
biomass import availability. For all runs, we compute the EVPL

3.1. Reference scenario

The reference scenario portrays a future in which the UK is a
significant laggard, lowering its climate policy ambition. How-
ever, significant efficiency improvements reduce the cost of
delivering energy services across the economy. Final energy
demand decreases between 2000 and 2050 due to energy effi-
ciency and conservation measures despite the increase in demand
for energy services (see Appendix).

3.2. Uncertain fossil fuel prices

There are both similarities and differences across the stochas-
tic and deterministic models. One similarity is the response of
energy service demands to price increases. Demands for energy
services respond according to the price elasticities held constant
in both stochastic and deterministic models. Under a low FF SOW
with a carbon constraint, it is cheaper to deliver energy services
than under a high FF SOW. This results in a higher final energy
demand, less demand reduction and less conservation and effi-
ciency improvements. Under a high FF scenario, we see the
opposite behaviour; with consequently greater demand-reduc-
tion and lower final energy (see Fig. 1).

Given that changes in FF price do not occur until 2030, the
model is able to anticipate the change to a different fossil fuel
price scenario and optimise investments in the early period to
compensate. This results in near-term differences between deter-
ministic fossil fuel price scenarios. As fossil fuel prices increase
across scenarios, the proportion of primary natural gas decreases

D-CUM-FF-L
------- S-CUMFF-C

D-CUM-FF-C
S-CUMFF-H

7000 -

6500

6000 +

5500 -

PJ

5000 -

4500 -

4000

while the proportion of primary crude oil and coal increases, coal
CCS capacity increases, displacing co-firing CCS capacity. Nuclear,
hydro and electricity imports are unaffected by changes in fossil
fuel price. Final consumption of heat, through residential district
heating, increases as fossil fuel prices increase—more efficient
consumption of natural gas via cogeneration is stimulated as
fossil fuel prices increase.

Hydrogen plays an important role in decarbonisation of the
transport system after 2030. Hydrogen production remains at a
similar level in 2050 across all scenarios, but moves increasingly
to electrolysis from natural gas-SMR with CCS as fossil fuel prices
increase (100 P] under low FF prices to ~330 PJ under very high
FF prices). The difficulty in decarbonising the transport sector, in
combination with the economic viability of low-carbon hydrogen
under different FF prices, results in an electricity system of
different size across scenarios. This in turn influences the level
of electrification of other sectors including residential heat.

Under a cumulative emissions target, the model has freedom to
choose the period in which it can mitigate emissions. The FF price
SOWs demonstrate that higher fossil fuel prices are associated with
later and steeper decarbonisation, primarily because co-firing CCS
becomes less economically viable in comparison to coal CCS at higher
FF prices. In the low FF price scenario, investments in coal CCS and co-
firing CCS in 2020 (see Fig. 4) displace unabated coal generation,
resulting in much lower CO, emissions that other scenarios. Part of
this reduction in CO, emissions is a price response to the more
expensive electricity in 2020-2025. However, this early investment in
more expensive low-carbon technology pays off in 2030, when for
the remainder of the model horizon CCS technology is very cheap to
run due to the low FF price. In this way, a small early sacrifice results
in a large future benefit (note that the model uses a low social
discount rate of 3.5% and that a higher discount rate would alter this
behaviour to favour near-term financial savings).

There are some structural discontinuities between the FF price
scenarios that are due to the sensitivity of technology choice to
the relative relationship between FF prices as well as the absolute
level of FF prices. For example, total CCS use between 2035 and
2050 does not increase linearly between SOWs; the very high and
central FF price SOWs sequester less CO, than the low and high FF
price scenarios. A second example is shown by the low FF price
SOW in Figs. 2 and 3, where in 2050 the majority of residential
heat demand is met through a combination of low-carbon
electricity from co-firing CCS and nuclear generation and final
use of natural gas in condensing boilers. This is very different
from the other three FF price SOWs where CHP becomes more
attractive as FF prices increase, while the proportion of heat

D-CUM-FF-H s D-CUM-FF-HH S-CUM-FF-L

SCUMFFRHH seasaes Hedge

2000 2005 2010 2015

2020

2025 2030 2035 2040 2045 2050

Fig. 1. Final energy of stochastic and deterministic equivalent fossil fuel price scenarios.
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Fig. 2. (a) and (b) show district heating in the residential sector.
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Fig. 3. (a) and (b) show electric heating in the residential sector.

demand met from electricity stays constant. The low FF prices
result in a host of other changes not seen in the other scenarios.
These include, in 2050, the use of natural gas for heat in the
service sector and lower electrification of heat, the majority of
hydrogen production from natural gas with CCS, very high use of
(~25 GW) co-firing CCS to generate negative emissions, gas CCS
electricity generation and lower levels of nuclear and renewable
electricity generation.

The path dependencies and long lifetimes of technologies in
the energy system mean that investment decisions that are
optimal under a given set of input assumptions could become
stranded or lock the energy system into a high-carbon or costly
path if those assumptions later change (a naive scenario). UK
MARKAL accounts for technological path dependencies through
assigning each technology a lifetime. Therefore, technology
investments made in the periods before 2030 (when FF prices
change) remain throughout the latter periods.

Conversely, investments in technologies with shorter lifetimes,
especially demand technologies such as cars and fridge-freezers,
are able to respond more easily to changes in FF prices, or more

precisely, the change in structure of the energy system stimulated
by the investments due to known future FF prices.

Other areas of flexibility, such as the ability to inject varying
levels of bio-fuels into the transport sector, also reduce the cost to
the system of uncertain FF prices. For example in 2030, under the
very high FF price SOW, imports of almost 300 PJ of bio-fuel (mainly
bio-diesel) are used to mitigate the effect of increased oil prices in
the transport sector, resulting in a simultaneous decarbonisation of
transport. Under a cumulative emissions constraint, this allows an
increase in emissions in a different sector or period.

The stochastic hedging scenario presents insights that resolve
the following question:

What is the best performing near-term hedge on average, given
that different optimal future fossil fuel price SOWs are structurally
different and that these structural differences are a result of long-
lived near-term technological investments?

Figs. 2 and 3 show how the near-term investments in heating
demand technologies of the stochastic hedging strategy and recourse
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strategies differ from the deterministic SOWs. The hedging invest-
ments in district heating in 2025 result in an altered pattern of
district heating and electric heating in 2030 and 2050. In the case of
electric heating, there is much higher annual energy consumption in
the low FF price SOW in 2050 instead of district heating. By 2050, the
structure of the residential heating sectors across recourse strategies
are similar (compare the solid and hashed bars) but not the same.
The different investments made in the hedging strategy have altered
the structure of the energy system, which influences a different
pattern of optimal future investment under the four recourse
strategies.

Fig. 4 shows the effect of the hedging strategy on co-firing CCS
capacity in 2030 and 2050. In the deterministic SOW D-CUM-FF-HH,
co-firing CCS capacity from 2020 to 2050 is nil. However, in the
stochastic scenario, the hedging strategy of ~7 GW capacity results
in this capacity remaining through to 2050 (see S-CUM-FF-C, -H, -HH
in Fig. 4b). Under the low FF price SOW (S-CUM-FF-L), investment in
co-firing CCS can continue to the same level of ~26 GW by 2050 as
in the deterministic low FF price scenario (D-CUM-FF-L). Again, the
different investments made in the stochastic hedging strategy have
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altered the structure of the energy system, which influences a
different pattern of optimal future investment under the four
recourse strategies than in the deterministic SOWs.

Fig. 5 shows the effect of the hedging strategy on coal CCS
capacity in 2030 and 2050. In the stochastic hedge, investments in
coal CCS are delayed to 2025, as the efficacy of coal CCS is
dependent on the future coal price. It is sub-optimal to invest early
in coal CCS if there is a possibility that future coal prices will be low,
in which case large investments in co-firing CCS are optimal rather
than coal CCS (compare S-CUM-FF-L in Figs. 4b and 5b). In contrast,
co-firing CCS investments are the same as in the low and central
deterministic scenarios—the model accepts the extra cost of co-
firing CCS under future high and very high FF prices. Figs. 4 and 5
illustrate path dependency in both the deterministic scenarios and
stochastic scenarios: the high capacity of coal CCS generation in
2025 leads to high capacity in 2030 and 2050. Similarly, early
investment in co-firing CCS in 2025 leads to residual capacity
remaining through 2030 to 2050.

Compared to a hypothetical naive strategy (where near-term
investment decisions under the expectation of, for example, a low
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Fig. 4. (a) and (b) show the installed capacity of co-firing CCS.
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fossil fuel price, lock in technologies that would be very expensive
under a future high fossil fuel price) an optimal hedging strategy
minimises the adverse consequence of near-term investments
given the range of future FF price SOWs specified. However, the
decision criterion does not include a measure of risk aversion; the
hedging strategy is a result of the objective function of minimis-
ing the expected cost of the hedging plus weighted cost of the
future scenarios.

In contrast to the electricity and residential heat sectors,
transport demand technologies generally have short lifetimes.
The transport sector is able to react to changes in the fossil
fuel prices from the end of the hedging strategy to the new FF
price in 2030. Therefore, transport sector recourse strategies look
very similar to the optimum deterministic strategies for each FF
price SOW.

Despite representing only fossil fuel prices as uncertain, there
is no bias evident against fossil fuel technologies in the stochastic
hedging and recourse strategies. High investment in alternative
technologies such as wind generation is apparent across all SOWs
and the investment pattern does not change between determi-
nistic and stochastic SOWs. In both cases, the model waits until
2030 before investing in an extra tranche of wind capacity (again
in both stochastic and deterministic SOWs), and this only hap-
pens in the very high FF scenario. We see a logical increase in the
penetration of renewable generation as fossil fuel prices increase.

The results demonstrate lock-in to an emissions pathway due
to the combination of cumulative bound on emissions and
identical emissions pathways during the hedging strategy. Until
2025, the timing of emissions in the stochastic scenario is identical
to that of the central deterministic FF price scenario, whereas the
emissions in the deterministic scenarios vary significantly to 2025
(Fig. 6). This means that the stochastic recourse strategy under
each SOW must adhere to a relatively rigid emission pathway
from 2030 onwards. The stochastic recourse emissions pathways
beyond 2030 then differ little between one another, while those in
deterministic runs vary slightly more. However, what little differ-
ences there are, now play out as opposite to the deterministic
scenarios: the very high FF price scenario (D-CUM-FF-HH) miti-
gates emission as soon as possible, whereas the low FF price
scenario mitigates emissions in the latter periods (D-CUM-FF-L).

3.3. Uncertain fossil fuel prices with novel mitigation options
Running the model with extra novel mitigation options, in this

case the option to use grid-injection of bio-methane and indus-
trial process-CCS, enables the energy system to respond more
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easily to changes in FF price. In this scenario, increasing the
number of mitigation options and running with uncertain FF
prices results in a smaller difference between deterministic and
stochastic strategies.

The addition of industrial process CCS technologies changes
the emission trajectory as it becomes significantly easier to
mitigate emissions in a previously inflexible (as modelled) sector.
This removes pressure from the electricity sector—the previous
emphasis on decarbonisation of the electricity sector enabled
industry to mitigate emissions through electrification of pro-
cesses. This becomes more important as the model moves
through to the latter part of the model horizon and very stringent
CO, targets. Deep mitigation in the industrial sector enables all
other sectors to mitigate less, through a combination of greater
final energy use and less demand reduction. This has significant
welfare benefits, which feeds into the objective function. The
added flexibility from the industrial CCS option enables the model
to respond more effectively to changes in FF prices in the recourse
period. For example, under high fossil fuel prices, the model
moves towards coal CCS and away from final use of natural gas,
whereas under low fossil fuel prices, there is an emphasis on final
natural gas consumption.

This addition to the model is a good example of the limited
way in which a partially stochastic model, such as UK MARKAL,
operates. In this case, the model has perfect information regard-
ing the availability of industrial process CCS after 2030. This
certain technology eases near-term mitigation across all scenar-
ios, deterministic and stochastic, increasing the correlation
between fossil fuel price scenarios and therefore reducing the
cost of uncertainty.

Table 3 shows a summary of the costs for each deterministic
scenario and stochastic state of the world, together with the
expected cost and Expected Value of Perfect Information (EVPI).
The EVPI indicates that in an energy system with fewer mitigation
options, the value of perfect information regarding fossil fuel
prices is valued at £20.5 billion. However, when more flexible
mitigation options are included the EVPI is lower—£11.8 billion,
as the system is better able to respond to changing fossil fuel
prices.

Under low FF prices, a very large (~£45 billion) welfare
benefit is apparent, through importing cheap fossil fuels and
avoiding expensive domestic extraction. Least-cost decarbonisa-
tion is assisted by the very large early investment in co-firing CCS
for low-carbon electricity generation. The stochastic low FF price
SOW (S-FF-L-FLEX) is more expensive (£5.6 billion benefit) partly
because early investment in CCS technology is lower as shown by
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2000 2005 2010 2015 2020

2025 2030 2035 2040 2045 2050

Fig. 6. CO, emissions in deterministic and stochastic scenarios.
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Table 3

Different in discounted cumulative welfare (2000£B) from the reference scenario.

Low Central High Very high Expected EVPI
Fewer mitigation options
Deterministic 3.2 67.0 109.8 149.3 823
Stochastic 23.7 86.8 130.0 170.8 102.8 20.5
More mitigation options
Deterministic —45.3 58.9 104.1 1334 62.8
Stochastic —-5.6 59.0 102.3 142.8 74.6 11.8
a WHedge ®S-FF-LFLEX  ®S-FF-CFLEX b ggiihiﬁﬁ :BEES,ELFEEX
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Fig. 7. (a) and (b) show capacity of CCS in the scenario with more mitigation options.

the black column in Fig. 7a. By 2030, as in Fig. 7b, capacity is
unable to increase as much as in the deterministic low FF price
SOW (D-FF-FLEX-L) due to investment growth constraints, but by
2050, the capacities are almost identical.

3.4. Uncertain bio-product import availability

The previous section demonstrated how the use of co-firing
CCS as a key low carbon technology changed under different
deterministic fuel price scenarios. Co-firing CCS was cost effective
under low FF price scenarios, and less so under central and higher
FF price scenarios. The majority of biomass used in co-firing CCS
was from domestic resources in the early periods. However,
biomass imports are converted into bio-fuels, mainly bio-diesel,
and for co-firing CCS in the later periods. This is especially the
case under higher FF price SOWs, due to the increasing cost
competitiveness of alternatives to traditional transport fuels.

In this scenario, we present a more stringent 90% CO, target,
consistent with meeting an 80% reduction of greenhouse gases
below 1990 levels within the UK territory. Under such a severe
target, there is a limited pool of technologies that are able to meet
projected energy service demands and carbon constraint. The
bulk of the effort takes place in the electricity sector, although
reduction in energy service demands play an important role by
2050, with higher energy prices influencing changes in the
amount of energy consumed, despite moves to a more efficient
demand side.

Under central FF prices biomass consumption increases to over
1000 PJ by 2045. An increasing percentage of this is used in co-
firing CCS plants (over 40% from 2035 onwards). Note the
maximum annual biomass consumption from co-firing CCS is

~600 PJ/annum, equivalent to around 50 GW of co-firing CCS
capacity, delivering 50% of total electricity demand in 2050 (total:
2800 PJ) (Table 4).

The dominant low-carbon energy vectors in the transport
sector are hydrogen (from electrolysis and gas SMR with CCS),
electricity, while bio-fuels fulfil only the requirements for the
Renewable Transport Fuel Obligation (RTFO). The remainder of
the biomass is used in (i) CHP plants for the delivery of low-
carbon district heating to the residential sectors—100 PJ in 2020
to 200 PJ in 2050 and (ii) direct combustion in biomass boilers for
residential heating. The annual available domestic production of
bio-products rises from ~750 PJ in 2000 to ~1200 PJ in 2050.

The deterministic model results show that constraining bio-
mass imports to zero from 2030 to 2050 increases the welfare
cost of the scenario from £149 billion to £155 billion. This is a
minor relative change, but shows the very large increase in
welfare cost from moving to a more stringent CO, target (com-
pare to Table 3). In response, domestic bio-production increases
only slightly to ~400 PJ/annum between 2030 and 2050.

There are few differences between the deterministic scenarios
in 2025, indicating that the majority of action regarding biomass
occurs from 2030 onwards. The largest anticipatory change is a
much smaller use of natural gas in the service sector for space and
hot water heating. By 2050, the energy systems of the two
deterministic scenarios look quite different. Although the elec-
tricity system of both increases to around 185 GW, they have
different mixes of technology. In the constrained scenario, co-
firing CCS capacity is ~31 GW as the limitations on biomass place
an upper limit on co-firing capacity, while nuclear capacity
increases to ~55 GW. Wind increases to ~28 GW from 21 GW.
In the unconstrained scenario, co-firing CCS capacity is ~55 GW
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Table 4
Shows consumption of biomass in a central case.
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Year
2015 2020 2025 2030 2035 2040 2045 2050
PJ
Primary biomass 323 475 557 670 715 982 1121 1228
% biomass used in co-firing CCS 0 7 17 29 43 45 51 56
No biomass constraint
Biomass imports 0 0 51 113 419 563 679
Domestic biomass production 114 275 339 386 386 386 386 386
Biomass constraint from 2030
Biomass imports 0 0 0 0 0 0 0
Domestic biomass production 212 275 339 432 430 421 414 405

Table 5
Difference in discounted cumulative cost (£B) from the reference scenario.

C90 biomass Available Constrained Expected EVPI
Deterministic 133.5 138.1 135.8
Stochastic 134.0 1383 136.1 0.3370

and nuclear capacity ~30 GW. Investments in either co-firing CCS
or nuclear occur from 2030 onwards, and there is no pre-2030
action that reduces the cost of this.

As Table 5 shows, the expected value of perfect information is
very much lower than that for the uncertain fossil fuel price
scenario (Table 3). The lack of anticipatory action in the determi-
nistic scenarios and their similarity means the resultant stochas-
tic hedging strategy is minor. As biomass use is important only for
the post-2030 period under the emission constraint, there are
limited near-term investments that are able to mitigate the costs
in the recourse. Furthermore, there are alternatives to low-carbon
electricity generation using biomass, such as nuclear and renew-
ables, which mitigate the effect of biomass constraints.

4. Discussion

We investigated the effect upon the transition to a low-carbon
UK energy system of two major uncertainties over which UK
policy makers have little direct control, fossil fuel import prices
and biomass import availability. In reality, investors must make
decisions in the near-term under a number of uncertainties,
including those explored in this paper. A two-stage stochastic
energy system model is one method for quantifying how uncer-
tainties affect optimal near-term decision-making.

The results from this study make a clear differentiation
between those technologies with long life times that cause
path-dependency and those that are not. Under uncertain fossil
fuel prices, a crucial role for near-term (2025) investment in co-
firing CCS emerged, to the exclusion of coal CCS. However, the
optimal hedging investments in co-firing CCS demonstrated
significant path dependency and structural adjustments to opti-
mal future energy systems that affect all sectors. This highlighted
the important role of short life-span demand technologies that
can respond to the structural changes imposed from path-depen-
dent near-term decisions. Large structural changes to the energy
system have a limited cost if there is a parallel evolution of
flexible technologies across energy demand and supply. This
finding supports those of Knopf et al. (2010), who state that a
broad technology portfolio, in which technologies are able to
adapt to changing conditions, limit risks and enable a greater
hedge against uncertainties.

The distinction of uncertainty and technology lifetimes is
particularly pertinent for energy infrastructures, as well as gen-
eration technologies. Expansion of the electricity network, CO,
transportation pipelines, EV charging stations and other transport
re-fuelling infrastructure, the natural gas pipeline network and
hydrogen pipeline networks all play potential enabling roles in a
low carbon energy system. Future work should explore the role of
long-lived infrastructures under uncertainty, and identify those
infrastructures that give flexibility as a response to uncertainty.

The expected value of perfect information (EVPI) is a useful
metric because it allows the comparison of scenarios that are
constrained in different ways e.g. the value of fossil fuel price
uncertainty in a scenario with an 80% CO, constraint versus the
value of biomass uncertainty under a 90% CO, constraint. The
results show that fossil fuel price uncertainty is extremely
expensive but that this uncertainty can be reduced through the
inclusion of novel mitigation options (flexibility). The reason the
value of EVPI is so high is due to the divergence of near-term
actions between the deterministic scenarios and the optimal
hedging strategy. This results in large differences in cost for each
fossil fuel price scenario. Changes in fossil fuel price influence the
scenario cost directly (the change in cost of imported fossil fuels
feeds directly into the objective function) and indirectly (the
increase in price of fossil fuels reduces energy service demands).
Alternative mitigation options reduce the cost of uncertainty
through (i) delaying mitigation by allowing steep emissions in
the recourse period to dominate cumulative emissions reductions
and (ii) increasing the correlation between scenarios through the
certain availability of this additional mitigation.

Care should be taken not to interpret the findings in this paper
out of context. The results from UK MARKAL are dependent on the
structure of the model and the manner in which the states-of-the-
world and associated probabilities are specified. Omitting a
possible SOW will result in a different hedging strategy than if
all possible future scenarios were included. Changing the prob-
abilities assigned to each SOW will also change the hedging
strategy. In this paper, equal weighting was applied to the future
scenarios, known as the Laplace Criterion (Raiffa, 1997)—the
discrete equivalent of a continuous uniform distribution. This
approach results in a conservative measure of ‘maximum uncer-
tainty’ (EVPI is maximised). As a future extension, we wish to
elicit subjective distributions of future uncertain variables.

The assumption of risk neutrality may not represent the
interests of a social planner—losses under the high FF price
scenario are very high indeed and imply a significant reduction
in energy service demands as the cost of delivering of the energy
service demands increase. Using a risk-averse objective function
would give insights into a near-term strategy that hedge against
very large future costs. It is likely that risk-averse hedging
strategies would result in quite different near-term strategies,
particularly avoidance of fossil fuels and greater adoption of
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low-carbon technologies. Decarbonisation then has the co-benefit
of reducing exposure to fossil fuel uncertainties. Note that by
comparing the best and worst outcomes of stochastic and
deterministic results, it is possible to gain a first look at the
direction of risk-averse investments.

The small number of SOWs permitted in stochastic MARKAL
restricts the exploration of uncertainty interactions. These inter-
actions are both interesting and important—for example, under
very severe emission targets, bio-products are important for
least-cost mitigation, and the destination of bio-products depends
on the fossil fuel price e.g. co-firing CCS for electricity, biomass
CHP for district heat or bio-fuels for transport. If bio-product
availability is also uncertain, the result is a third hedging strategy,
the insights from which are greater than the sum of the uncertain

FF price and uncertain biomass availability hedging strategies.
This is compounded by the so-called ‘curse of dimensionality’,
which places an upper limit on the number of uncertain variables
that it are computationally tractable to include in an analysis. This
curse is also applicable to the exploding volume of model output,
and the analyst, exposed to increasing sets of results. This paper
has aimed to provide a compromise between in-depth analysis to
tease out the system-wide insights and the wider perspective on
two key mid-term uncertainties.

This paper shows that for those uncertain variables that result
in divergent near-term actions under perfect information, it is
important to make decisions in a manner that take account of the
uncertainties, for these uncertainties can be extremely expensive.
The results presented in this paper demonstrate the importance

Table A1

Shows the energy service demands in UK MARKAL 3.24.

Demand Units 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050
Agricultural

Renewable energy (agro-waste) PJ 3.0 2.9 2.7 2.6 2.5 2.3 2.2 2.1 2.0 1.9 1.8
Petroleum product (diesel) PJ 26.5 279 29.3 30.8 324 34.0 35.7 37.6 39.5 41.5 43.6
Electricity PJ 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
Coal PJ 0.2 0.2 0.2 0.2 0.2 03 0.3 0.3 0.3 0.3 0.3
Gas PJ 5.5 5.5 55 55 5.5 55 5.5 5.5 5.5 55 5.5
Industrial

Chemical PJ 300.7 285.8 291.1 305.7 323.7 330.2 3359 338.9 342.0 345.1 348.6
Iron & steel PJ 94.4 93.7 94.8 95.8 96.9 97.9 99.0 99.5 100.0 100.5 101.0
Non-ferrous metals PJ 31.5 323 33.7 35.2 36.8 38.5 40.2 42.0 43.9 45.8 47.9
Other industry PJ 807.3 801.7 810.5 819.5 828.5 837.7 846.9 846.9 846.9 846.9 846.9
Pulp-paper PJ 96.3 91.5 93.2 97.9 103.6 106.0 107.5 108.5 109.5 110.5 111.6
Aggregate of non-energy PJ 525.3 521.7 527.3 533.0 538.8 544.6 550.5 550.5 550.5 550.5 550.5
Residential

Cooking Hob for existing houses M.units 253 25.2 25.1 25.0 24.9 24.8 24.7 24.6 24.5 244 243
Cooking Hob for new houses M.units 0.0 0.9 2.3 3.8 52 6.5 7.6 8.6 9.5 104 113
Cooking Oven for existing houses M.units 253 25.2 251 25.0 249 24.8 24.7 24.6 24.5 24.4 243
Cooking Oven for new houses M.units 0.0 0.9 23 3.8 5.2 6.5 7.6 8.6 9.5 10.4 113
Cooling - New PJ 0.0 5.1 10.1 15.2 20.3 25.3 304 35.5 40.5 45.6 50.7
Other electrical appliances for existing house PJ 114.7 1143 1139 1134 113.0 112.6 1121 111.7 1113 1109 1104
Other electrical appliances for new house PJ 0.0 4.5 111 18.2 249 31.0 36.2 40.9 45.2 49.5 53.8
Chest freezers for existing houses M.units 4.4 4.4 4.4 4.3 4.3 4.3 43 4.3 4.3 4.3 4.2
Chest freezers for new houses M.units 0.0 0.2 0.4 0.6 0.8 1.0 1.1 13 14 1.6 1.7
Fridge freezer for existing houses M.units 15.9 15.9 15.8 15.7 15.7 15.6 15.6 15.5 15.4 15.4 15.3
Fridge freezer for new houses M.units 0.0 0.6 1.5 25 34 4.2 4.9 5.6 6.2 6.8 7.3
Upright freezers for existing houses M.units 6.7 6.6 6.6 6.6 6.6 6.5 6.5 6.5 6.5 6.4 6.4
Upright freezers for new houses M.units 0.0 0.3 0.7 1.2 1.6 2.0 2.4 2.7 2.9 3.2 3.5
Space heating for existing houses PJ 827.5 8244 821.2 818.1 815.0 811.9 808.8 805.7 802.7 799.6 796.6
Space heating for new houses PJ 0.0 18.9 46.2 76.1 104.2 129.4 151.4 170.9 189.1 207.0 2249
Water heating for existing houses PJ 336.9 335.6 334.3 333.1 331.8 330.5 329.3 328.0 326.8 325.5 324.3
Water heating for new houses PJ 0.0 7.7 18.8 31.0 42.4 52.7 61.6 69.6 77.0 84.3 91.5
Lighting for existing houses PJ 63.8 63.6 63.3 63.1 62.8 62.6 62.4 62.1 61.9 61.6 61.4
Lighting for new houses PJ 0.0 2.4 5.9 9.6 13.2 16.4 19.2 21.6 24.0 26.2 28.5
Refrigeration for existing houses M.units 12.6 12.6 125 12.5 124 124 124 123 123 12.2 12.2
Refrigeration for new houses M.units 0.0 0.5 1.2 1.9 2.6 3.2 3.8 43 4.7 5.2 5.6
Service/commercial

Cooking PJ 30.0 30.0 30.0 30.0 30.0 31.0 31.0 31.0 31.0 31.0 31.0
Cooling PJ 94.0 94.0 110.0 123.0 130.0 138.0 144.0 151.0 158.0 165.0 172.0
Other electrical appliances PJ 70.0 70.0 73.0 76.0 77.0 78.0 79.0 81.0 82.0 83.0 84.0
Space heating PJ 377.6 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0
Hot water PJ 73.0 73.0 73.0 74.0 74.0 74.0 74.0 74.0 75.0 75.0 75.0
Lighting PJ 127.0 127.0 129.0 132.0 135.0 137.0 140.0 143.0 146.0 149.0 152.0
Refrigeration PJ 83.0 83.0 83.0 83.0 83.0 83.0 84.0 84.0 84.0 84.0 84.0
Transport

Air (domestic) travel Bv-km 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3
Bus travel Bv-km 2.7 29 3.1 33 3.5 3.7 4.0 4.1 4.1 4.2 4.2
Car travel Bv-km 358.1 383.2 412.3 443.5 477.0 513.1 552.0 573.6 596.0 619.3 643.5
Rail (freight) travel Bv-km 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4
HGV travel Bv-km 25.9 27.5 29.3 313 334 35.7 38.1 39.1 40.1 41.2 422
LGV travel Bv-km 47.0 51.5 56.8 62.7 69.2 76.3 84.1 914 99.2 107.7 116.9
Rail (passenger) travel Bv-km 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.8 0.8 1.0
Shipping (domestic) PJ 41.5 40.0 38.6 39.6 40.6 41.6 42.7 438 44.9 46.0 47.2
2-wheels travel Bv-km 4.6 5.1 5.8 6.4 7.0 6.9 6.9 6.7 6.5 6.4 6.2
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of understanding the system-wide effect of technologies that
have long-life times and exhibit path dependency under uncer-
tainty. Stochastic MARKAL is a powerful tool for investigating the
complex systemic dynamics of energy focussed decision-making
under uncertainty.
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