globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:6251153
论文题名:
一种被动微波土壤水分降尺度新算法
其他题名: Extended application of a downscaling algorithm for large-scale soil moisture acquired by passive microwave radiometer
作者: 王安琪1; 柳鹏2
刊名: 干旱区资源与环境
ISSN: 1003-7578
出版年: 2018
卷: 32, 期:5, 页码:565-572
语种: 中文
中文关键词: 土壤水分 ; 被动微波 ; 光学影像 ; 傅里叶变换 ; 空间频谱降尺度
英文关键词: soil moisture ; passive microwave ; optical images ; fourier transform ; spatial frequency spectrum downscaling
WOS学科分类: REMOTE SENSING
WOS研究方向: Remote Sensing
中文摘要: 文中利用被动微波辐射计AMSR-E土壤水分数据和MODIS数据,在频谱降尺度算法框架下,针对文中数据特征,修正模型拟合方程,并引入遥感物理蒸散模型,发展了一种新的大尺度土壤水分数据降尺度算法。此后通过反演土壤水分数据与全球能量与水循环协调观测计划的(CEOP)亚澳季风计划蒙古实验区内地表实测数据的比较,证明该方法可获得数值、时间变化趋势均与实测数据吻合较好的高分辨率土壤水分数据,确认了该降尺度方法较高的可信度及准确性。
英文摘要: Soil moisture is an important part of global energy cycle. Obtaining quantitative soil moisture accurately is of great significance for environmental protection,agricultural production monitoring,global change study, etc. There are many remote sensing platforms providing soil moisture data in different temporal and spatial scales,each of which has its own advantages and disadvantages. By using AMSR-E soil moisture data gained by passive microwave radiometers and MODIS data,taking Mongolia and Asia as the verification zone,we developed a new downscaling algorithm for large-scale soil moisture data under the framework of the spectrum downscaling algorithm by improving the model fitting equation and introducing the evapotranspiration model of remote sensing physics. The comparison with ground measured data from the Asia-Australia Monsoon Project of Coordinated Energy and water-cycle Observation Project (CEOP) in Mongolia study area shows that the downscaled soil moisture data and its changing trends are in good agreement with measured data. Hence it is confirmed that the downscaling method is of high accuracy and credibility.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/154129
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.北方工业大学, 北京 100144, 中国
2.中国科学院遥感与数字地球研究所, 北京 100094, 中国

Recommended Citation:
王安琪,柳鹏. 一种被动微波土壤水分降尺度新算法[J]. 干旱区资源与环境,2018-01-01,32(5):565-572
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[王安琪]'s Articles
[柳鹏]'s Articles
百度学术
Similar articles in Baidu Scholar
[王安琪]'s Articles
[柳鹏]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[王安琪]‘s Articles
[柳鹏]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.