globalchange  > 气候变化与战略
CSCD记录号: CSCD:5189610
论文题名:
基于涡度相关通量数据的植被最大光能利用率反演硏究
其他题名: INVERSION OF THE MAXIMUM LIGHT USE EFFICIENCY USING EDDY COVARIANCE FLUX OBSERVATIONS
作者: 张强1; 张黎1; 何洪林1; 韩士杰2; 李英年3; 欧阳竹1; 石培礼1; 王辉民1; 郝彦宾4; 张一平5; 闰俊华6
刊名: 第四纪研究
ISSN: 1001-7410
出版年: 2014
卷: 34, 期:4
语种: 中文
中文关键词: CASA模型 ; 马尔科夫链-蒙特卡罗方法 ; 参数估计
英文关键词: GPP ; CASA model ; Markov Chain Monte Carlo method ; GPP ; parameter estimation
WOS学科分类: ECOLOGY
WOS研究方向: Environmental Sciences & Ecology
中文摘要: 准确估计和预测陆地生态系统碳循环时空变化是预测气候变化的基础,也是目前全球变化研究中最为重要的前沿领域之一。最大光能利用率(epsilon_(max))是遥感估算陆地生态系统初级生产力的关键参数之一,本研究基于 CASA(Carnegie-Ames-Stanford Approach)模型,采用马尔科夫链-蒙特卡罗(Markov Chain Monte Carlo,简称 MCMC)方法,利用中国陆地生态系统通量观测研究网络(ChinaFLUX)8个野外台站的涡度相关通量观测数据epsilon_(max)对进行反演,得到epsilon_(max)的最优估计值及其不确定性,并利用优化后的epsilon_(max)对2003~2008年各生态系统总初级生产力(Gross Primary Productivity,简称GPP)及其不确定性进行了模拟。结果表明:8个生态系统epsilon_(max)后验估计结果均呈近似正态分布,森林、农田和草地生态系统epsilon_(max)分别为0.7370.026-0.8500.035g C/MJ?PAR, 1.056 0.090 g C/MJ?PAR和0.1990.068~0.4690.043g C/MJ?PAR;epsilon_(max)估计的不确定性将导致内蒙、当雄和海北草地生态系统GPP年总量的模拟值产生9.17%~14.20%的误差,长白山、鼎湖山、千烟洲和西双版纳4个森林生态系统 GPP年总量的误差为3.52%~7.79%,禹城农田生态系统GPP年总量的误差为8.52%。对epsilon_(max)进行优化后,GPP年总量模拟值的相对误差显著降低,有效改善了原模型对内蒙草地生态系统GPP年总量的高估和除当雄草地生态系统外其他6个生态系统GPP年总量的低估。
英文摘要: Accurate estimation and forecasting of terrestrial ecosystem dynamic carbon cycles and its spatial-temporal pattern are crucial for climate prediction in the context of global change. The maximum light use efficiency (epsilon_(max)) is one of key parameters of remote sensing models to estimate primary production in terrestrial ecosystems. Based on the CASA model and eddy covariance flux observations at 8 ChinaFLUX sites ( Changbaishan temperate mixed forest, Qianyanzhou subtropics evergreen needle leaf forest, Dinghushan subtropics evergreen broadleaf and needle leaf mixed forest, Xishuangbanna tropical evergreen broadleaf forest, Inner Mongolia typical temperate grassland, Haibei alpine meadow, Dangxiong alpine steppe-meadow and Yucheng warmer temperate dry farming cropland) , we used the Markov Chain Monte Carlo ( MCMC) method to inverse epsilon_(max) and calculated the optimum values and uncertainties from the posterior probability distributions. Using optimized values of epsilon_(max),we modeled the gross primary production (GPP) and uncertainties for each ecosystem in 2003~2008. The results show that estimated posterior probability distributions of epsilon_(max) at eight sites followed approximately normal distributions. Estimated values of e_(max) were 0. 737 0.026 ~0. 850 0. 035g C/MJ PAR at forest sites, 1. 0560. 090g C/MJ PAR at cropland site, and 0. 1990. 068~0. 4690. 043g C/MJ PAR at grassland sites. The uncertainties of modeled annual GPP caused by the error of estimating epsilon_(max) ranged from 9. 17% to 14. 20% at three grassland sites, 3. 52% to 7. 79% at four forest sites, and 8. 52% at cropland site. The relative error of annual GPP was reduced after using optimized epsilon_(max) values. The optimization of epsilon_(max) improved the original model that overestimated annual GPP in Inner Mongolia grassland ecosystem and underestimated in the other six ecosystems except Dangxiong grassland ecosystem.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/147672
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: 1.中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国
2.中国科学院沈阳应用生态研究所, 沈阳, 辽宁 110016, 中国
3.中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国
4.中国科学院大学, 北京 100049, 中国
5.中国科学院西双版纳热带植物园, 昆明, 云南 650223, 中国
6.中国科学院华南植物园, 广州, 广东 510650, 中国

Recommended Citation:
张强,张黎,何洪林,等. 基于涡度相关通量数据的植被最大光能利用率反演硏究[J]. 第四纪研究,2014-01-01,34(4)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[张强]'s Articles
[张黎]'s Articles
[何洪林]'s Articles
百度学术
Similar articles in Baidu Scholar
[张强]'s Articles
[张黎]'s Articles
[何洪林]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[张强]‘s Articles
[张黎]‘s Articles
[何洪林]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.