As an important cause of global warming, carbon dioxide concentration and its change has aroused worldwide concern. How to have an explicit understanding of the spatial and temporal distribution of carbon dioxide concentration is a crucial technical challenge for climate change research. In this paper, based on the in situ observation data set collected in the TanSat flight test area, the correlations between the carbon dioxide concentrations and the environmental variables are analyzed, and suitable environment variables can be selected to establish a regression equation, through which we obtain a preliminary trend of surface carbon dioxide concentrations. Then combining the multiple linear regression model and High Accuracy Surface Modelling (HASM), the carbon dioxide concentrations with a high accuracy in the entire test area are produced. The results indicate that the spatial distributions of the carbon dioxide concentrations in the study area are significantly different between three periods, and the short-wave radiation is an important factor for the regression equation. Because of the high temperature and drought condition, the highest concentration appears in the first period especially in the western area. The second period has a different distribution on the carbon dioxide concentration comparing with the previous period, as in this period the high value region moves eastward, and making the concentration high in the eastern area but low in the western area. Both of the second and third periods have similar characteristics except that the high value region in the eastern area is reduced in third period. Moreover, statistical analyses show that the mean absolute error and the mean relative error of the predicted value of the HASM model are 9.8 ppm and 2.48% respectively, which are both lower than the errors produced using the Kriging method, therefore the HASM model remains to have higher simulation accuracy in a condition of few sampling points and low sampling density. Therefore a combined method of multiple linear regression model and HASM model can be used as an effective method for simulating the spatial and temporal distribution of carbon dioxide concentration in the surface layer.