Snow depth is an important parameter to characterize snow features, and it is also one of the most sensitive factors of regional response to climate change. Based on the daily dataset of snow depth from 1979 to 2010,the spatial and temporal variations and distribution anomaly of snow depth over the Qinghai-Tibetan Plateau in China were analyzed with the use of spatial and statistics analysis function of GIS. The results showed that, during the period from 1979 to 2010, snow depth increased obviously and significantly with the rate of 0.26 cm/(10a) in the Qinghai-Tibetan Plateau, and especially the snow depth in the alpine desert zone in Kunlun Mountains increased most obviously with the rate of 0.73 cm/(10a), and it decreased most clearly with the rate of-0.34 cm/(10a) in the montane evergreen broad-leaved forest in south side of eastern Himalayas. Snow depth gradually increased from the 1980s to the 1990s, while it changed stably in the early 21th century. The results indicated that monthly average snow depth started to rise from September, reached a maximum in January, and then declined to the minimum in August. From the perspective of seasons, snow depth rose, particularly in winter with the rate of 0.57 cm/(10a), and increased most obviously in Ali, north of Kunlun Mountains and the alpine desert zone in Kunlun Mountains. Among the four seasons, spring mean snow depth contributed most significantly to the annual situation, with the correlation coefficient between them up to 0.885. As far as the spatial distribution is concerned, the deeper snow depth lied in the southeast, the western and southern areas of the Qinghai-Tibetan Plateau; the area with an annual upward trend accounted for 67.1%, of which 91.3% is the mild and moderate increase which mainly occurred in the north and west of Qinghai-Tibetan Plateau; moreover, the maximum snow depth varied between-0.1 and 0.1 cm/a, which was on the rise in the north wing of the Kunlun Mountain, the mountainous region of the Qaidam Basin, and south of Qiangtang Plateau where the snow depth mildly increased; the sensitive areas of distribution anomaly of snow depth were in the alpine shrub of Guoluo-Naqu region, south Qinghai and the Qiangtang Plateau.