globalchange  > 气候变化与战略
CSCD记录号: CSCD:6036937
论文题名:
基于遥感和GIS的日最高最低气温估算
其他题名: Estimating daily maximum and minimum air temperatures by remote sensing and GIS
作者: 徐伟燕1; 孙睿1; 周爽2; 金志凤3; 胡波2
刊名: 北京师范大学学报. 自然科学版
ISSN: 0476-0301
出版年: 2017
卷: 53, 期:3, 页码:2995-3003
语种: 中文
中文关键词: 最高气温 ; 最低气温 ; 遥感 ; 插值
英文关键词: MODIS ; maximum air temperature ; minimum air temperature ; remote sensing ; MODIS ; interpolation
WOS学科分类: REMOTE SENSING
WOS研究方向: Remote Sensing
中文摘要: 气温是气象要素的重要组成部分,广泛用于全球气候变化、资源环境分析及灾害预警等多个领域.随着卫星遥感技术的发展,气温的估算趋向于遥感或遥感和GIS结合的方法.本文以浙江省为研究区域,利用了36个站点2013年逐日每10 min一次的自动气象站气温观测数据和MODIS地表温度及其他参数产品,选用多元线性回归(自变量为地表温度、归一化植被指数、地表反照率、经度、纬度和高程)、温度植被指数以及多元线性回归插值方法进行气温估算,建立了研究区日最高气温最低气温估算模型,并比较了几种气温估算方法在研究区的适用性.结果表明:3种方法最高气温估算的决定系数(R~2)分别为0.96、0.91、0.97,均方根误差(R_(MSE))分别为1.84、2.75、1.49℃;多元线性回归和多元线性回归插值法最低气温估算的R~2分别为0.87、0.91,R_(MSE)分别为3.33、2.93℃,两者均为多元线性回归插值法得到的结果最好.空间分布结果显示,多元线性回归插值法能很好地反映由地形不同所带来的细节差异.
英文摘要: Air temperature is an important meteorological factor widely used in the evaluation of global climate change, environmental analysis, and disaster early-warning. With advances in satellite remote sensing technology, air temperature estimation tends to utilize remote sensing data or a combination of remote sensing and GIS. MODIS land surface parameter products and air temperature data in 2013 from 36 automated meteorological stations were used to estimate daily maximum and minimum air temperatures in Zhejiang province, by multiple linear regression (MLR)(variables include land surface temperature, normalized difference vegetation index, surface albedo, longitude, latitudes, elevation), temperature-vegetation index(TVX) and multiple linear regression interpolation (MLRI). R~2 of MLR, TVX and MLRI for maximum air temperature were found to be 0.96, 0.91, 0.97,R_(MSE) were 1.84, 2.75, 1.49℃ respectively. R~2 of MLR and MLRI for minimum air temperature were 0.87, 0.91, R_(MSE) were 3.33, 2.93℃ respectively. MLRI performed the best. Spatial patterns indicated that the MLRI method could better reflect temperature differences due to topography in areas with large elevation ranges.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/152066
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: 1.北京师范大学地理科学学部遥感科学与工程研究院, 遥感科学国家重点实验室
2.环境遥感与数字城市北京市重点实验室, 北京 100875, 中国
3.北京师范大学地理科学学部遥感科学与工程研究院, 北京 100875, 中国
4.浙江省气候中心, 杭州, 浙江 310017, 中国

Recommended Citation:
徐伟燕,孙睿,周爽,等. 基于遥感和GIS的日最高最低气温估算[J]. 北京师范大学学报. 自然科学版,2017-01-01,53(3):2995-3003
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[徐伟燕]'s Articles
[孙睿]'s Articles
[周爽]'s Articles
百度学术
Similar articles in Baidu Scholar
[徐伟燕]'s Articles
[孙睿]'s Articles
[周爽]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[徐伟燕]‘s Articles
[孙睿]‘s Articles
[周爽]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.