globalchange  > 气候变化与战略
CSCD记录号: CSCD:5788980
论文题名:
基于MODIS数据和BFAST方法的植被变化监测
其他题名: Monitoring the changes of vegetation based on MODIS data and BFAST methods
作者: 刘宝柱; 方秀琴; 何祺胜; 荣祁远
刊名: 国土资源遥感
ISSN: 1001-070X
出版年: 2016
卷: 28, 期:3, 页码:2156-2167
语种: 中文
中文关键词: 时间序列 ; 变化监测 ; 突变点
英文关键词: NDVI ; BFAST ; NDVI ; time-series ; BFAST ; change monitoring ; breakpoints
WOS学科分类: REMOTE SENSING
WOS研究方向: Remote Sensing
中文摘要: 植被是联结土壤、大气和水分的自然"纽带",在全球气候变化研究中具有"指示器"的作用。对归一化植被指数(normalized difference vegetation index,NDVI)时间序列分析,可以为相关部门的工作和决策提供更好的支持。使用MODIS NDVI数据结合BFAST(breaks for additive seasonal and trend)方法实现对老哈河流域及周边地区的植被变化监测,并确定其NDVI时间序列出现突变点的时间节点。结合气象数据以及数据本身的质量作为影响因子,分析出现突变点的主要原因。研究结果表明,降水量、相对湿度、温度、日照时数、流域蒸发量与NDVI变化趋势呈正相关,风速与NDVI变化趋势相关性很小。降水量对NDVI变化的影响具有滞后性,滞后时间与降水量大小有关。
英文摘要: Vegetation is a natural "link" which links soil, air and water and an "indicator" in global climate change research. Using normalized difference vegetation index (NDVI) time-series analyses, we can provide better support for the relevant researches and decision-making. Using MODIS NDVI data binding with BFAST (breaks for additive seasonal and trend) method, the authors implemented monitoring vegetation dynamics in the Laohahe River Basin and the surrounding areas, and identified its NDVI time-series abrupt change points occurring in time. The meteorological data and the quality of the data itself were also used as an influence factor analysis of the main reason for the breakpoints. It is found that precipitation, relative humidity, temperature, sunshine and water evaporation are positively correlated with NDVI trends, while wind speed is less correlated with NDVI trends. What's more, the precipitation and sunshine hour impact on NDVI change has a certain lag.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/150922
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: 河海大学地球科学与工程学院, 南京, 江苏 210098, 中国

Recommended Citation:
刘宝柱,方秀琴,何祺胜,等. 基于MODIS数据和BFAST方法的植被变化监测[J]. 国土资源遥感,2016-01-01,28(3):2156-2167
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[刘宝柱]'s Articles
[方秀琴]'s Articles
[何祺胜]'s Articles
百度学术
Similar articles in Baidu Scholar
[刘宝柱]'s Articles
[方秀琴]'s Articles
[何祺胜]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[刘宝柱]‘s Articles
[方秀琴]‘s Articles
[何祺胜]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.