Aerosol optical depth and cloud data from satellite measurements, the precipitation data from ground observations were used to evaluate the spatial-temporal variations of aerosol characteristics and the interaction between aerosols, cloud and precipitation. The results showed: 1. The spatial distribution of aerosol optical depth in Xinjiang had a significant regional and seasonal variation due to the change of regional warm-dry conditions over the last decade. 2. The aerosol optical depth in South Xinjiang was higher than North Xinjiang. It was high in spring and summer and low in autumn and winter. It demonstrated an increasing trend. Wherein, aerosol optical depth in North Xinjiang changes more significantly. 3. There was a negative correlation between cloud optical depth and aerosol optical depth. Due to the influence of climate changes and size differences among particles, the correlation coefficient between cloud optical depth and aerosol optical depth in North Xinjiang was higher than South Xinjiang. 4. The cloud water path was greatly affected by temperature and humidity, and the sensitivity of the change of aerosol optical depth was greater than the southern. It was highest in summer and lowest in winter. 5. The relationship between aerosol optical depth and effective radius of cloud droplets was complex. They were greatly influenced by water vapour. When the water content in clouds was low, the effective radius of cloud droplets was negatively correlated with the aerosol optical depth. This indicated that the increase of aerosols in dry areas or seasons will inhibit the increase of cloud droplets. On the whole, the increase of aerosols in Xinjiang province suppressed regional precipitation.