globalchange  > 气候变化事实与影响
DOI: 10.3390/w11030426
WOS记录号: WOS:000464535600003
论文题名:
A Simple Early Warning System for Flash Floods in an Ungauged Catchment and Application in the Loess Plateau, China
作者: Li, Zhehao1; Zhang, Hongbo1,2; Singh, Vijay P.3,4; Yu, Ruihong5; Zhang, Shuqi1
通讯作者: Zhang, Hongbo
刊名: WATER
ISSN: 2073-4441
出版年: 2019
卷: 11, 期:3
语种: 英语
英文关键词: critical water stage ; early warning system ; flash flood disaster ; Loess Plateau ; rainfall threshold ; ungauged catchment
WOS关键词: RAINFALL THRESHOLDS ; SOIL-MOISTURE ; PRECIPITATION ; MODEL ; STREAMFLOW
WOS学科分类: Water Resources
WOS研究方向: Water Resources
英文摘要:

Under climate change, flash floods have become more frequent and severe, and are posing a danger to society, especially in the ungauged catchments. The objective of this paper, is to construct a simple and early warning system, serving for flash floods risk management in the ungauged catchments of the Loess Plateau in China, and offer a reference for flash flood warning in other areas in the world. Considering the absence of hydrological data in the ungauged catchments, the early warning system for flash floods is established by combining the regional or watershed isograms of hydrological parameters and local empirical formulas. Therein, rainfall and water stage/flow are used as warning indices for real-time risk estimation of flash flood. For early warning, the disaster water stage was first determined according to the protected objects (e.g., residents and buildings), namely the critical water stage. The critical flow (flow threshold), was calculated based on the water stage, and the established relationship between water stage and flow using the cross-sectional measured data. Then, according to the flow frequency curve of the design flood, the frequency of critical flow was ascertained. Assuming that the rainfall and the flood have the same frequency, the critical rainfall threshold was calculated through the design rainstorm with the same frequency of the design flood. Due to the critical rainfall threshold being sensitive with different soil conditions, the design flood and frequency curve of flood flow were calculated under different soil conditions, and thus the rainfall threshold was given under different soil condition for early warning of the flash flood disaster. Taking two sections in Zichang County (within the Loess Plateau) as an example, we set the rainfall and water stage/flow thresholds to trigger immediate or preparation signals for the migration of the population along the river. The application of this method to the 7.26 flood events in 2017 in China, shows that the early warning system is feasible. It is expected that this simple early warning system can provide early warnings of flash floods in ungauged catchments in the Loess Plateau and other similar areas.


Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/130264
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.Changan Univ, Sch Environm Sci & Engn, Xian 710054, Shaanxi, Peoples R China
2.Minist Educ, Key Lab Subsurface Hydrol & Ecol Effect Arid Reg, Xian 710054, Shaanxi, Peoples R China
3.Texas A&M Univ, Dept Biol & Agr Engn, 400 Bizzell St, College Stn, TX 77843 USA
4.Texas A&M Univ, Zachry Dept Civil Engn, 400 Bizzell St, College Stn, TX 77843 USA
5.Inner Mongolia Univ, Coll Environm & Resources, Hohhot 010021, Peoples R China

Recommended Citation:
Li, Zhehao,Zhang, Hongbo,Singh, Vijay P.,et al. A Simple Early Warning System for Flash Floods in an Ungauged Catchment and Application in the Loess Plateau, China[J]. WATER,2019-01-01,11(3)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Li, Zhehao]'s Articles
[Zhang, Hongbo]'s Articles
[Singh, Vijay P.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Li, Zhehao]'s Articles
[Zhang, Hongbo]'s Articles
[Singh, Vijay P.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Li, Zhehao]‘s Articles
[Zhang, Hongbo]‘s Articles
[Singh, Vijay P.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.