globalchange  > 气候减缓与适应
DOI: 10.1016/j.watres.2018.07.025
Scopus记录号: 2-s2.0-85052509665
论文题名:
Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam
作者: Wang H.; Wu Y.; Feng M.; Tu W.; Xiao T.; Xiong T.; Ang H.; Yuan X.; Chew J.W.
刊名: Water Research
ISSN: 431354
出版年: 2018
卷: 144
起始页码: 215
结束页码: 225
语种: 英语
英文关键词: Hydrogen generation ; Microplastics ; Photocatalysis ; Polymeric carbon nitride foam ; Resourcelization
Scopus关键词: Alkalinity ; Antibiotics ; Calcination ; Carbon nitride ; Chlorine compounds ; Condensation reactions ; Degradation ; Density functional theory ; Foams ; Hydrogen production ; Light ; Light absorption ; Magnetic moments ; Nitrides ; Photocatalysis ; Photocatalysts ; Polymers ; Reaction kinetics ; Reservoirs (water) ; Reverse osmosis ; Seawater ; Solar energy ; Solar power generation ; Thermal conductivity ; Wastewater reclamation ; Wastewater treatment ; Water pollution ; Water treatment ; Dissolved organic substances ; Hydrogen generations ; Large specific surface areas ; Microplastics ; Photocatalytic performance ; Resourcelization ; Reverse osmosis concentrates ; Tetracycline hydrochloride ; Deionized water ; adsorption ; catalysis ; catalyst ; chemical compound ; decomposition ; degradation ; energy efficiency ; experimental study ; foam ; hydrogen ; plastic ; pollutant removal ; polymer ; reaction kinetics ; temperature effect ; wastewater ; wastewater treatment ; water treatment
英文摘要: Water and energy are key sustainability issues that need to be addressed. Photocatalysis represents an attractive means to not only remediate polluted waters, but also harness solar energy. Unfortunately, the employment of photocatalysts remains a practical challenge in terms of high cost, low efficiency, secondary pollution and unexploited water matrices influence. This study investigated the feasibility of photocatalysis to both treat water and produce hydrogen with practical water systems. Polymeric carbon nitride foam (CNF) with large surface area and mesoporous structure was successfully prepared via the bubble-template effect of ammonium chloride decomposition during thermal condensation. The reaction kinetics, mechanisms, and effect of natural water matrices and wastewater on CNF-based photocatalytic removal of tetracycline hydrochloride (TC-HCl) were systematically investigated. Furthermore, the efficiency of clean hydrogen energy from natural water matrices and wastewater was also evaluated. It was found that the photocatalytic performance of CNF for TC-HCl removal was principally affected by calcination temperature in the presence of NH4Cl. The degradation rates of CNF-4 (calcined at 550 °C) were approximately 1.84, 2.49 and 7.47 times than that of the CNF-2 (calcined at 600 °C), CNF-1 (calcined at 500 °C) and GCN (without NH4Cl), respectively. Results indicate that the improved photocatalytic performance was predominantly ascribed to the large specific surface area, increased availability of exposed active sites, and enhanced transport and separation efficiency of the photogenerated carrier. Based on electron spin resonance, chemical trapping experiment and density functional theory calculation, photoinduced oxidizing species (·O2 − and holes) initially attacked the C-N-C fragment of TC molecules, which were finally mineralized to CO2, water and inorganic matters. Under the synergistic influence of water constituents (including acidity and alkalinity, ion species and dissolved organic substances), various water matrices greatly affected the degradation rate of TC-HCl, with the highest removal efficiency of 78.9% in natural seawater, followed by reservoir water (75.0%), tap water (62.3%), deionized water (49.8%), reverse osmosis concentrate (32.7%) and pharmaceutical wastewater (18.9%). Interestingly, low amounts of the emerging microplastics slightly improved TC-HCl removal, whereas high amounts (1.428 × 107 P/cm3) restricted removal due to light absorption and the intrinsic adsorption interaction. Moreover, the photocatalysts were able over repeated usage. Notably, the hydrogen yields rates of polymeric carbon nitride foam were 352.2, 299.8, 184.9 and 94.3 μmol/g/h in natural seawater, pharmaceutical wastewater, water from reservoir and tap water, respectively. This study proves the potential of novel nonmetal porous photocatalyst to simultaneously treat wastewater while converting solar energy into clean hydrogen energy. © 2018 Elsevier Ltd
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/112525
Appears in Collections:气候减缓与适应

Files in This Item:

There are no files associated with this item.


作者单位: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, United States; Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 639798, Singapore

Recommended Citation:
Wang H.,Wu Y.,Feng M.,et al. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam[J]. Water Research,2018-01-01,144
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Wang H.]'s Articles
[Wu Y.]'s Articles
[Feng M.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Wang H.]'s Articles
[Wu Y.]'s Articles
[Feng M.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Wang H.]‘s Articles
[Wu Y.]‘s Articles
[Feng M.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.