globalchange  > 气候变化与战略
CSCD记录号: CSCD:5321290
论文题名:
基于阈值法的山区森林常绿、落叶特征遥感自动识别方法以贡嘎山地区为例
其他题名: An practical method for automatically identifying the evergreen and deciduous characteristic of forests at mountainous areas : a case study in Mt.Gongga Region
作者: 雷光斌1; 李爱农1; 边金虎1; 张正健1; 张伟1; 吴炳方2
刊名: 生态学报
ISSN: 1000-0933
出版年: 2014
卷: 34, 期:24, 页码:1122-1132
语种: 中文
中文关键词: 常绿 ; 落叶 ; NDVI差值 ; 森林生态系统 ; 遥感
英文关键词: evergreen forest ; deciduous forest ; multi-temporal ndvi ; forest ecosystem ; remote sensing
WOS学科分类: MEDICINE GENERAL INTERNAL
WOS研究方向: General & Internal Medicine
中文摘要: 森林的常绿、落叶特征是土地覆被产品的重要属性。由于山区地形复杂,地表遥感辐射信号地形效应明显,导致山区森林常绿、落叶特征遥感自动识别一直是难点。提出了一种基于阈值法的山区森林常绿、落叶特征遥感自动识别简单实用方法。该方法利用多源、多时相遥感影像,选择归一化植被指数(NDVI)为指标,通过统计参考样本的NDVI在生长季和非生长季的差异,自动找出区分常绿、落叶特征的阈值,基于判别规则识别山区森林常绿、落叶特征。以贡嘎山地区为例,分别以多时相Landsat TM影像(简称TM)、多时相环境减灾卫星影像(简称HJ)为单源数据,多时相的HJ、TM组合影像为多源数据,验证该方法的有效性。实验结果表明,该方法能够有效识别山区森林常绿、落叶特征,总体精度达到93.87%,Kappa系数为0.87。该方法适用于山区大面积森林常绿、落叶特征遥感自动提取,已被成功应用于生态十年专项西南地区土地覆被数据的生产。
英文摘要: Land cover products are the important background for researches such as climate change, material and energy cycle, eco-environment evaluation, land surface process modeling, eco-parameters inversion, and so on. The evergreen and deciduous characteristic of forests is one of the most important attributes for land cover products. But it is still a challenge how to efficiently distinguish the evergreen and deciduous characteristic of forests using remote sensing technology at regional or global scales. Especially in the mountainous areas, due to the abundant biodiversity and heterogeneous landscape patterns caused by unique climate, eco-environmental conditions, and long-term and persistent human disturbances, it is usually more difficult to automatically identify the evergreen and deciduous characteristic of forests than other regions. This paper proposed a simple,practical and automatic method to identify the evergreen and deciduous characteristic of forests in mountainous areas. The NDVI ( Normalized Difference Vegetation Index) which is the best indicator to represent the growth state of vegetation was selected as an index,and the evergreen needleleaf forest was then selected as reference sample in the proposed method. Firstly, a preliminary map of forest types must be produced by multi-source and multi-temporal remote sensing images through the object-oriented classification method. The frequency histogram of the NDVI_D (the differences of NDVI) between growing season and non-growing season of needleleaf forests obtained from the preliminary map was used to choose the threshold value. The evergreen and deciduous characteristic of forests were accurately distinguished by threshold rules at last. For the areas covered with clouds, seasonal snows and shadows, the evergreen and deciduous characteristics of forests were replaced by the characteristics of its surrounding forests. Choosing the proper threshold values and building the distinguished rules are the cores of this method. This paper took Mt. Gongga as study area,the Landsat TM images, multi-spectral HJ ( Chinese small constellation of environmental and disaster mitigation) CCD images and the combined Landsat TM and HJ images to respectively validate the effectiveness of this method. The validation results showed that the proposed method in this paper could effectively identify evergreen and deciduous characteristic of forests in mountainous areas. The total accuracy of identification results was 93.87% and the Kappa coefficient was 0.87. The time phase of remote sensing images,cloud contamination,seasonal snows cover,and shadows cast by mountains and clouds are the major factors affecting the identification accuracy. To use the proposed method, both the time phase and quality of remote sensing images need to be considered. Meanwhile,the remote sensing images covered with clouds or seasonal snows need try to be avoided. This method can be used not only in mountainous areas, but also in the plain or hill regions. However,it is still necessary to choose proper land cover type like the evergreen needleleaf forests in mountainous areas as the reference sample when it is applied in plain and hill regions. The reference sample must geographically widely distributes in the whole area and has small spectral changes in the entire growth cycle. This method is expected suitable for automatic identification the evergreen and deciduous characteristic of forests at large area and had been successfully applied in the National Ecological Environment Decade of Change (2000-2010) specific project of MEP&CAS to map the land covers in Southwestern China.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/148300
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: 1.中国科学院水利部成都山地灾害与环境研究所, 成都, 四川 610041, 中国
2.中国科学院遥感与数字地球研究所, 北京 100101, 中国

Recommended Citation:
雷光斌,李爱农,边金虎,等. 基于阈值法的山区森林常绿、落叶特征遥感自动识别方法以贡嘎山地区为例[J]. 生态学报,2014-01-01,34(24):1122-1132
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[雷光斌]'s Articles
[李爱农]'s Articles
[边金虎]'s Articles
百度学术
Similar articles in Baidu Scholar
[雷光斌]'s Articles
[李爱农]'s Articles
[边金虎]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[雷光斌]‘s Articles
[李爱农]‘s Articles
[边金虎]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.