DOI: 10.1016/j.atmosres.2018.02.020
Scopus记录号: 2-s2.0-85042674345
论文题名: Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria
作者: Sharifi E. ; Steinacker R. ; Saghafian B.
刊名: Atmospheric Research
ISSN: 1698095
出版年: 2018
卷: 206 起始页码: 46
结束页码: 63
语种: 英语
英文关键词: GPM constellation satellite
; IMERG
; Satellite precipitation products
; Statistical analysis
Scopus关键词: Distribution functions
; Gages
; Probability density function
; Rain
; Rain gages
; Satellites
; Statistical methods
; Time measurement
; Constellation satellites
; Cumulative distribution function
; Extreme precipitation events
; IMERG
; Low probability of detections
; Probability density functions (PDFs)
; Satellite precipitation estimates
; Satellite precipitation products
; Precipitation (meteorology)
英文摘要: Over the years, combinations of different methods that use multi-satellites and multi-sensors have been developed for estimating global precipitation. Recently, studies that have evaluated Integrated Multi-satellite Retrievals for GPM (IMERG) Final-Run (FR) version V-03D and other precipitation products have indicated better performance for IMERG-FR compared to other similar products in different climate regimes. This study comprehensively evaluates the two GPM-IMERG products, specifically IMERG-FR and IMERG-Real-Time (RT) late-run, against a dense station network (62 stations) in northeast Austria from mid-March 2015 to the end of January 2016 using different time-scales. Both products are examined against station data in capturing the occurrence and statistical characteristics of precipitation intensity. With regard to probability density functions (PDFs), the satellite precipitation estimate (SPE) products have detected more heavy and extreme precipitation events than the ground measurements. Both precipitation products at all time-scales, except for IMERG-RT 12-hourly and daily precipitation, capture less occurrence of precipitation than the station dataset for light precipitation. This partially explains the under-detection of precipitation events. For all time-scales, both IMERG products’ CDFs (Cumulative Distribution Function) are well above that of the stations’ precipitation. For lower precipitation levels, IMERG-RT is slightly below the IMERG-FR whereas IMERG-RT is above IMERG-FR at higher precipitation levels. Furthermore, for entire spectrum precipitation rates (P ≥ 0.1 mm), 1, 3, 6-hourly, IMERG-FR did not show a clear improvement of the Bias over IMERG-RT, while for 12-hourly and daily precipitation estimates, the bias in IMERG-FR has improved compared to IMERG-RT. In addition, IMERG-FR shows a considerable improvement in RMSE as compared to IMERG-RT. IMERG-FR, however, systematically underestimates moderate to extreme precipitation and overestimates light precipitation for all time scales against rain-gauges in northeast Austria. When comparing the bias, RMSE, and correlation coefficients, IMERG-FR has outperformed IMERG-RT particularly for 6-hourly, 12-hourly, and daily precipitation. Despite the general low probability of detection (POD) and threat score (TS) and the high false alarm ratio (FAR) within specified precipitation thresholds, the contingency table shows relatively acceptable values of the POD, TS and FAR for precipitation without classification. © 2018 Elsevier B.V.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/108902
Appears in Collections: 影响、适应和脆弱性 气候变化事实与影响
There are no files associated with this item.
作者单位: Department of Meteorology and Geophysics, University of Vienna, Austria; Department of Technical and Engineering, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
Recommended Citation:
Sharifi E.,Steinacker R.,Saghafian B.. Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria[J]. Atmospheric Research,2018-01-01,206