The recently developed micro-sampling approach has been widely used to extract micro-tree-cores at weekly intervals to monitor the process of stem cambial activity and xylem formation. Compared with the traditional dendrochronology, the micro-sampling approach enables us to better understand the inherent physiological processes in tree growth and their relationships with the environment at a more precise level. This review article aims to: 1) summarize the progresses in the micro-sampling approach-based studies published over recent years and its potential applications, and 2) elucidate the relationships between primary growth and secondary growth and the response mechanisms of radial growth of trees to global change (global warming, drought, and carbon and nitrogen fertilization effects) based on information from literature. It is anticipated that this review will assist with predicting productivity and carbon sink potential of forests, and help policy-makers with sustainable forest management decisions.