globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:5909471
论文题名:
塔里木盆地北缘盐土有机碳含量的贝叶斯地统计预测
其他题名: Bayesian geostatistical prediction of soil organic carbon contents of solonchak soils in northern Tarim Basin, Xiinjiang, China
作者: 伍维模1; 王家强2; 曹琦2; 吴嘉平3
刊名: 应用生态学报
ISSN: 1001-9332
出版年: 2017
卷: 28, 期:2, 页码:439-444
语种: 中文
中文关键词: 土壤有机碳 ; 空间预测 ; 贝叶斯地统计 ; 盐土
英文关键词: soil organic carbon ; spatial prediction ; Bayesian geostatistics ; solonchak soil
WOS学科分类: BIOLOGY
WOS研究方向: Life Sciences & Biomedicine - Other Topics
中文摘要: 准确预测土壤有机碳的空间分布,对于土壤资源开发和保护、应对气候变化和生态系统健康都具有重要意义.本文以塔里木盆地北缘盐土1300 m*1700 m样地为试验区,采集5~10 cm深度土壤样品144个,构建土壤有机碳含量的贝叶斯地统计空间预测模型,并以普通克里格、序惯高斯模拟和逆距离加权方法为对照,评价贝叶斯地统计对土壤有机碳含量的预测性能.结果表明:研究区土壤有机碳含量处于1.59~9.30 g · kg~(-1),平均值为4.36g · kg~(-1),标准偏差为1.62 g· kg~(-1);半方差函数符合指数模型,空间结构比参数值为0.57;利用贝叶斯地统计方法,获得了土壤有机碳含量的空间分布图以及评价预测不确定性的预测方差、上95% 分位数、下95%分位数分布图;与普通克里格、序惯高斯模拟和逆距离加权方法相比,贝叶斯地统计方法具有更高的土壤有机碳含量空间预测精度,显示出该方法对土壤有机碳含量预测的优越性.
英文摘要: Accurate prediction of soil organic carbon (SOC) distribution is crucial for soil resources utilization and conservation, climate change adaptation, and ecosystem health. In this study, we selected a 1300 m*1700 m solonchak sampling area in northern Tarim Basin, Xinjiang, China, and collected a total of 144 soil samples (5-10 cm). The objectives of this study were to build a Bayesian geostatistical model to predict SOC content,and to assess the performance of the Bayesian model for the prediction of SOC content by comparing with other three geostatistical approaches [ordinary kriging (OK),sequential Gaussian simulation (SGS),and inverse distance weighting (IDW)]. In the study area, soil organic carbon contents ranged from 1.59 to 9.30 g · kg~(-1) with a mean of 4.36 g · kg~(-1) and a standard deviation of 1.62 g · kg~(-1). Sample semivariogram was best fitted by an exponential model with the ratio of nugget to sill being 0.57. By using the Bayesian geostatistical approach,we generated the SOC content map, and obtained the prediction variance, upper 95% and lower 95% of SOC contents, which were then used to evaluate the prediction uncertainty. Bayesian geostatistical approach performed better than that of the OK,SGS and IDW,demonstrating the advantages of Bayesian approach in SOC prediction.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/153313
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.浙江大学环境与资源学院, 杭州, 浙江 310058, 中国
2.塔里木大学植物科学学院, 阿拉尔, 新疆 843300, 中国
3.浙江大学海岛海岸带研究所, 舟山, 浙江 316021, 中国

Recommended Citation:
伍维模,王家强,曹琦,等. 塔里木盆地北缘盐土有机碳含量的贝叶斯地统计预测[J]. 应用生态学报,2017-01-01,28(2):439-444
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[伍维模]'s Articles
[王家强]'s Articles
[曹琦]'s Articles
百度学术
Similar articles in Baidu Scholar
[伍维模]'s Articles
[王家强]'s Articles
[曹琦]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[伍维模]‘s Articles
[王家强]‘s Articles
[曹琦]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.