DOI: 10.1007/s00382-017-4007-0
Scopus记录号: 2-s2.0-85034846621
论文题名: Distinctive role of ocean advection anomalies in the development of the extreme 2015–16 El Niño
作者: Abellán E. ; McGregor S. ; England M.H. ; Santoso A.
刊名: Climate Dynamics
ISSN: 9307575
出版年: 2018
卷: 51, 期: 2018-05-06 起始页码: 2191
结束页码: 2208
语种: 英语
英文关键词: Extreme El Niño
; Kelvin and Rossby wave projections
; Meridional asymmetry
; Ocean currents
; Westerly wind anomalies
Scopus关键词: advection
; anomaly
; asymmetry
; El Nino
; extreme event
; heat flux
; Kelvin wave
; meridional circulation
; oceanic current
; Rossby wave
; westerly
; wind stress
; zonal wind
英文摘要: The recent 2015–16 El Niño was of comparable magnitude to the two previous record-breaking events in 1997–98 and 1982–83. To better understand how this event became an extreme event, we examine the underlying processes leading up to the peak of the event in comparison to those occurring in the 1997–98 and 1982–83 events. Differences in zonal wind stress anomalies are found to be an important factor. In particular, the persistent location of the zonal wind stress anomalies north of the equator during the two years prior to the 2015–16 peak contrasts the more symmetric pattern and shorter duration observed during the other two events. By using linear equatorially trapped wave theory, we determine the effect of these off-equatorial westerly winds on the amplitude of the forced oceanic Rossby and Kelvin wave response. We find a stronger upwelling projection onto the asymmetric Rossby wave during the 2-year period prior to the peak of the most recent event compared to the two previous events, which might explain the long-lasting onset. Here we also examine the ocean advective heat fluxes in the surface mixed layer throughout the event development phase. We demonstrate that, although zonal advection becomes the main contributor to the heat budget across the three events, meridional and vertical advective fluxes are significantly larger in the most recent event compared to those in 1997–98 and 1982–83. We further highlight the key role of advective processes during 2014 in enhancing the sea surface temperature anomalies, which led to the big El Niño in the following year. © 2017, Springer-Verlag GmbH Germany, part of Springer Nature.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/109132
Appears in Collections: 影响、适应和脆弱性 气候变化事实与影响
There are no files associated with this item.
作者单位: ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC, Australia
Recommended Citation:
Abellán E.,McGregor S.,England M.H.,et al. Distinctive role of ocean advection anomalies in the development of the extreme 2015–16 El Niño[J]. Climate Dynamics,2018-01-01,51(2018-05-06)