globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:6205348
论文题名:
中国自动土壤水分观测资料质量控制方法设计与效果检验
其他题名: Design and Verification of Quality Control Methods for Automatic Soil Moisture Observation Data in China
作者: 王佳强; 赵煜飞; 任芝花; 高静
刊名: 气象
ISSN: 1000-0526
出版年: 2018
卷: 44, 期:2, 页码:625-630
语种: 中文
中文关键词: 中国区域 ; 自动土壤水分观测站 ; 逐小时资料 ; 土壤体积含水量 ; 质量控制
英文关键词: CLDAS ; China region ; automatic soil moisture observation station (ASMOS) ; hourly data ; soil volumetric moisture content ; quality control ; CMA Land Data Assimilation System (CLDAS)
WOS学科分类: METEOROLOGY ATMOSPHERIC SCIENCES
WOS研究方向: Meteorology & Atmospheric Sciences
中文摘要: 土壤湿度资料对气候变化、农业干旱监测、农业气象预报与服务等研究具有重要意义,为剔除土壤湿度观测资料中的异常数据,本文提出了一套适用于全国自动土壤水分观测资料的质量控制方法.首先,以2014年全国自动土壤水分观测资料为基础,根据资料中异常数据的特征将异常数据分为四类.其次,从界限值检查、内部一致性检查、时间一致性检查等方面提出:异常极值检查、异常增大检查、异常减小检查、异常恒定检查四类方法.最后,利用2014-2015年全国观测资料以及中国气象局陆面数据同化系统(CLDAS)土壤体积含水量数据集产品(V2.0)对各检查方法应用效果进行检验,结果表明:(1)四类检查方法均可判断出自动土壤水分观测资料中的疑误数据;(2)四类检查方法的判定结果在时间连续性及空间分布上具有一定的一致性;(3)该质量控制方法可减小观测数据与CLDAS数据之间的均方根误差(RMSE).目前,该方法已应用于我国气象资料处理业务系统.
英文摘要: Soil moisture data play a key role in the study of climate change and agricultural drought monitoring, agricultural weather forecast and service. In order to effectively eliminate the abnormal data in observations, this paper puts forward a set of quality control (QC) methods which could be applied to the data of automatic soil moisture observation station (ASMOS) in China. First, based on the data of ASMOS 2014 in China, the abnormal data are divided into four categories according to their characters. Secondly, under the consideration of three aspects: threshold value check, internal consistency check, time consistency check, the QC methods are designed, which include abnormal extreme check, abnormal increase check, abnormal decrease check and abnormal constant check. Finally, the QC methods are verified by using the data of ASMOS and soil volumetric water content products of CMA Land Data Assimilation System (CLDAS-V2.0) in China in 2014-2015. The results show that: (1) the four kinds QC methods can effectively identify the four types of abnormal data. (2) The results from the four kinds QC methods are in good agreement in temporal continuity and spatial distribution. (3) The QC methods can effectively reduce the root mean square error (RMSE) between observation and the CLDAS data. At present, the methods have been applied to the Meteorological Data Processing Service System.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/154517
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 国家气象信息中心, 北京 100081, 中国

Recommended Citation:
王佳强,赵煜飞,任芝花,等. 中国自动土壤水分观测资料质量控制方法设计与效果检验[J]. 气象,2018-01-01,44(2):625-630
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[王佳强]'s Articles
[赵煜飞]'s Articles
[任芝花]'s Articles
百度学术
Similar articles in Baidu Scholar
[王佳强]'s Articles
[赵煜飞]'s Articles
[任芝花]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[王佳强]‘s Articles
[赵煜飞]‘s Articles
[任芝花]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.