globalchange  > 全球变化的国际研究计划
DOI: 10.5194/essd-11-1263-2019
WOS记录号: WOS:000482519900001
论文题名:
Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
作者: Peltola, Olli1; Vesala, Timo2,3; Gao, Yao1; Raty, Olle4; Alekseychik, Pavel5; Aurela, Mika1; Chojnicki, Bogdan6; Desai, Ankur R.7; Dolman, Albertus J.8; Euskirchen, Eugenie S.9; Friborg, Thomas10; Goeckede, Mathias11; Helbig, Manuel12,13; Humphreys, Elyn14; Jackson, Robert B.15,16; Jocher, Georg17,31; Joos, Fortunat18,19; Klatt, Janina20; Knox, Sara H.21; Kowalska, Natalia6,31; Kutzbach, Lars22; Lienert, Sebastian18,19; Lohila, Annalea1,2; Mammarella, Ivan2; Nadeau, Daniel F.23; Nilsson, Mats B.17; Oechel, Walter C.24,25; Peichl, Matthias17; Pypker, Thomas26; Quinton, William27; Rinne, Janne28; Sachs, Torsten29; Samson, Mateusz6; Schmid, Hans Peter20; Sonnentag, Oliver13; Wille, Christian29; Zona, Donatella24,30; Aalto, Tuula1
通讯作者: Peltola, Olli
刊名: EARTH SYSTEM SCIENCE DATA
ISSN: 1866-3508
EISSN: 1866-3516
出版年: 2019
卷: 11, 期:3, 页码:1263-1289
语种: 英语
WOS关键词: NET ECOSYSTEM EXCHANGE ; WATER-TABLE POSITION ; CARBON-DIOXIDE ; VASCULAR PLANTS ; CH4 EMISSION ; CLIMATE-CHANGE ; GAS ANALYZERS ; SPATIOTEMPORAL DYNAMICS ; ENVIRONMENTAL CONTROLS ; SPATIAL VARIABILITY
WOS学科分类: Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences
WOS研究方向: Geology ; Meteorology & Atmospheric Sciences
英文摘要:

Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process ("bottom-up") or inversion ("top-down") models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45 degrees N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash-Sutcliffe model efficiency = 0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3-41.2, 95% confidence interval calculated from a RF model ensemble), 31 (21.4-39.9) or 38 (25.9-49.5) Tg(CH4) yr(-1). To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163.


Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/145680
Appears in Collections:全球变化的国际研究计划

Files in This Item:

There are no files associated with this item.


作者单位: 1.Finnish Meteorol Inst, Climate Res Programme, POB 503, FIN-00101 Helsinki, Finland
2.Univ Helsinki, Fac Sci, Inst Atmosphere & Earth Syst Res Phys, POB 68, FIN-00014 Helsinki, Finland
3.Univ Helsinki, Fac Agr & Forestry, Inst Atmospher & Earth Syst Res Forest Sci, POB 27, FIN-00014 Helsinki, Finland
4.Finnish Meteorol Inst, Meteorol Res, POB 503, FIN-00101 Helsinki, Finland
5.Nat Resources Inst Finland LUKE, Helsinki 00790, Finland
6.Poznan Univ Life Sci, Fac Environm Engn & Spatial Management, Dept Meteorol, PL-60649 Poznan, Poland
7.Univ Wisconsin, Dept Atmospher & Ocean Sci, 1225 W Dayton St, Madison, WI 53706 USA
8.Vrije Univ Amsterdam, Fac Sci, Dept Earth Sci, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands
9.Univ Alaska Fairbanks, Inst Arctic Biol, 2140 Koyukuk Dr, Fairbanks, AK 99775 USA
10.Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark
11.Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany
12.McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON L8S 4K1, Canada
13.Univ Montreal, Dept Geog, Montreal, PQ H2V 3W8, Canada
14.Carleton Univ, Dept Geog & Environm Studies, Ottawa, ON K1S 5B6, Canada
15.Stanford Univ, Woods Inst Environm, Dept Earth Syst Sci, Stanford, CA 94305 USA
16.Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA
17.Swedish Univ Agr Sci, Dept Forest Ecol & Management, Umea, Sweden
18.Univ Bern, Phys Inst, Climate & Environm Phys, Bern, Switzerland
19.Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
20.Karlsruhe Inst Technol, Inst Meteorol & Climatol Atmospher Environm Res I, Kreuzeckbahnstr 19, D-82467 Garmisch Partenkirchen, Germany
21.Univ British Columbia, Dept Geog, Vancouver, BC V6T 1Z2, Canada
22.Univ Hamburg, Ctr Earth Syst Res & Sustainabil, Inst Soil Sci, Allende Pl 2, D-20146 Hamburg, Germany
23.Univ Laval, Dept Civil & Water Engn, Quebec City, PQ G1V 0A6, Canada
24.San Diego State Univ, Dept Biol, Global Change Res Grp, San Diego, CA 92182 USA
25.Univ Exeter, Coll Life & Environm Sci, Dept Geog, Exeter EX4 4RJ, Devon, England
26.Thompson Rivers Univ, Dept Nat Resource Sci, Kamloops, BC V2C 0C8, Canada
27.Wilfrid Laurier Univ, Cold Reg Res Ctr, Waterloo, ON N2L 3C5, Canada
28.Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
29.GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany
30.Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England
31.Czech Acad Sci, Global Change Res Inst, Dept Matter & Energy Fluxes, Belidla 986-4a, Brno 60300, Czech Republic

Recommended Citation:
Peltola, Olli,Vesala, Timo,Gao, Yao,et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations[J]. EARTH SYSTEM SCIENCE DATA,2019-01-01,11(3):1263-1289
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Peltola, Olli]'s Articles
[Vesala, Timo]'s Articles
[Gao, Yao]'s Articles
百度学术
Similar articles in Baidu Scholar
[Peltola, Olli]'s Articles
[Vesala, Timo]'s Articles
[Gao, Yao]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Peltola, Olli]‘s Articles
[Vesala, Timo]‘s Articles
[Gao, Yao]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.