globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:6223084
论文题名:
一种自适应三维核回归的遥感时空融合方法
其他题名: Spatio-Temporal Reflectance Fusion Based on 3D Steering Kernel Regression Techniques
作者: 卓国浩1; 吴波2; 朱欣然1
刊名: 武汉大学学报. 信息科学版
ISSN: 1671-8860
出版年: 2018
卷: 43, 期:4, 页码:701-709
语种: 中文
中文关键词: 时空融合 ; 三维核回归 ; 自适应 ; 融合精度 ; 遥感影像
英文关键词: spatiotemporal fusion ; 3Dkernel regression ; adaptive ; predication accuracy ; remote sensing image
WOS学科分类: METEOROLOGY ATMOSPHERIC SCIENCES
WOS研究方向: Meteorology & Atmospheric Sciences
中文摘要: 时空融合是解决遥感数据高重访周期与高空间分辨率矛盾的一种有效方法。发展了一种综合利用遥感数据空间与光谱信息的三维自适应核回归反射率模型(three-dimensional adaptively local steering kernel regression fusion model,3DSKRFM),通过提取每个像元的三维控制核(steering kernel)的局部信息,使时空融合过程中的权重自适应调节,提高遥感时空融合的精度。利用两组ETM+和MODIS(moderate-resolution imaging spectroradiometer)数据进行实验测试,结果表明3DSKRFM相比STARFM和2DSKRFM模型具有两方面的优势:一是充分利用遥感影像多波段的优势,提高融合精度;二是具有更强的鲁棒性,满足实际影像时空融合的需求。
英文摘要: Spationtemporal fusion is an effective way to overcome contradictions between high temporal resolution and high spatial resolution of remote sensing,which has a wide range of applications in the city change monitoring,global warming,forest ecology and other environmental issues.STARFM model is a kind of classical and widely used remote sensing Spationtemporal fusion model,but it has two disadvantages.1)STARFM model uses a fixed-size window to find similar pixels.Because there are both texture-poor areas and texture-abundant areas in an image,the window size should be taken into consideration in Spationtemporal fusion model.2)STARFM is an isotropic-based algorithm used to determine similar pixels,but images often exhibit heterogeneous isotropic reflectances,especially in the edges of materials.The paper introduces a three-dimensional adaptively local steering kernel regression fusion model(3DSKRFM)to extract local information for each pixel,that is,using the band information of remote sensing data as the third dimension information of the steering kernel,and then using the three-dimensional gradient covariance matrix to obtain the image local geometry information, to achieve its adaptive weight.As a result,it can improve precision of spatiotemporal fusion of remote sensing image.Two datasets associated with ETM+and MODIS images of Poyang Lake and Fuzhou region are adopted and fusion results of three relational models are compared from the perspective of the quantitative and qualitative in the experiments and the experiments show that 3DSKRFM model not only have the best fusion result,but also have the best ability to deal with noisy image when compared with STARFM and 2DSKRFM models.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/154960
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.福州大学, 空间数据挖掘与信息共享教育部重点实验室, 福州, 福建 350002, 中国
2.福州大学
3.江西师范大学地理与环境学院, 空间数据挖掘与信息共享教育部重点实验室
4., 福州
5.南昌, 福建
6.江西 350002
7.330022, 中国

Recommended Citation:
卓国浩,吴波,朱欣然. 一种自适应三维核回归的遥感时空融合方法[J]. 武汉大学学报. 信息科学版,2018-01-01,43(4):701-709
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[卓国浩]'s Articles
[吴波]'s Articles
[朱欣然]'s Articles
百度学术
Similar articles in Baidu Scholar
[卓国浩]'s Articles
[吴波]'s Articles
[朱欣然]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[卓国浩]‘s Articles
[吴波]‘s Articles
[朱欣然]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.