The Qinghai-Tibet Plateau is an area sensitive to global climate change, and its wetland status plays an important role in the ecological security of the Plateau. Based on the remote sensing data of MSS in 1975, TM in 1990, ETM in 2000 and CBERS in 2006, the author established the interpretation keys, and obtained the wetland information data of the four periods by visual and human-computer interactive interpretation,in combination with the field data accumulated in quite a few years. The annual average precipitation and temperature spatial data were obtained by Kriging spatial interpolation processing for each year from 1962 to 2007 in the Qinghai-Tibet Plateau. With the phase distribution of the remote sensing data as the control layer, the temperature mosaic images of four periods and the precipitation mosaic images were generated by Grid computation using ArcInfo software. Using the pixel-based correlation analysis, the partial correlation analysis and multiple correlation analysis, the author analyzed quantitatively the relationship of spatial response between wetland change and climatic factors (temperature and precipitation) with AML macro language. The results show that the total area of wetlands decreased continuously in the Qinghai-Tibet Plateau from 1975 to 2000, but the total area of wetlands increased after 2000. The responses of wetland change to precipitation in the Chaidam Basin, Hexi Corridor and the Yellow River Basin characterized by dry climate are sensitive. Following the overall warming in the Qinghai-Tibet Plateau, the responses of the changes of the wetland supplied by the glacial melt water to the temperature of the region are sensitive, especially in the case of the large magnitude of warming in the low-temperature region.