globalchange  > 气候变化与战略
CSCD记录号: CSCD:5116693
论文题名:
气候和人类因素在黄土高原西北部植被变化中的贡献率研究
其他题名: Contributions of Climate and Human to Vegetation Variation on Northwest Loess Plateau
作者: 孙建国1; 张卓1; 韩惠1; 颜长珍2
刊名: 遥感信息
ISSN: 1000-3177
出版年: 2014
卷: 29, 期:2, 页码:1178-1183
语种: 中文
中文关键词: 植被变化 ; 气候变化 ; 人类活动 ; 去趋势回归残差法 ; 黄土高原西北部
英文关键词: vegetation variation ; climate change ; human activity ; detrended regression residuals method ; northwest loess plateau
WOS学科分类: REMOTE SENSING
WOS研究方向: Remote Sensing
中文摘要: 定量区分气候和人类因素在黄土高原西北部植被变化中的贡献率,对该区正在开展的退耕还林(草)工程具有重要指导意义。回归残差法是当前该领域使用的主要方法之一,但它有混淆气候变化和人类活动作用的内在风险。本文提出一种旨在克服该缺陷的去趋势回归残差法,即利用去趋势之后的植被和气候数据建立回归模型,再将原始气候数据代入模型得到模拟植被并进行残差趋势分析。基于SPOT VEGETATION NDVI时间序列的研究结果显示:(1)在气候变化趋势性明显时,去趋势回归残差法优于常规方法;(2)近15年黄土高原西北部植被活动整体上呈增强态势,这种增强主要由人类因素所致,贡献率达92%,气候变化的作用较弱,贡献率仅为8%。
英文摘要: To quantitatively differentiate the contributions of climate and human being to vegetation variation on the northwest of loess plateau is significant to the ongoing vegetation restoration projects.This paper puts forward a method of detrended regression residuals methodto eliminate the effect of a common trend.First use the trend-eliminated data of plants and climate to construct regression model and then use the original climate data to simulate the plants and conduct residual analysis.The spot vegetation NDVI based on the experiments of time series shows that,thedetrended regression residuals method is superior to the conventional methods.The recent 15-year vegetation on the northwestern loess plateau activity has been generally bettering,due to a human contribution rate of 92%and a climate contribution of 8%.Meanwhile,the two effects showed great spatial heterogeneity.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/148547
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: 1.兰州交通大学测绘与地理信息学院, 兰州, 甘肃 730070, 中国
2.中国科学院寒区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国

Recommended Citation:
孙建国,张卓,韩惠,等. 气候和人类因素在黄土高原西北部植被变化中的贡献率研究[J]. 遥感信息,2014-01-01,29(2):1178-1183
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[孙建国]'s Articles
[张卓]'s Articles
[韩惠]'s Articles
百度学术
Similar articles in Baidu Scholar
[孙建国]'s Articles
[张卓]'s Articles
[韩惠]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[孙建国]‘s Articles
[张卓]‘s Articles
[韩惠]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.