
1 3

Int J Earth Sci (Geol Rundsch) (2016) 105:1591–1602
DOI 10.1007/s00531-015-1272-1

ORIGINAL PAPER

Structural interpretation of the Chuan‑Dian block 
and surrounding regions using discrete wavelet transform

Songbai Xuan1 · Chongyang Shen1 · Hui Li1 · Hongbo Tan1 

Received: 4 February 2015 / Accepted: 24 October 2015 / Published online: 13 November 2015 
© Springer-Verlag Berlin Heidelberg 2015

Keywords  Bouguer gravity anomalies · Discrete wavelet 
transform · Crustal structure · Moho relief · Chuan-Dian 
block

Introduction

The use of gravity methods in geophysics plays an impor-
tant role in being able to interpret current crustal structure. 
It is widely known that gravity anomalies are composed of 
various components, responsible for different scales and 
source depths. Several techniques have been developed to 
decompose the gravity anomalies and characterize their 
sources. Discrete wavelet transform (DWT), based on Mal-
lat’s theory (1989), is one of the most powerful tools, and 
has been applied to their interpretation of gravity data in 
terms of crustal structure. Yang et al. (2001) introduced the 
theory for separation of the gravity anomalies using DWT 
in detail, and analyzed gravity data obtained from across 
China. Wu et  al. (2011) inverted the crustal thickness in 
the northeastern Tibetan Plateau based on the fourth-order 
DWT approximation of Bouguer gravity anomalies (BGA). 
Lou and Wang (2005), Xu et al. (2009), Jiang et al. (2011) 
and Evariste et  al. (2014) combined DWT and spectrum 
analysis to interpret the crustal structure beneath Sichuan–
Yunnan, Dagang, Beijing and Cameroon, respectively. 
Xuan et al. (2012) applied DWT to analyze the mechanism 
of change in gravity from 2000 to 2007 in mainland China. 
Most recently, Oruç (2014) proposed an effective technique 
to reflect sources edges obtained using DWT, based on the 
square root of the sum of the squares of the horizontal, ver-
tical and diagonal components.

The Chuan-Dian block (CDB), located in southwestern 
China, is bounded by the Xianshuihe–Xiaojiang fault sys-
tem, Jinshajiang suture zone and Red River fault, as shown 
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in Fig.  1 (Deng et  al. 2002; Zhang et  al. 2005). It is tec-
tonically active and forms the transitional zone between the 
uplifted Tibetan Plateau to the west and the Yangtze conti-
nental platform to the east. The collision between the Indian 
and Eurasian plates ~50  Ma ago resulted in strong defor-
mation, regmagenesis and formation of complex Cenozoic 
structures (Yin and Harrison 2000). However, debate about 
the deformation of this region has centered on whether 
extrusion tectonics has been largely accomplished by rigid 
block motion (Leloup et  al. 1995) or associated with dis-
tributed deformation (Burchfiel et al. 1995). The southeast 
borderland (plateau margin) of the Tibetan Plateau lacks a 
distinct edge and little evidence of shortening in the upper 
crust (Clark et  al. 2000, 2005; Shoenbohm  et al. 2006). 
Using the Global Positioning System (GPS) to track move-
ment suggests that the CDB rotates clockwise around the 
Eastern Himalayan Syntaxis (Zhang et al. 2004; Shen et al. 
2005; Wang et al. 2008). Thus, lateral extrusion of the crus-
tal block (Tapponnier et  al. 1977, 1982, 2001) and lower 
crustal flow (Royden et  al. 1997; Clark et  al. 2000, 2005; 
Shoenbohm et al. 2006) have been proposed to explain the 
tectonic deformation and movement in this region.

In this work, we present the results of reprocessed 
BGA data of the CDB, and adjacent region, derived from 
EGM2008 (Pavlis et al. 2012) using the DWT method to 
investigate the validity of these claims as they pertain to 

the crustal structure, and therefore tectonic history of the 
CDB.

Methodology

Discrete wavelet transform

Based on the theory of Mallat (1989), the processing of the 
DWT includes wavelet decomposition and reconstruction 
of the data. The wavelet basis, or the mother wavelet func-
tion ψa,b(x), is defined by scale and shift as follows:

where a and b are the continuously varying scaling and 
shifting parameters, respectively. Assuming that g(x) is 
the gravity signal, its wavelet transform may be expressed 
using Eq. (1) as:

where Eq.  (2) is essentially the wavelet decomposition of 
g(x) by means of the wavelet basis or the mother wavelet 
function ψa,b(x). If the parameters a and b in Eq.  (1) take 
discrete values, Eq. (2) is the function of the DWT.

Corresponding to an orthogonal base, the original data 
can be decomposed as an approximation (A), and with 
details according to three orientations: horizontal (D(h)), 
vertical (D(v)) and diagonal (D(d)) components using a two-
dimensional (2D) DWT. Figure 2 shows the basic steps of 
wavelet decomposition and construction of the jth order in 
which the jth-order approximation Aj may be decomposed 
to the j+1-order approximation coefficient CAj+1, with 
detail coefficients CD(h)

j+1, CD
(v)
j+1 and CD(d)

j+1. The approxi-
mate and detail coefficients form a representation with half 
the resolution of the data at level j. Using the algorithm 
given by Mallat (1989) for reconstructing the original sig-
nal from its decomposition, the wavelet approximation 
Aj+1 details at level j + 1 can be reconstructed according to 
three orientations: horizontal D(h)

j+1, vertical D(v)
j+1 and diago-

nal D(d)
j+1. Therefore, the wavelet detail Dj+1 at level j + 1 

is the sum of the horizontal, vertical and diagonal compo-
nents. The wavelet approximation Aj at level j is the sum 
of Aj+1 and Dj+1. The wavelet approximation and wavelet 
detail at the j + 1 level have the same resolution as Ajat the 
j level. The iterative process described above is continued 
until the desired results are achieved.

Yang et al. (2001) suggested that the decomposition can 
be operated. Based on the low-order wavelet detail invari-
ant rule, the gravity data can be separated into regional 
and residual anomalies by using the 2D DWT arbitrarily 
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Fig. 1   Regional topography, crustal blocks (bounded by white lines) 
and principal active faults (shown in red) of the study area (after Tap-
ponnier et  al. 1977, 2001; Deng et  al. 2002). Abbreviations as fol-
lows: ICB Indo-China block, QTB Qiangtang block, CDB Chuan-
Dian block, BHB Bayan Har block, SCB Sichuan Basin, EHS Eastern 
Himalayan Syntaxis, JSS Jinshajiang suture, EKLF East Kunlun fault, 
XXF Xianshuihe–Xiaojiang fault system, LMS Longmenshan fault, 
RRF Red River fault, SF Sagaing fault
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according to the requirements. If the nth-order approxima-
tion meets our requirements, we can take it as the regional 
anomalies, while the local anomalies are the sum of the 
details from the first- to the nth-order equivalent to the 
regional anomalies removed from the original data.

Synthetic testing

A combination model was designed (Fig.  3a) for syn-
thetic testing to prove the feasibility of the DWT method. 
The main parameters of the synthetic model are listed in 
Table  1. This model consists of five prisms: Four small 
prisms are located relatively shallow (6.5  km), and one 
larger prism is located at a greater depth (50  km). Using 
forward calculation in the frequency domain, as proposed 
by Parker (1972), we calculated the gravity anomalies of 
the model and the corresponding anomalies induced by 
shallow and deeper prisms, respectively. Gravity anomalies 
induced by the shallow prisms (1–4) are shown in Fig. 3b 
and that of the deeper prisms (5) in Fig.  3c. Figure  3d 
shows the total gravity anomaly induced by the test model. 

The first- to fifth-order DWT details are shown in Fig. 4, 
with approximations after decomposition and reconstruction. 
The first-order detail (Fig. 4a) may be considered noise from 
forward calculation, and thus, the first-order approximation 
(Fig. 4a′) can be described as the gravity anomaly determined 
by noise reduction from the total anomaly (Fig.  3d). The 
anomalies induced by the shallow prisms are obvious, and 
almost no signal is induced by the deeper prism in the second- 
to fourth-order DWT details. However, the gravity anomalies 
induced by the deeper prism are evident in the fifth-order 
DWT details. This indicates that the subsurface anomaly 
bodies are not continuous, unlike the synthetic model, and 
the local and regional anomalies separated using the DWT 

method shown in Fig.  5 are very similar to the calculated 
anomalies (Fig. 3b, c) such that the local anomalies (Fig. 5a) 
are the sum of the first- to the fifth-order DWT details, i.e., the 
main anomalies are induced by the shallow prisms. However, 
the anomalies induced by the deeper prism are also displaced 
and appear different to the calculated anomalies as shown in 
Fig. 3b. The gravity anomalies in Fig. 5b are almost entirely 
induced by the deeper prism. Thus, the sum of the first- to 
the fifth-order DWT details (Fig. 5a) and the fifth-order DWT 
approximation (Fig.  5b) could be considered the local and 
regional fields, respectively. Overall, it is evident that the 
DWT method yields satisfactory separation results compared 
with the theoretical anomalies and can be considered feasible 
to separate anomalies of different scales. 

Gravity analysis

The BGA used here, derived from the EGM2008 spherical 
harmonic coefficients (Pavlis et al. 2012), were downloaded 
from the webpage of the Bureau Gravimétrique Interna-
tional (http://bgi.omp.obs-mip.fr). In this database, a terrain 
correction is applied up to a distance of 167 km using the 
1 arcmin by 1 arcmin ETOPO1 digital elevation model, and 
a density reduction of 2.67 g/cm3 is also applied.

In general, Bouguer gravity data can reflect the large-
scale tectonic feature directly. As shown in Fig. 6, the gen-
eral BGA in the east and southeast margins of the CDB 
are characterized by NW–SE and N–S trends, respectively. 
The map reveals a broad regional negative BGA in the 
Tibetan Plateau, including the Bayan Har block, Qiangtang 
block and northern CDB. Such a negative BGA could have 
resulted from material depletion during the crustal thicken-
ing around the eastern Tibetan Plateau. Larger anomalies 

Fig. 2   Diagrammatic representation of the basic calculation steps 
used in the discrete wavelet transform (DWT) at level j, where Aj 
is wavelet approximation at level j. The steps of the decomposition 

and reconstruction are shown in the dotted box on the left and right, 
respectively. The wavelet coefficients CA (approximation coefficient) 
and CD (detail coefficient) are also shown

http://bgi.omp.obs-mip.fr
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Fig. 3   a Synthetic gravity model with the prisms 1–4 used to repre-
sent shallow density anomaly bodies and prism 5 as a single, deeper 
density anomaly body. b Gravity anomalies induced by prisms 1–4 

and c gravity anomalies induced by the prism 5. d Total gravity 
anomalies induced by the test model

Table 1   Main synthetic model 
input parameters

Model Center coordinate (km) Size (km) Density contrast (g/cm3)

x y z x y z

① −25 −25 6.5 5 5 3 0.4

② 25 −25 6.5 5 5 3 0.4

③ 25 25 6.5 5 5 3 0.4

④ −25 25 6.5 5 5 3 0.4

⑤ 0 0 50 40 40 20 0.4
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Fig. 4   Results of the 2D DWT decomposition. a–e Details of the 
first-order to fifth-order 2D DWT decomposition (results of a may 
be considered noise from forward calculation). a′–e′ first- to fifth-
order 2D approximation, in which a′ can be described as the anomaly 

determined by noise reduction from the total anomaly. The black out-
lined squares and magenta outlined squares are the edge projections 
of the shallow prisms and deeper prism, respectively
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(~−100  mGal) exist in the Sichuan Basin and near the 
Sagaing fault south of the Eastern Himalayan Syntaxis. The 
maximum and minimum BGA are 0.7 and −559.3 mGal, 
respectively. There are two distinct gravity gradient belts: 
one in a NE–SW direction along the Longmenshan fault 
zone and the other in a NW–SE direction along the Jiali 
fault of the Eastern Himalayan Syntaxis. Although these 
two fault zones form the main borders of the Tibetan Pla-
teau, the southeast margin is not very clear and is expected 
to be outlined by BGA of between −300 and −200 mGal.

Results of multi‑scale BGA decomposition

Figure  4 shows that 2D DWT decomposition of BGA 
(Fig. 6) distinguishes regional and local anomalies. Given 

that we selected the fifth-order 2D DWT approximation 
as regional anomalies (Fig. 7a), it is evident that the map 
of regional anomalies reveals the margins of the Tibetan 
Plateau more smoothly than BGA, and so the boundaries 
of the blocks, such as the Indo-China block and Sichuan 
Basin, can be identified more easily. The belt with anom-
alies between −400 and −300  mGal calibrates well with 
the east and southeast margins of the Tibetan Plateau. 
Therefore, the CDB may be divided into two portions on 
a regional scale: the southwestern Sichuan and the middle 
Yunnan.

From Fig.  7b, it is observed that the low anomalies 
strike in an N–S direction around the western Indo-China 
block and are bounded by relatively high anomalies sug-
gesting that the crustal deformation here, from continental 

Fig. 4   continued
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collision, is intense. Another apparent gradient belt is 
the Longmenshan fault belt of the eastern margin of the 
Tibetan Plateau. The NE trending high anomaly lies along 
the Longmenshan fault, and a low anomaly is located in 
the eastern part of the Bayan Har block. The different 
gravity anomalies may have resulted from differential 
movement of the crust in the eastern Tibetan Plateau and 

around the northern and southern parts of the CDB; the 
low and high anomalies are separated by the Xiaojinhe 
fault.

The fourth-order detail map (Fig. 8a) reveals the density 
structure of the upper crust. Gravity anomalies are com-
plex, reflecting the complex density structures in the mid-
dle crust. It is evident that a high-gravity anomaly exists 
beneath the Jinshajiang suture near the western boundary of 
the CDB and a low-gravity anomaly exists beneath the Jiali 
fault. The parallel anomalies in the southwestern region of 
the study area imply strong deformation in the lower crust, 
induced by eastward extrusion of the Burmese block and 
clockwise rotation of the CDB around the Eastern Himala-
yan Syntaxis.

The fifth-order detail map (Fig. 8b) reveals the density 
structure of the lower crust. The local anomalies and the 
fifth-order details mainly result from inhomogeneity in the 
density distribution of the whole and lower crust, respec-
tively. In the Indo-China block and Eastern Himalayan 
Syntaxis, eastward arcs of lower and high anomalies indi-
cate that subduction of the Burmese block occurs in the 
lower crust, a phenomenon that is not obvious in the mid-
dle crust (Fig. 8a). Similar to the local anomalies (Fig. 7b), 
gravity anomaly images clearly highlight the differences 
between the northern and southern portions of the CDB. In 
the Longmenshan region, high anomalies strike along the 
Longmenshan fault, and low anomalies exist in the north-
eastern area of the Longmenshan fault, suggesting that the 
effects of the eastward extrusion of the Bayan Har block 
exist in the lower crust.

Fig. 5   a Local and b regional anomalies determined using the 2D DWT method. The local anomalies are the sum of the first-order to fifth-order 
DWT details and the regional anomalies are the fifth-order DWT approximation

Fig. 6   Bouguer gravity anomalies (BGA) superimposed the main 
crustal blocks (bounded by white lines) and active faults (red lines) of 
the Chuan-Dian block and surrounding regions (see Fig. 1 for key to 
abbreviations)
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Relief of the Mohorovicic discontinuity

The morphology of the Mohorovicic discontinuity (Moho) 
is fundamental for interpretation of crustal structure and 
tectonic activity. The inversion method used in this work 
is based on the Parker–Oldenburg algorithm (Parker 1972; 
Oldenburg 1974) which requires knowledge of the refer-
ence depth and the density contrast between the crust and 
mantle. A reference depth of 50  km and density contract 
of −0.4 g/cm3 are used here, in agreement with the aver-
age values reported in the CRUST1.0 model of Laske et al. 
(2013).

Using the regional anomalies (Fig.  7a), the reference 
depth and the density contrast, the relief of the Moho with 
standard deviation of 0.079 mGal after seven iterations 
was obtained (Fig.  9a). The gravity anomalies produced 
by the Moho relief shown in (Fig.  9b) are similar to the 
regional anomalies (Fig.  7a). Notably, the final residu-
als from adjusting the regional anomalies using gravity 
anomalies induced by Moho relief have a normal distribu-
tion with a mean of −1.891 mGal and standard deviation of 
12.564 mGal (Fig. 9c), and the majority of the grid points 
have a low residual value. Therefore, the result of the Moho 
relief analysis is considered credible.

Fig. 7   a Regional and b local gravity anomalies of Chuan-Dian region separated using the DWT method. The regional anomalies are the fifth-
order DWT approximation, and the local anomaly is the product of removing the regional anomalies from the BGA shown in Fig. 3

Fig. 8   Maps showing a fourth-order and b fifth-order DWT details of the BGA for the Chuan-Dian region
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There is a significant change in the depth of the Moho 
undulation between the Tibetan Plateau and the surround-
ing regions (Fig. 9a). The obvious steep belt of deep Moho 
appears in both the Longmenshan fault and the Eastern 
Himalayan Syntaxis. The depth of the Moho on both sides 
of the Longmenshan fault drops from nearly 70 km to less 
than 50 km from northwest to southeast. There are abnormal 
belts parallel to the Longmenshan fault at a depth of 65 km 
in the northwest and 30–44 km in the Sichuan Basin to the 
southeast. The depth of the Moho is approximately 60 km in 
the northern portion of the CDB and approximately 50 km 

in the southern portion, reaching a depth of approximately 
70 km in the Qiangtang block. On both the west and east 
side of the Sagaing fault, the depth of the Moho is less than 
40 km. In the south segment of the Xianshuihe–Xiaojiang 
fault system, the depth increases from 50 to 55 km in the 
west. From the west, near the Eastern Himalayan Syntaxis 
across the middle of the CDB, to the east (the Longmenshan 
fault region), the Moho has a Y-shaped relief. In conjunc-
tion with the topography belt, this suggests that the CDB is 
a transitional zone of the Tibetan Plateau, the South China 
block and the Indo-China block.

Fig. 9   a Map showing the relief of the Moho derived from regional anomalies (Fig. 7a). b Map of the calculated anomalies induced by the relief 
the Moho and c statistical analysis of final gravity residuals induced by Moho relief showing a normal distribution
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Discussion

The regional and local gravity anomalies separated from the 
BGA in the CDB and surrounding regions (Fig. 7) closely 
correlate with the regional tectonic setting. The study area 
can be divided into four parts according to gradient belts of 
the regional anomalies (Fig. 7a). These are the Tibetan Pla-
teau, southern CDB, Sichuan Basin and Indo-China block. 
The morphology of the gradient belt generally accords with 
the strike direction of the Longmenshan fault, the south 
segment of the Xianshuihe–Xiaojiang fault, the Jiali fault 
and the Red River fault. The local anomalies (Fig. 7b) and 
fourth- and fifth-order details (Fig. 8) suggest that the com-
plex structural character of the crust of the CDB and sur-
rounding regions was affected by eastward extrusion of the 
Tibetan lithosphere (Tapponnier et al. 1982, 2001).

The regional negative anomalies were probably induced 
by crustal thickening (Fig. 9b; Molnar et al. 1993). During 
southeastward movement of the Tibetan Plateau (Zhang 
et  al. 2004; Shen et  al. 2005; Wang et  al. 2008), crustal 
material was injected into the region between the Sichuan 
Basin and Indo-China block, a broad and indistinct south-
eastern margin to the Tibetan Plateau (Clark et  al. 2000, 
2005; Shoenbohm et  al. 2006). This margin results in the 
gravity anomalies of between −400 mGal in the northwest 
part and −300 mGal in the southeast part of the CDB, indi-
cating that the extruded Indo-China block and South China 
block (Tapponnier et  al. 1982; Ji et  al. 2008) are affected 
by southeastward wedging of the CDB. The crust of the 
Tibetan Plateau is still in a strongly non-isostatic state 
(Wang et  al. 2009), and thus, the southeastward extrusion 
leads to surficial uplift and subsidence of the Moho (Clark 

et  al. 2000), resulting the formation of significant differ-
ences in Moho topography (Fig. 9a) and crustal thickness 
(Fig.  10a) in the northern CDB. The continuous south-
eastward extrusion would also tend to increase the crus-
tal thickness in the southern CDB, much the same as the 
northern CDB (Fig. 10b). However, without the obstruction 
of resistive blocks (e.g., Sichuan and Tarim) in the wave of 
extrusion, it is not clear whether the crust of the southern 
CDB would thicken to greater than 60 km with time, as is 
the case for the northern CDB (Fig.  10b). Therefore, the 
CDB can be divided into two parts in terms of extrusion 
and crustal thickness: the northwestern and southeastern 
part. Although the two parts of the CDB rotate clockwise 
around the Eastern Himalayan Syntaxis (Wang et al. 2008, 
2014), their angular velocities are different, as observed 
from the results of GPS tracking (Shen et al. 2005).

The eastward extruded Tibetan lithosphere is expected to 
change direction toward the south and southwest because 
of resistance from the Sichuan Basin within the NE trend-
ing margin. Eastward arcs of negative and positive anoma-
lies (Fig. 8b) and 40–50 km Moho relief (Fig. 9a) near the 
Eastern Himalayan Syntaxis suggest that the effects of sub-
duction of the Burmese block in the lower crust (Socquet 
and Pubellier 2005; Wang et al. 2007) spread to the CDB. 
Thus, movement toward the south and southwest would 
cause the CDB to rotate clockwise around the Eastern 
Himalayan Syntaxis along the strike-slip faults (Royden 
et  al. 1997; Wang et  al. 2008). Multiple-order en echelon 
patterns of positive and negative anomalies across the Indo-
China block from west to east (Figs. 7b, 8a, b) suggest that 
the crust is folded, much like the results of plasticine simu-
lations by Tapponnier et  al. (1982), given the anticipated 

Fig. 10   a 3D map view of the regional topography and underlying 
Moho relief indicating the extrusion direction of the Tibetan Plateau 
(red arrow). b Schematic N–S cross section showing the extrusion 

direction of the Tibetan Plateau and crustal subdivisions of the north-
ern and southern Chuan-Dian block
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rheological behavior of the lower crust (Wang et al. 2007; 
Bai et al. 2010).

Unlike the Indo-China and Eastern Himalayas, the east-
ern margin of the Tibetan Plateau, i.e., Longmenshan fault, 
is a thrust-nappe structure. The Bayan Har block, situated 
between the East Kunlun fault and the Xianshuihe fault, 
is moving toward the southeast. The eastern Bayan Har 
block is divided into the Longmenshan sub-block (between 
102°E and Longmenshan fault) and the Aba sub-block 
(west 102°E) by the right-lateral strike-slip Longriba fault, 
which strikes NW–SE (Xu et al. 2008; Jiang et al. 2012). 
The anomalies of the fifth-order DWT details (Fig. 8b) in 
the Longmenshan sub-block are negative, indicating that 
the southeastward extrusion of the Bayan Har block is 
resisted intensely by the Sichuan Basin, resulting in the 
Longmenshan mountain uplift and southwestward flow of 
lower crustal matter along the Longmenshan fault (Clark 
et  al. 2000). The positive anomalies along the Longmen-
shan fault in the fifth-order DWT details (Fig. 8b) suggest 
that such material may be accumulated in the lower crust.

Conclusions

The discrete wavelet transform provides an effective 
method for interpreting the crustal structure based on grav-
ity data. Regional and local anomaly analysis of the crus-
tal structure and inverted Moho relief of the CDB, and 
surrounding regions shows that the Chuan-Dian region is 
closely correlated with the tectonic activities of the eastern 
Tibetan Plateau and the Eastern Himalayan Syntaxis. There 
are significant differences in crustal structure between the 
northern and southern portions of the CDB, from the local 
anomalies (Fig.  7b), the fifth-order detail (Fig.  8b) and 
Moho depth (Fig. 9a), supporting the division into two sub-
blocks by fault zones and providing a good indication of 
the regional tectonic setting. The topography, crustal struc-
tures and tectonic activities appear to mainly result from 
the eastward extrusion of the Tibetan lithosphere and east-
ward subduction of the Burmese block.
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