globalchange  > 影响、适应和脆弱性
DOI: 10.1088/1748-9326/10/9/095005
论文题名:
Examination of a climate stabilization pathway via zero-emissions using Earth system models
作者: Daisuke Nohara; J Tsutsui; S Watanabe; K Tachiiri; T Hajima; H Okajima; T Matsuno
刊名: Environmental Research Letters
ISSN: 1748-9326
出版年: 2015
发表日期: 2015-09-02
卷: 10, 期:9
语种: 英语
英文摘要:

Long-term climate experiments up to the year 2300 have been conducted using two full-scale complex Earth system models (ESMs), CESM1(BGC) and MIROC-ESM, for a CO2 emissions reduction pathway, termed Z650, where annual CO2 emissions peak at 11 PgC in 2020, decline by 50% every 30 years, and reach zero in 2160. The results have been examined by focusing on the approximate linear relationship between the temperature increase and cumulative CO2 emissions. Although the temperature increase is nearly proportional to the cumulative CO2 emissions in both models, this relationship does not necessarily provide a robust basis for the restriction of CO2 emissions because it is substantially modulated by non-CO2 forcing. CO2-induced warming, estimated from the atmospheric CO2 concentrations in the models, indicates an approximate compensation of nonlinear changes between fast-mode responses to concentration changes at less than 10 years and slow-mode response at more than 100 years due to the thermal inertia of the ocean. In this estimate, CESM1(BGC) closely approximates a linear trend of 1.7 °C per 1000 PgC, whereas MIROC-ESM shows a deviation toward higher temperatures after the emissions peak, from 1.8 °C to 2.4 °C per 1000 PgC over the range of 400–850 PgC cumulative emissions corresponding to years 2000–2050. The evolution of temperature under zero emissions, 2160–2300, shows a slight decrease of about 0.1 °C per century in CESM1(BGC), but remains almost constant in MIROC-ESM. The fast-mode response toward the equilibrium state decreases with a decrease in the airborne fraction owing to continued CO2 uptake (carbon cycle inertia), whereas the slow-mode response results in more warming owing to continued heat uptake (thermal inertia). Several specific differences are noted between the two models regarding the degree of this compensation and in some key regional aspects associated with sustained warming and long-term climate risks. Overall, elevated temperatures continue for at least a few hundred years under zero emissions.

URL: http://iopscience.iop.org/article/10.1088/1748-9326/10/9/095005
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/14310
Appears in Collections:影响、适应和脆弱性
气候减缓与适应

Files in This Item:
File Name/ File Size Content Type Version Access License
Nohara_2015_Environ._Res._Lett._10_095005.pdf(1571KB)期刊论文作者接受稿开放获取View Download

作者单位: Central Research Institute of Electric Power Industry, Abiko, Japan;Central Research Institute of Electric Power Industry, Abiko, Japan;Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan;Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan;Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan;Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan;Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Recommended Citation:
Daisuke Nohara,J Tsutsui,S Watanabe,et al. Examination of a climate stabilization pathway via zero-emissions using Earth system models[J]. Environmental Research Letters,2015-01-01,10(9)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Daisuke Nohara]'s Articles
[J Tsutsui]'s Articles
[S Watanabe]'s Articles
百度学术
Similar articles in Baidu Scholar
[Daisuke Nohara]'s Articles
[J Tsutsui]'s Articles
[S Watanabe]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Daisuke Nohara]‘s Articles
[J Tsutsui]‘s Articles
[S Watanabe]‘s Articles
Related Copyright Policies
Null
收藏/分享
文件名: Nohara_2015_Environ._Res._Lett._10_095005.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.