globalchange  > 气候变化与战略
CSCD记录号: CSCD:5574191
论文题名:
气候变化时港口极端高水位重现期的预测分析
其他题名: Prediction analysis of return period of extreme high water level in port with climate change
作者: 蔡永庆; 周春辉; 文元桥; 杜磊
刊名: 大连海事大学学报
ISSN: 1006-7736
出版年: 2015
卷: 41, 期:4, 页码:1324-1333
语种: 中文
中文关键词: 气候变化 ; 港口极端高水位 ; 重现期 ; 预测分析 ; 灰色均生函数模型 ; 耿贝尔曲线法
英文关键词: climate change ; extreme high water level ; recurrence period ; prediction analysis ; model of grey-mean generating function ; Gumbel curve method
WOS学科分类: ECONOMICS
WOS研究方向: Business & Economics
中文摘要: 以IPCC第五次评估报告发布的气候情景RCP2.6为背景,利用浙江乍浦1954-2012年的最高潮位数据建立灰色均生函数模型,对乍浦未来几十年的最高水位进行预测,通过耿贝尔曲线法计算海平面上升不同情况下的极端高水位的重现期.结果表明:灰色均生函数模型在极端高水位的模拟和预测方面具有较高的精度,但其对极值的预测略有欠缺,更适用于平均态的预测;随着气候的变化,极端高水位的重现期发生明显变化,二三十年后原百年一遇的极端高水位可能变为二三十年左右一遇.
英文摘要: Taking the climate scenarios RCP2.6 released by IPCC AR5 as background,the highest water level of ZHAPU in the coming decades was predicted by using model of grey-mean generating function based on the highest water level data of ZHAPU in Zhejiang province during 1995 to 2012, and the recurrence intervals of the extreme high water level of ZHAPU during different predictive periods were calculated by Gumbel curve method according to different sea level rise situations. Results show that the model of grey-mean generating function has higher accuracy and variability in simulation and prediction of extreme high water level, but there is a slight lack of forecasting extreme value, and it is more suitable for average state forecast. The recurrence period of extreme high water level is going to change dramatically with climate change, and after two or three decades, the return period of extreme high water level maybe change from a hundred year to twenty or thirty years or so.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/149060
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: 武汉理工大学航运学院, 湖北省内河航运技术重点实验室, 武汉, 湖北 430063, 中国

Recommended Citation:
蔡永庆,周春辉,文元桥,等. 气候变化时港口极端高水位重现期的预测分析[J]. 大连海事大学学报,2015-01-01,41(4):1324-1333
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[蔡永庆]'s Articles
[周春辉]'s Articles
[文元桥]'s Articles
百度学术
Similar articles in Baidu Scholar
[蔡永庆]'s Articles
[周春辉]'s Articles
[文元桥]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[蔡永庆]‘s Articles
[周春辉]‘s Articles
[文元桥]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.