As the second largest fresh lake in China, Dongting Lake plays a significant role in regulating regional climate. However, due to global warming and other factors, its responses to climate change are not consistent within the Dongting area. For a better understanding of the land surface temperature (LST) change of the Dongting Lake area and its responses to global warming, and also for a better prediction of the LST variation trend, the LST of Dongting Lake area was retrieved using wintertime data of the 12 Landsat TM/ETM+ thermal infrared band images in 1995, 2004 and 2013. The standardized processing of retrieved LST was conducted and the LST grade maps were developed through standardized deviation classification. The LST temporal and spatial variation characteristic was analyzed through area statistic and straight comparison of the three LST grade maps. And the influential factors of LST variation were analyzed through normalized difference vegetation index (NDVI), rainfall data, DEM, gradient and other relevant data. The result shows that: (1) The area of each LST grade in Dongting Lake is of the normal distribution, and it mainly consists of middle temperature area, higher temperature area and lower temperature area. In terms of spatial distribution, the lower temperature area is mainly in water, and there is no distinct distribution characteristic in higher temperature area; (2)Impacted by the rain and snow, the range of high temperature area decreases in 2004.The proportion of decreased area from large to small in turn is West Dongting Lake(5.38%) to South Dongting Lake(2.12%) to East Dongting Lake(0.71%), suggesting that the cold air flow influences the West Dongting Lake the most, the East the least; (3)The range of high temperature area increases in 2013,and the proportion of increased area from small to large is West Dongting Lake(2.21%) to South Dongting Lake(2.38%) to East Dongting Lake(2.68%), suggesting that the LST of East Dongting Lake is greatly affected by the Three Gorges Reservior; (4)The correlation between NDVI and LST is non-significant, while gradient and elevation are in positive correlation with temperature, which indicates that gradient can effectively reduce the impact of cold air flow on temperature. And the high temperature in higher elevation and sunny slope indicate that the LST is greatly affected by solar radiation.