The aim of this project was to elucidate the differences of soil properties and vegetation characteristics between Horqin sandy grassland and Mu Us sandy grassland, in order to provide the basis for the recovery of degraded sandy ecosystems, for the management and utilization, and for the strategies to climate changes in northern China. An investigation on soil physical-chemical properties and vegetation diversity indices were carried out in the two sandy grasslands. The results were shown that the soil water content (t=7.318, P=0.000), organic carbon (t=6.395, P=0.000) and total nitrogen (t=4.532, P=0.003) and soil C/N (t=2.491, P=0.041) were markedly higher in Horqin sandy grassland with much rainfall (397 mm) compared with the relatively arid Mu Us sandy grassland (292 mm), with the 2.5, 2.5, 2.2, 1.2 times more for the former than the latter, respectively. Soil pH (t=-39.576, P=0.000), electrical conductivity (t=-10.031, P=0.000) and temperature (t=-11.559, P=0.000) was markedly lower in Horqin sandy grassland with low air temperature (Multi-annual average value, 6.3 ℃) compared with the hot Mu Us sandy grassland (7.7 ℃), with the 1.2, 1.8, 1.1 times more for the latter than the former, respectively. Plant density(t=-7.774, P=0.000), and Simpson index (t=-4.066, P=0.004) was markedly lower in Horqin sandy grassland compared with Mu Us sandy grassland, with the 10, 2 times more for the latter than the former, respectively. Whereas, plant height (t=7.003, P=0.000) and evenness index (t=2.829, P=0.025) was markedly higher in Horqin sandy grassland compared with Mu Us sandy grassland, with the 1.7, 1.4 times more for the former than the latter, respectively. However, no significant (P>0.05) differences in plant richness and Shannon index were found between these two sandy grassland. In conclusion, the changes of rainfall amount and temperature was found to indicate marked impact on both the soil physical-chemical properties and plant community structure, whereas the effect on plant diversity was limited and depended much on a threshold of water and temperature levels.