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Such rocks are intensively investigated because they pre-
serve assemblages reflecting extreme P–T conditions and 
show spectacular textures helping to decipher processes 
related to partial melting in the deep crust (Rickers et al. 
2001; McFarlane et al. 2003; Harley 2008; Kelsey 2008). 
Calibrated petrogenetic grids combined with geothermom-
etry helped to infer complex P–T paths in numerous locali-
ties for these rocks of extraordinary composition (Harley 
et al. 1990; Raith and Harley 1998; Carrington and Harley 
1995; Harley 1998b; McDade and Harley 2001; Rickers 
et al. 2001; Goncalves et al. 2004; Sajeev and Osanai 2004; 
Baldwin et al. 2005; Kelsey et al. 2005; White et al. 2001, 
2004, 2007; Diener et al. 2008).

The occurrence of local microdomains is commonly 
reported in rocks at amphibolite and eclogite facies condi-
tions (e.g. Tòth et al. 2000; Brouwer and Engi 2005). By 
contrast, HT rocks can be divided into migmatites (which 
are rocks including different domains per definition) and 
granulites, which are often homogeneous and equilibrated 
(Thompson 1990). It is generally considered that granulites 
form under relatively dry metamorphic conditions (e.g. 
Buddinton 1952; Turner 1981). These may be the result of 
removal of water by dissolution in (escaped) melts (Powell 
1983; McKenzie and Jackson 2002) or the presence of CO2 
(possibly mantle-derived) that changes the H2O activity. 
The presence/absence of water or melt in the lower crust 
is a major controlling parameter for the continental litho-
sphere rheology (Jackson 2002), and hence, it is important 
to constrain from field observation its possible mineralogi-
cal heterogeneity.

In this study, we report the occurrence of microdomains 
in HT rocks from Madagascar. These rocks contain up to 
44 vol% of biotite. The aim of this study is to: (a) report 
that textural heterogeneities as well as H2O-rich biotite are 
present in these HT rocks with a detailed petrographic work 

Abstract Highly restitic rocks from the Antananarivo 
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in order to unravel processes of H2O-rich biotite formation 
in HT rocks. Polyphase metamorphism and melt migra-
tion occurred at 0.6 GPa and 850 °C. Biotite remains stable 
together with orthopyroxene and makes up to 45 vol% of 
the rock. In addition, three well-characterised and delim-
ited microdomains having different textural, chemical 
and petrological characteristics are preserved. Thermody-
namic models using the specific bulk compositions of the 
domains are in agreement with petrological observations. 
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understanding of the lower crust.
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Introduction

In the past decade high-temperature (HT) granulites have 
been described all around the world (e.g. Vielzeuf et al. 
1990; Harley 1998a; Brown 2002; Kelsey and Hand 2014). 
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(b) explain the mode of formation and preservation of these 
microdomains by elaborating thermodynamic models and 
calculating P–T estimates, and (c) discuss possible implica-
tions for our understanding of the lower crust.

Geological setting

The Antananarivo block is a major basement unit in cen-
tral Madagascar (Fig. 1a, b). This terrane underwent a 
major metamorphic event during East African Orogenesis 
at Neoproterozoic to Cambrian time (Martelat et al. 1999, 
2000; Berger et al. 2006; Giese et al. 2011; Tucker et al. 

2014 and references therein). It mainly consists of promi-
nent, predominantly north–south trending migmatites, 
granites, micaschists and gneisses (Windley et al. 1994) 
metamorphosed under granulite to upper-amphibolite 
facies (Collins 2006). The block is characterised by late 
Archean granitoids (~2.5 Ga; the Betsiboka Suite) tectoni-
cally interlayered with paragneisses of the Ambatolampy 
Group (Archibald et al. 2015) that are intruded by granites, 
syenites and gabbros dated at ~760–820 Ma (Handke et al. 
1999; Tucker et al. 1999; Kröner et al. 2000). The Itremo 
Group belongs to a series of Proterozoic metasedimentary 
units structurally overlying the Antananarivo Block (Cox 
et al. 2004). During Pan-African orogeny (between 550 and 
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Fig. 1  a Inset showing the location of Madagascar compared to Africa and Eurasia. b Simplified map of Madagascar presenting the major units. 
c Petro-structural map showing the area in which the studied sample AF215 is located (modified after Tucker et al. 2007)
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490 Ma), the Antananarivo block as a whole was affected 
by amphibolite to granulite facies metamorphism (Kröner 
et al. 2000) as well as associated magmatism (Tucker et al. 
1999; Handke et al. 1999; McMillan et al. 2003; Tucker 
et al. 2014). Locally, the adjacent Andriamena unit and 
Bemarivo Belt (Fig. 1b) contain indications for a distinct 
HT granulite facies metamorphism at roughly 800 Ma 
(Goncalves et al. 2004; Jöns et al. 2006), but relics of this 
older event are rare in the Antananarivo block. The sam-
ple studied (AF215; 47°07′38.3E/20°10′29.3S; Fig. 1c) is 
one of these relics. It was collected from the Antananarivo 
block and belongs to an enclave within an early Neopro-
terozoic granitoid. Monazite grains in this sample preserve 
Neoproterozoic ages (ca. 796 Ma, Table 1) and are not 
overprinted by the Pan-African metamorphic event.

Methods

Mineral compositions were determined with a JEOL JXA 
8200 electron probe at the University of Bern, operating 
at 15-kV accelerating voltage and 15-nA beam current. 
Data processing was performed with the φ–ρ–z correc-
tion procedure. For monazite age dating, complete analy-
sis was done using an elemental line set-up similar as 
described in Scherrer et al. (2000). We used 25-kV accel-
eration voltage, 50-nA beam current as well as silicate and 
phosphate standards. Conventional geothermobarometers 
were applied using the programme GTB (Kohn and Spear 
2001). Aluminium in orthopyroxene thermometry was per-
formed using the calibration of Harley and Green (1982) 
and Aranovich and Berman (1997). In order to determine 
the bulk chemical composition of the different domains, 
the modal abundance of each mineral phase was estimated 
by BSE image analysis with ImageJ software. Representa-
tive microprobe analyses (in wt%) were integrated over 
the calculated area for each mineral and summed to yield 
the bulk composition (in wt%) of the domains of inter-
est. Given the small grain size (<1 mm, even <500 μm for 
domain A) compared to thin section area (ca. 1276 mm2) 
and the homogeneity of equilibrated textures and mineral 

chemistry, we consider that the surface estimation of modal 
abundance of minerals is representative of the volume 
modal abundance of minerals. For thermodynamic cal-
culations in the simplified model system Na2O–CaO–
K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2, the database of 
Holland and Powell (1998) (thermodynamic database of 
THERMOCALC, version 3.21) was used including recent 
updates (Holland and Powell 1998; Baldwin et al. 2005; 
Kelsey et al. 2005; White et al. 2007). Solution models for 
feldspars is taken from Baldwin et al. (2005); ilmenite, gar-
net, biotite, spinel and liquid is from White et al. (2007); 
orthopyroxene is from White et al. (2002); amphibole is 
from Diener et al. (2007); and cordierite is from Holland 
et Powell (1998). Rock-specific equilibrium assemblage 
diagrams were calculated with the free energy minimisa-
tion programs THERIAK and DOMINO (de Capitani and 
Brown 1987; de Capitani and Petrakakis 2010). More detail 
about the software is available: http://titan.minpet.unibas.
ch/minpet/theriak/theruser.html. Mineral abbreviations 
used are from Whitney and Evans (2010).

Results

Petrography

Sample AF215 is a fine-grained dark-coloured rock. The 
hand specimen presents a patchy texture composed of three 
different domains (Fig. 2a). Domain A shows mm-sized 
plagioclase in a dark matrix composed of orthopyroxene 
and biotite. Domain B is richer in biotite and orthopyrox-
ene and contains rare plagioclase. Domain C consists in 
a layer of pink cm-sized garnets crystals with rare inclu-
sions of orthopyroxene and biotite. Contacts between the 
domains are anastomosing. There is no gneissic layer-
ing. The observed mineral assemblages are highly restitic 
(Table 2), evidence of crystallized melt is rare (see below), 
but its presence is most likely given the geological and pet-
rological setting.

In thin section, the three microdomains of sample 
AF215 present distinct textural and petrological character-
istics (Fig. 2b; Table 2). Domain A has an equigranular tex-
ture (grain size <500 μm) composed of 30 % plagioclase, 
37 % biotite and 31 % orthopyroxene with minor spinel, 
ilmenite and rare quartz (Fig. 3a). Domain B has also an 
equigranular texture composed of mm-sized crystals of 
biotite (44 %) and orthopyroxene (46 %), with rare plagi-
oclase (8 %), cordierite, spinel and ilmenite (Fig. 3b). In 
both domains, local patches rich in plagioclase surrounded 
by ferromagnesian minerals can be interpreted in terms of 
leucosome and melanosome domains. Locally, a silliman-
ite grain occur close to the contact between domains A and 
B. Hercynitic spinel occurs as inclusions in orthopyroxene, 

Table 1  Results of EMPA monazite age dating

Th (ppm) U (ppm) Pb (ppm) Age (Ma) Error (2 sigma)

67,400 1069 2564 798.4 14.4

68,200 2083 2709 796.7 13.0

64,200 999 2399 785.4 14.5

25,100 1138 940 720.8 26.3

53,300 2196 2196 826.2 16.1

28,300 1492 1221 810.4 28.2

Weighted mean 795.6 27.4

http://titan.minpet.unibas.ch/minpet/theriak/theruser.html
http://titan.minpet.unibas.ch/minpet/theriak/theruser.html
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cordierite or plagioclase in both domains. Locally in 
domain B, cordierite forms rims around biotite or orthopy-
roxene in plagioclase-rich patches (Fig. 3b). Domain C 
shows inclusions (<500 μm) of orthopyroxene and biotite 
in cm-sized porphyroblastic garnets. Subhedral smaller 

garnet grains associated with ilmenite occur around garnet 
porphyroblasts (Fig. 3c). Garnet-spinel intergrowths occur 
locally. In addition, anhedral cordierite crystals (<200 μm) 
appear as rims between garnet and orthopyroxene belong-
ing to domain B. The contacts between these three domains 
are well defined. The proportion of each domain present in 
the sample has been estimated by optical image analysis 
using the ImageJ software. Domain B dominates (~67 vol% 
of the rock) whereas domain A makes ~28 vol% of the rock 
and domain C remains minor (~5 vol% of the rock).

Mineral and domain bulk chemistry

Garnet is almandine-rich (XAlm = 0.53–0.55) with the 
smaller garnet crystals being richer in iron (XAlm = 0.61) 
than the porphyroblasts (Table 3). In both domains A and 
B, orthopyroxene shows a similar range of composition 
(XMg = 0.62–0.65; Al(M1) = 0.13–0.24). Except for high 
Al(M1) amount in orthopyroxene rims close to sillimanite 
crystals and higher XMg values for orthopyroxene inclu-
sions in garnet, we could not recognise any systematics 
in the amount of Al(M1) according to textural position 
(Fig. 4). A suite of analyses of orthopyroxene inclusions 
in the garnet porphyroblasts of domain C show a system-
atic decrease in XMg and increase in Al(M1) from core to 
rim. Chemical zoning in garnet, orthopyroxene and biotite 
was not observed in any of the different domains. Cordier-
ite rims have homogeneous magnesium-rich composition 
(XMg = 0.84–0.86) regardless of their textural position. 
Biotite displays no significant variations in XMg values 
according to its textural position (XMg = 0.67–0.71; see 
also Table 3). The content of F in biotite is negligible (up 
to 0.19 %). Plagioclase has high anorthite contents (An57–
77) in domain A but is significantly poorer in calcium in 
domain B (An45–61).

proposed limit between domain B and C
proposed limit between domain A and B

5 mm

a

b

1 cm

C
A

A

A
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B
B
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Fig. 2  a Picture of a hand specimen of the studied sample. Domain C 
is composed of garnet porphyroblasts whereas the contacts between 
domains A (slightly lighter domains) and B (slightly darker domains) 
are irregular. b Thin section photomicrographs showing the three 
domains and their borders

Table 2  Petrographic characteristics of the three domains

Domain A Domain B Domain C

Texture Equigranular leuco/melano Granoblastic leuco/melano Porphyroblastic

Grain size <500 μm 500 μm–1 mm 1 mm to cm

Contacts To C: none To C: well defined To A: none

To B: well defined To A: well defined To B: well defined

Assemblages Major: Opx, Bt, Pl Major: Opx, Bt Major: Grt

Minor: Spl, Sil, Ilm, Qtz Minor: Crd, Pl, Spl, Ilm minor: Bt, Opx as inclusions

Relevant local assemblages Sil close to contact to B Crd rims Crd rims

Spl Spl

Mineral abundance (in %) Bt 37, Opx 31, Pl 30, Spl 1, Ilm 1, Qtz < 1 Bt 44, Opx 46, Pl 8, Crd 1, Ilm 1 Grt 80, Bt 19, Crd 1

Inferred chemical variations Si/Al− Si/Al+
Ca/Al+ Ca/Al−

Total volume of rock (%) ~28 ~67 ~5
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Concerning bulk composition, domains A and B have 
similar SiO2, K2O, Na2O and TiO2 contents (Table 4). 
Domain A is richer in Al2O3 and CaO than domain B, as it 
contains more plagioclase (Table 2). Domain B is richer in 
FeO and MgO as it contains more ferromagnesian phases 
(15.4 and 16.4 % for B; 11.8 and 12.2 % for A, respec-
tively). The bulk composition for domain C is considered to 
be of similar composition as the garnet. Domains A and B 

show water contents of 1.7 and 2.3 wt%, respectively. This 
difference reflects the higher modal abundance of biotite 
in domain B (44 vs. 37 vol% in domain A; see Table 2). 
These chemical components are important to consider in 
the choice of the chemical system used to model the petro-
logical evolution of these domains.

P–T conditions

Equilibrium assemblage diagrams

Figure 5a is an equilibrium assemblage diagram presenting 
possible paragenesis for the bulk composition of micro-
domain A. The observed assemblage feldspar–ilmenite–
orthopyroxene–biotite–spinel–melt is stable over a large 
P–T range (850–950 °C and 0.4–0.8 GPa). Using isopleths 
composition of aluminium in orthopyroxene (long dashed 
lines) and XMg of orthopyroxene (=Mg/(Mg + Fe; short 
dashed lines), the peak stability field of the observed assem-
blage can be reduced to 830–870 °C and 0.5–0.7 GPa (rep-
resented by the grey triangle on Fig. 5a). At 0.6 GPa and 
850 °C, the phase equilibrium model reasonably predicts 
modal abundances of 33 % plagioclase, 26 % orthopyrox-
ene, 35 % biotite, 2 % spinel, 1 % ilmenite and no garnet, 
whereas the three first phases are present in equal amounts 
in thin section.

Geothermobarometry

Several studies investigated the “Al-in-orthopyroxene” geo-
thermobarometer in different systems (Harley and Green 
1982; Harley 1984b; Aranovich and Berman 1997; Hollis 
and Harley 2003; Kelsey et al. 2005). For orthopyroxene 
compositions coexisting with garnet (domain C; Table 3), 
the calibration of Harley and Green (1982) shows pres-
sure-independent isopleths indicating equilibration tem-
peratures between 940 and 970 °C (Fig. 5b). The calibra-
tion of Aranovich and Berman (1997) presents isopleths 
with a slight positive slope indicating similar temperatures 
between 0.7 and 0.8 GPa.

Fe–Mg exchange between garnet and orthopyroxene in 
direct contact indicates temperatures between 850° (Har-
ley 1984a, b) and 960 °C (Sen and Bhattacharya 1984) at 
0.9 GPa depending on the calibration of the geothermom-
eter. Topological studies (Cenki et al. 2002; Braun et al. 
2007) based on experimental work (Carrington and Harley 
1995) indicate that a minimum temperature for spinel and 
orthopyroxene coexisting with melt is 940 °C at 0.8 GPa 
for a metapelitic composition. In the quartz–corundum-
free grid, the appearance of spinel, orthopyroxene and melt 
occurs at similar temperature and pressure as mentioned 
before (Kelsey et al. 2005).
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Crd
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Opx
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Fig. 3  Photomicrographs in plane-polarised light showing charac-
teristic textures of the three domains. a Typical equigranular texture 
of domain A with orthopyroxene, biotite, plagioclase as well as local 
sillimanite and spinel. b Local cordierite and spinel occurrence in a 
leucocratic zone of domain B. c New garnet growth near a garnet por-
phyroblast rich in orthopyroxene inclusions (domain C). Abbrevia-
tions after Whitney and Evans (2010)
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The results of equilibrium assemblage modelling and 
geothermobarometry point to minimum peak metamorphic 
conditions at ca. 850 °C and 0.60 GPa for the equilibration 
of the sample AF215.

Thermodynamic modelling of melt loss and formation 
of microdomains

One of the most critical question concerning migmatitic or 
restitic rocks deals with the presence of melt (e.g. White 
and Powell 2010; Kelsey and Hand 2014): How much melt 
was formed and at which point? Did melt escape? To what 
extent had these processes an influence on the equilibrium 
composition of the solid phases? We have explored possi-
ble scenarios of formation for the studied sample with the 

help of thermodynamic modelling featuring compositional 
variations following the approach of White et al. (2001).

The observed mineral assemblages is restitic (Table 2), 
and evidence of crystallized melt is rare; therefore, we 
assume that melt loss occurred at some stage of the rock 
evolution. T–X diagrams are best suitable to model open 
system processes involving melt. Protolith composi-
tion shall be a mixture between the residue and melt end-
members (White et al. 2001). Figure 6a is a T–X equilib-
rium assemblage diagram calculated in order to represent 
changes in assemblages for mixture compositions ranging 
between a restitic composition (domain A) and a typical 
haplogranitic melt (Table 2 in White et al. 2001). For Xmelt 
ranging between 0.35 and 0.45, assemblages above the soli-
dus (ca. 730 °C) are dominated by garnet, cordierite. These 
are typical incongruent phases associated to dehydration 
melting of biotite in metapelites (Spear et al. 1999; John-
son et al. 2001). Upon cooling (vertical path on Fig. 6a), 
minerals specific to metapelites occur like sillimanite (at 
ca. 650 °C). Our observations and models are compatible 
with the idea that the protolith of our sample is a metape-
lite, which underwent partial melting and subsequent melt 
loss (at melt mode of ca. 0.40 and temperatures close to the 
solidus; Fig. 6a).

Figure 6b is a T–X equilibrium assemblage diagram cal-
culated in order to represent changes in assemblages for 
mixture compositions ranging between a restitic compo-
sition (domain B) and a typical haplogranitic melt (same 
approach as in Fig. 6a). Above 800 °C and for Xmelt ranging 
between 0.10 and 0.25, the assemblage consisting of feld-
spar, biotite, orthopyroxene and melt is stable (grey field on 
Fig. 6b). This corresponds to the assemblage correspond-
ing to domain A. Therefore, we suggest that domain B 
forms after re-melting of domain A at temperatures above 
800 °C and subsequent melt loss (at melt mode of ca. 0.20). 
In addition, melt mode isopleths show that the new mixed 
rock can produce 15–30 % melt in the stability field of 
the mineral assemblage characteristic of domain A at HT 
conditions.

Discussion

Developing and preserving biotite‑rich microdomains 
in HT rocks

In this study, we report the presence of microdomains 
which are composed of up to 45 % biotite and orthopyrox-
ene associated locally to plagioclase, minor cordierite and 
spinel. Except for localised cordierite rims around ferro-
magnesian phases associated with plagioclase-rich pock-
ets, there is no evidence for reaction textures. Each domain 
shows well-equilibrated granoblastic textures indicating 
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Fig. 4  Electron microprobe data of orthopyroxene composition in the 
three domains presented as XMg versus Al content

Table 4  Estimated bulk composition of the three domains (see text 
for explanations)

a Representative mineral analysis combined with mineral abundance 
determined with BSE image analysis with ImageJ
b Garnet core composition from microprobe analysis only

Bulk (wt%) Domain Aa Domain Ba Domain Cb

SiO2 43.58 43.62 38.88

Al2O3 19.53 14.16 21.96

TiO2 1.93 2.06 0.76

FeO 11.81 15.38 22.96

MgO 12.16 16.36 10.67

MnO 0.13 0.21 0.99

CaO 4.12 0.87 1.21

Na2O 1.23 1.84 0.07

K2O 3.57 4.25 1.88

H2O 1.70 2.33 0.02

Total 99.76 101.10 99.39

Al/Si 0.53 0.38 0.69
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textural equilibrium between mineral phases. Forward 
modelling using the bulk composition of highly restitic 
rocks is performed, but noting that equilibrium composi-
tions may change drastically as a consequence of open 
system processes involving melt loss. Nevertheless, equi-
librium P–T modelling for the rock (domain A) is in good 
agreement with classical thermobarometry (Al in Opx, Fe–
Mg exchange) and point to minimum peak metamorphism 
at ca. 850 °C and 0.60 GPa. Based on T–X models involv-
ing the composition of the observed domains, we suggest 
that these heterogeneities result from at least two melting 
events accompanied by melt loss. In addition, the effect 
of subsolidus water loss on melt fertility of crustal rocks 
has recently been explored (Webb et al. 2015) and may be 
involved at least in parts to explain the genesis of the stud-
ied rocks.

Our modelling suggests that sample protolith is a 
metapelite that experienced melt loss which operated as 
a bulk compositional modifier. Nevertheless the nature 
of the protolith and the degree of inheritance of primary 
chemical heterogeneities due to compositional band-
ing may be considered. Diener et al. (2008) showed that 

orthopyroxene-rich quartz-saturated granulites from the 
Strangways Range in Australia derive from cordierite–
orthoamphibole gneisses and that compositional changes 
associated to melt loss from a pelitic protolith are not suf-
ficient to account for the unusual compositions. The com-
positions reported by Diener et al. (2008) are attributed 
to metamorphosed metasomatic volcanic rocks. However, 
composition of microdomains from the rock studied here 
are significantly richer in alkalis (Na, K), amphibole is 
absent, cordierite is insignificant, and biotite is widespread 
due to the extraction of melt (which left residual biotite in 
the source), In this study, we have shown that a mixture of 
a restitic composition corresponding to domain A together 
with a melt generates typical pelitic assemblages (Fig. 6a). 
Recently, Ganne et al. (2014) described metapelitic kin-
zigite (VG49) in the same area of the Antananarivo Block. 
These are composed of plagioclase, quartz, biotite, cordier-
ite, garnet and sillimanite. These authors infer P–T condi-
tions of equilibration of their metapelitic sample during the 
early D1 tectonic phase (Martelat et al. 1999) that corre-
sponds to the conditions calculated in this study (pressure 
at ca. 0.6 GPa and temperature >850 °C). This chemical, 
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Whitney and Evans (2010). b Results from classical thermobarometry 
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to the calibration of Harley and Green 1982; A & B 1997 refers to the 
calibration of Aranovich and Berman 1997)
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petrological and geological evidence argue in favour of a 
pelitic protolith for the studied sample.

The inferred evolution of this sample with time and tem-
perature is shown on Fig. 7. In the first step, a homogene-
ous metapelitic protolith (see above) melts at amphibolite 
facies conditions yielding a restite (preserved in domain A) 
and a melt that is extracted. In the second step, this restite 
re-melts at higher temperature resulting in the formation of 

domain B followed by renewed melt escape. We suggest 
that the observed microdomains are formed and preserved 
due to sequential melt escape. Unfortunately, evidence 
for melt is scarce (local plagioclase-rich patches), but our 
thermodynamic modelling attests for the presence of melt 
(produced and escaped) at different stages of microdomains 
formation. If melt would have resided within the rock, 
melt-consuming reactions (Cenki et al. 2002) is expected 
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to occur and their products to from (Kriegsman 2001; 
e.g. coronas of ferromagnesians phases around incongru-
ent phases). These textures are not observed in the stud-
ied sample. Generally, the preservation of granulite facies 
mineral assemblages is often linked to melt loss processes 
(e.g. Brown 2010). In addition, other authors has proposed 
a similar scenario of at least two partial melting events as 
pre-conditioning (that prevents buffering of temperature 
through pervasive partial melts) of the crust and appear 
to be a prerequisite in order to reach UHT conditions 
(Vielzeuf et al. 1990).

The formation of H2O‑rich biotite in residual rocks 
and water in the deep crust

In this study, we describe HT granulite which contains 
a large amount of biotite (up to 45 % of the rock) stable 
with orthopyroxene. At HT granulite facies rocks, biotite is 
expected to be F-rich (Bose et al. 2005) and not so OH-
rich, with an enrichment in F as temperature increases, 
while biotite is progressively replaced by anhydrous miner-
als or melt (e.g. Mouri et al. 1996; Motoyoshi and Hensen 
2001; Adjerid et al. 2008). It has been shown that F-rich 
biotite occurs in nature with UHT minerals (e.g. osumi-
lite), whereas thermodynamic modelling indicates that this 
should not occur with normal OH-rich biotite (this study). 
Various explanations for this should be considered. Firstly, 
this low fluorine content might be a primary feature of the 
bulk rock and fluid composition. Mouri et al. (1996) pro-
posed that metamorphosed hydrothermally altered mafic 
rocks are good candidates to show F-enrichment. As we 
propose that the protolith is a classic pelite, it is well pos-
sible that the bulk is fluorine poor. Secondly, by remov-
ing granitic melts from the pelitic sample, the rock might 
run out of reactant before running out of hydrous, pro-
grade biotite. Similarly, Nahodilova et al. (2011) showed 
that the preservation of prograde minerals (garnet in their 
case) is bounded to complete melt loss. Thirdly, Motoyoshi 
and Hensen (2001) have suggested that melt-consuming 
reactions involving a F-rich fluid lead to the formation of 
F-rich biotite. However, we have suggested that melt prob-
ably escaped as formed and did not reside significantly in 
the source. Fourthly, experiments conducted under water-
saturated conditions (Gardien et al. 1995), indicated that 
hydrous biotite can be stable up to 950 °C (at 1 GPa). 
This possibility shall be further explored for the genesis 
of the studied sampled. Finally, White and Powell (2010) 
have shown that diffusion of water from the leucosome to 
the residue may occur upon cooling when biotite crystal-
lises in the residue that leads to an increase of the chemical 
potential of water in the melt. In that case, chemical gra-
dients favour the crystallisation of anhydrous minerals in 
the melt and hydrous minerals in the residue. The common 

observation that several granulites have no (or only tiny 
bit) of hydrous phases (Clarke et al. 2005; Clemens 2006) 
raises the question of the origins of a dry lower crust (Frost 
and Bucher 1994; Yardley and Valley 1997). Melt extrac-
tion leaves excess biotite in the source that forms highly 
refractory domains where water can be preserved in the 
granulite facies in the deep crust.

Extrapolation at crustal scale

Although our study focusses on dm-scale samples, the 
inferred processes may be relevant at the scale of the 
entire lower crust. Classically, the lower crust is viewed 
as an anhydrous granulite-facies domain, produced by 
the progressive loss of water during HT metamorphism 
and in situ melting (Powell 1983; Thompson 1990). Our 
study proposes an alternative view, in which the continu-
ous extraction of the produced melt may leave excess, 
residual domains enriched in H2O-rich biotite in the source. 
These two processes (anhydrous granulitisation and biotite 
enrichment) may act coevally and lead to the formation of 
a strongly heterogeneous lower crust. These mineralogi-
cal heterogeneities imply strong rheological contrasts with 
the coexistence of biotite poor (anhydrous granulite) and 
biotite-rich domains in the deep crust. Biotite is a weak 
mineral (Kronenberg et al. 1990), compared with common 
lower crust minerals (plagioclase, pyroxene, Bürgmann and 
Dresen 2008). Furthermore, in polymineralic assemblages, 
the weakest mineral may control the strength and therefore 
strongly weakens the entire assemblage (Handy et al. 1999; 
Gueydan et al. 2014). We may therefore propose a strongly 
heterogeneous ductile lower crust, at least locally, in which 
the coexistence of creep and shear failure is possible.

Conclusions

The observation of these HT rocks from Madagascar can 
be summarised as follows: (a) a large amount of biotite and 
orthopyroxene can be stable at granulite facies conditions; 
(b) microdomains are formed and preserved in meta-sed-
imentary protolith associated to melt generation and melt 
loss; (c) the presence of H2O-rich biotite and heterogenei-
ties in the middle/lower crust in which excess biotite can 
occur in source regions after melt escape. These processes 
imply that water can be preserved in highly refractory 
domains of the deep crust. These conditions might not be 
valid for the entire lower crust but may be important locally 
and have rheological consequences.
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