DOI: 10.1016/j.watres.2018.07.055
Scopus记录号: 2-s2.0-85050722905
论文题名: Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management
作者: He H. ; Jin H. ; Jeppesen E. ; Li K. ; Liu Z. ; Zhang Y.
刊名: Water Research
ISSN: 431354
出版年: 2018
卷: 144 起始页码: 304
结束页码: 311
语种: 英语
英文关键词: Climate warming
; Eutrophication
; Fish removal
; Shallow lakes
; Top-down control
Scopus关键词: Aquatic ecosystems
; Biomass
; Eutrophication
; Fish
; Lakes
; Nutrients
; Phytoplankton
; Thermal processing (foods)
; Tropics
; Biogeochemical cycling
; Climate warming
; Increased temperature
; Phytoplankton biomass
; Phytoplankton community
; Shallow lakes
; Top-down control
; Zooplanktivorous fish
; Plankton
; chlorophyll a
; lake water
; phosphorus
; biomass
; chlorophyll a
; community response
; crustacean
; cyprinid
; eutrophication
; growth
; lake
; mesocosm
; phytoplankton
; shallow water
; subtropical region
; temperature
; top-down control
; warming
; zooplankton
; Article
; climate
; controlled study
; copepod
; Daphnia
; fish
; lake
; mesocosm
; nonhuman
; nutrient
; phytoplankton
; priority journal
; warming
; water management
; water temperature
; zooplankton
; Daphnia
; Hypophthalmichthys nobilis
英文摘要: Although it is well established that climate warming can reinforce eutrophication in shallow lakes by altering top-down and bottom-up processes in the food web and biogeochemical cycling, recent studies in temperate zones have also shown that adverse effects of rising temperature are diminished in fishless systems. Whereas the removal of zooplanktivorous fish may be useful in attempts to mitigate eutrophication in temperate shallow lakes, it is uncertain whether similar mitigation might be achieved in warmer climates. We compared the responses of zooplankton and phytoplankton communities to climate warming in the presence and absence of fish (Aristichthys nobilis) in a 4-month mesocosm experiment at subtropical temperatures. We hypothesized that 1) fish and phytoplankton would benefit from warming, while zooplankton would suffer in fish-present mesocosms and 2) warming would favor zooplankton growth but reduce phytoplankton biomass in fish-absent mesocosms. Our results showed significant interacting effects of warming and fish presence on both phytoplankton and zooplankton. In mesocosms with fish, biomasses of fish and phytoplankton increased in heated treatments, while biomasses of Daphnia and total zooplankton declined. Warming reduced the proportion of large Daphnia in total zooplankton biomass, and reduced the zooplankton to phytoplankton biomass ratio, but increased the ratio of chlorophyll a to total phosphorus, indicating a relaxation of zooplankton grazing pressure on phytoplankton. Meanwhile, warming resulted in a 3-fold increase in TP concentrations in the mesocosms with fish present. The results suggest that climate warming has the potential to boost eutrophication in shallow lakes via both top-down (loss of herbivores) and bottom-up (elevated nutrient) effects. However, in the mesocosms without fish, there was no decline in large Daphnia or in total zooplankton biomass, supporting the conclusion that fish predation is the major driver of low large Daphnia abundance in warm lakes. In the fishless mesocosms, phytoplankton biomass and nutrient levels were not affected by temperature. Our study suggests that removing fish to mitigate warming effects on eutrophication may be potentially beneficial in subtropical lakes, though the rapid recruitment of fish in such lakes may present a challenge to success in the long-term. © 2018 Elsevier Ltd
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/112516
Appears in Collections: 气候减缓与适应
There are no files associated with this item.
作者单位: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, PB 6708, Netherlands; Department of Bioscience, Aarhus University, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100049, China; Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
Recommended Citation:
He H.,Jin H.,Jeppesen E.,et al. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management[J]. Water Research,2018-01-01,144