Based on the remote sensing data of arable land spatial distribution in China in 2010, and meteorological data, soil data and other data from 1960 to 2010, using GAEZ (Global Agro-Ecological Zones) model, we took into account of the light, temperature, water, CO_2 concentration, agro- climatic constraints, soil, topography and other factors to estimate Chinese maize production potential, and analyzed the spatial and temporal patterns of Chinese maize production potential caused by climate change in the past 50 years. Studies have shown that: 1) In 2010, the total production potential of maize in China is 834 million tons, and there are significant spatial differences of maize production potential, which gradually decreases from east to west; the total production potential of maize in Northeast China Plain is the highest, reaching 197 million tons; maize production potential in Qinghai-Tibet Plateau is the minimum. 2) In the past 50 years both the maize production potential and total production potential of China showed decreasing trends. 3) The changes of maize production potential and total production potential in China have great regional differences. Northeast China Plain has the greatest increase of both the maize production potential and the total production potential; changes in other districts are relatively smaller. This study reveals the temporal and spatial variations of Chinese maize production potential on the background of climate change in the past 50 years. It provides a scientific basis for exploring how to adapt to climate change, how to raise the level of Chinese maize production and how to guide maize production and management.