globalchange  > 过去全球变化的重建
DOI: 10.5194/essd-11-823-2019
WOS记录号: WOS:000471246200001
论文题名:
Generating a rule-based global gridded tillage dataset
作者: Porwollik, Vera1; Rolinski, Susanne; Heinke, Jens; Mueller, Christoph
通讯作者: Porwollik, Vera
刊名: EARTH SYSTEM SCIENCE DATA
ISSN: 1866-3508
EISSN: 1866-3516
出版年: 2019
卷: 11, 期:2, 页码:823-843
语种: 英语
WOS关键词: CONSERVATION AGRICULTURE ; LAND-USE ; SOIL-EROSION ; CLIMATE-CHANGE ; MANAGEMENT ; SYSTEMS ; CROPLAND ; YIELD ; MODELS
WOS学科分类: Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences
WOS研究方向: Geology ; Meteorology & Atmospheric Sciences
英文摘要:

Tillage is a central element in agricultural soil management and has direct and indirect effects on processes in the biosphere. Effects of agricultural soil management can be assessed by soil, crop, and ecosystem models, but global assessments are hampered by lack of information on the type of tillage and their spatial distribution. This study describes the generation of a classification of tillage practices and presents the spatially explicit mapping of these crop-specific tillage systems for around the year 2005.


Tillage practices differ by the kind of equipment used, soil surface and depth affected, timing, and their purpose within the cropping systems. We classified the broad variety of globally relevant tillage practices into six categories: no-tillage in the context of Conservation Agriculture, traditional annual, traditional rotational, rotational, reduced, and conventional annual tillage. The identified tillage systems were allocated to gridded crop-specific cropland areas with a resolution of 5 arcmin. Allocation rules were based on literature findings and combine area information on crop type, water management regime, field size, water erosion, income, and aridity. We scaled reported national Conservation Agriculture areas down to grid cells via a probability-based approach for 54 countries. We provide area estimates of the six tillage systems aggregated to global and country scale. We found that 8.67Mkm(2) of global cropland area was tilled intensively at least once a year, whereas the remaining 2.65Mkm(2) was tilled less intensely. Further, we identified 4.67Mkm(2) of cropland as an area where Conservation Agriculture could be expanded to under current conditions.


The tillage classification enables the parameterization of different soil management practices in various kinds of model simulations. The crop-specific tillage dataset indicates the spatial distribution of soil management practices, which is a prerequisite to assess erosion, carbon sequestration potential, as well as water, and nutrient dynamics of cropland soils. The dynamic definition of the allocation rules and accounting for national statistics, such as the share of Conservation Agriculture per country, also allow for derivation of datasets for historical and future global soil management scenarios. The resulting tillage system dataset and source code are accessible via an open-data repository (DOIs:https://doi.org/10.5880/PIK.2019.009 and https://doi.org/10.5880/PIK.2019.010, Porwollik et al., 2019a, b).


Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/140306
Appears in Collections:过去全球变化的重建

Files in This Item:

There are no files associated with this item.


作者单位: 1.Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany
2.Leibniz Assoc, D-14412 Potsdam, Germany

Recommended Citation:
Porwollik, Vera,Rolinski, Susanne,Heinke, Jens,et al. Generating a rule-based global gridded tillage dataset[J]. EARTH SYSTEM SCIENCE DATA,2019-01-01,11(2):823-843
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Porwollik, Vera]'s Articles
[Rolinski, Susanne]'s Articles
[Heinke, Jens]'s Articles
百度学术
Similar articles in Baidu Scholar
[Porwollik, Vera]'s Articles
[Rolinski, Susanne]'s Articles
[Heinke, Jens]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Porwollik, Vera]‘s Articles
[Rolinski, Susanne]‘s Articles
[Heinke, Jens]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.