globalchange  > 影响、适应和脆弱性
DOI: 10.1007/s00382-017-4045-7
Scopus记录号: 2-s2.0-85039860459
论文题名:
East Asian winter monsoon forecasting schemes based on the NCEP’s climate forecast system
作者: Tian B.; Fan K.; Yang H.
刊名: Climate Dynamics
ISSN: 9307575
出版年: 2018
卷: 51, 期:2018-07-08
起始页码: 2793
结束页码: 2805
语种: 英语
英文关键词: CFSv2 ; East Asian winter monsoon ; Hybrid prediction ; Year-to-year increment method
Scopus关键词: air temperature ; annual variation ; climate prediction ; monsoon ; Northern Hemisphere ; sea ice ; sea surface temperature ; westerly ; winter ; Arctic Ocean ; East Siberian Sea ; Far East ; Laptev Sea ; Pacific Ocean ; Pacific Ocean (North)
英文摘要: The East Asian winter monsoon (EAWM) is the major climate system in the Northern Hemisphere during boreal winter. In this study, we developed two schemes to improve the forecasting skill of the interannual variability of the EAWM index (EAWMI) using the interannual increment prediction method, also known as the DY method. First, we found that version 2 of the NCEP’s Climate Forecast System (CFSv2) showed higher skill in predicting the EAWMI in DY form than not. So, based on the advantage of the DY method, Scheme-I was obtained by adding the EAWMI DY predicted by CFSv2 to the observed EAWMI in the previous year. This scheme showed higher forecasting skill than CFSv2. Specifically, during 1983–2016, the temporal correlation coefficient between the Scheme-I-predicted and observed EAWMI was 0.47, exceeding the 99% significance level, with the root-mean-square error (RMSE) decreased by 12%. The autumn Arctic sea ice and North Pacific sea surface temperature (SST) are two important external forcing factors for the interannual variability of the EAWM. Therefore, a second (hybrid) prediction scheme, Scheme-II, was also developed. This scheme not only involved the EAWMI DY of CFSv2, but also the sea-ice concentration (SIC) observed the previous autumn in the Laptev and East Siberian seas and the temporal coefficients of the third mode of the North Pacific SST in DY form. We found that a negative SIC anomaly in the preceding autumn over the Laptev and the East Siberian seas could lead to a significant enhancement of the Aleutian low and East Asian westerly jet in the following winter. However, the intensity of the winter Siberian high was mainly affected by the third mode of the North Pacific autumn SST. Scheme-I and Scheme-II also showed higher predictive ability for the EAWMI in negative anomaly years compared to CFSv2. More importantly, the improvement in the prediction skill of the EAWMI by the new schemes, especially for Scheme-II, could enhance the forecasting skill of the winter 2-m air temperature (T-2m) in most parts of China, as well as the intensity of the Aleutian low and Siberian high in winter. The new schemes provide a theoretical basis for improving the prediction of winter climate in China. © 2017, Springer-Verlag GmbH Germany, part of Springer Nature.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/109082
Appears in Collections:影响、适应和脆弱性
气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Atmospheric Sciences, Yunnan University, Kunming, 650091, China

Recommended Citation:
Tian B.,Fan K.,Yang H.. East Asian winter monsoon forecasting schemes based on the NCEP’s climate forecast system[J]. Climate Dynamics,2018-01-01,51(2018-07-08)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Tian B.]'s Articles
[Fan K.]'s Articles
[Yang H.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Tian B.]'s Articles
[Fan K.]'s Articles
[Yang H.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Tian B.]‘s Articles
[Fan K.]‘s Articles
[Yang H.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.