globalchange  > 科学计划与规划
项目编号: NE/H021078/1
项目名称:
Airborne geophysical investigations of basal conditions at flow transitions of outlet glaciers on the Greenland Ice Sheet
作者: Martin John Siegert
承担单位: University of Edinburgh
批准年: 2009
开始日期: 2010-01-10
结束日期: 2012-31-07
资助金额: GBP56093
资助来源: UK-NERC
项目类别: Research Grant
国家: UK
语种: 英语
特色学科分类: Geosciences&nbsp ; (95%) ; Marine environments&nbsp ; (5%)
英文摘要: The 1.7 million km2 Greenland Ice Sheet is divided into a series of major drainage basins, each typically about 50-100,000 km2 in area. Most of these basins drain into the marine waters of fjord systems via relatively narrow and heavily crevassed outlet glaciers that dissect the mountains fringing the island. Over the past few years it has become clear that the Ice Sheet is losing mass and has become a significant contributor to global sea-level rise. This is related to, first, the doubling in speed of several outlet glaciers, increasing ice flux to the sea and, secondly, a major increase in the area affected by summer melting and runoff from the ice-sheet surface. Both of these changes have taken place in the past decade and have been linked with warmer air and water temperatures over and around Greenland. A major question for both scientists and policymakers is how the Greenland Ice Sheet will continue to react to the temperature rises that are predicted for the coming century by a suite of climate models, particularly in the context that the Arctic is likely to warm at a greater rate than the global average due to the continuing loss of its surrounding sea-ice cover and the changes in ocean albedo and, therefore, energy balance that will result. We will acquire geophysical data from a series of ten outlet glaciers of the Greenland Ice Sheet using airborne ice-penetrating radar, laser altimeter, gravimeter, and magnetometer and GPS instruments. These glacier systems have been selected because: (a) they are major drainage basins within the ice sheet which provide a high ice flux to the sea; and (b) they represent different sub-environments within the Greenland Ice Sheet and its related climate and ocean setting. We will focus our investigations on three key areas of each outlet glacier: first, the heavily crevassed fast-flowing outlet glaciers themselves, that flow in narrow channels through Greenland's fringing mountains; secondly, an upper transition zone between the ice-sheet interior and these narrow outlet glaciers; and thirdly, the grounding zone marking the transition of fast-flowing outlet glaciers to floating ice tongues that are present at the head of many Greenland fjords. Our scientific objectives are: 1. To determine ice surface elevation and subglacial bed elevation, including measurement beneath areas of heavy crevassing in fast-flowing outlet glaciers. 2. To characterize the substrate beneath the ice, in particular whether it is crystalline bedrock or deformable sediments. 3. To establish the distribution of subglacial melting and characterize the subglacial hydrological system where water is present. 4. To identify the transition zones between inland ice, outlet glaciers and the grounding zone and reveal basal character changes associated with them. 5. To describe the three-dimensional nature of internal ice layering within transition zone from inland ice to outlet glacier to measure the distribution of accumulation, strain, and basal melting. This information will make a fundamental contribution to the computer modelling of ice sheets, and how Greenland in particular may respond in future to changes in air and ocean temperate over the coming decades. This because these models require information, known as boundary conditions, on the shape of the bed and also the processes that are going on there in order to make useful predictions. To date, we know little about, for example, the distribution of water beneath these outlet glaciers. The changing amount of ice lost from the ice sheet by surface melting and iceberg production is important, in turn, for predictions on the future contributions of Greenland to sea-level rise in a warming Arctic. This is of significance beyond the academic community. In the UK and elsewhere, governments at national and regional level are requiring information about rates of sea-level rise and the remediation measures, such as sea defences, that are needed.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/103869
Appears in Collections:科学计划与规划
气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: University of Edinburgh

Recommended Citation:
Martin John Siegert. Airborne geophysical investigations of basal conditions at flow transitions of outlet glaciers on the Greenland Ice Sheet. 2009-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Martin John Siegert]'s Articles
百度学术
Similar articles in Baidu Scholar
[Martin John Siegert]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Martin John Siegert]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.